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Quantum geometry |: Basics of loop quantum gravity. The quantum polyhedra
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General Relativity describes gravity in geometrical terms. This suggests that quantizing such theory is the same as quantizing geometry
The subject can therefore be called quantum geometry and one may think that mathematicians are responsible of this subject. Unfortunately
most mathematicians are not aware of this beautiful area of study. Here we give a basic introduction to what quantum geometry means to ¢
community working in a theory known as loop quantum gravity. It is directed towards graduate or upper students of physics and mathematics.
We do it from a point of view of a mathematician.
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1. Introduction loop quantum gravity to noncommutative geometry. We do
not explore this latter problem here.
The two most important physical theories of the 20th century  The problem we introduce heré isf we want to start un-
are, of course, general relativity and quantum mechanics. Werstanding what quantum geometry may be, we should ask
is very well known to a physicist that classical physical the-ourselves; is there a quantum version of a classical polyhe-
ories have a quantum version. The question then is: what igron.
the quantum version of general relativity? The thing is that It turns out that the answer is yes. Classical polyhedra
there is no known correct answer to this question. such as the Platonic solids for example have a quantum ver-
Physically the question is what is quantum gravity? It ission. This is very exciting in fact. However, unfortunately
impressive that such problem has been studied using manypathematicians are not aware of this fact and it may be be-
different directions; each one of these directions claims theicause this idea emerged in loop quantum gravity which is a
theory is the solution to such problem. theory mostly invented by physicists. This is why our inten-
Loop quantum gravity [1-5] is one of these many direc-tion is to spread the idea to the mathematical community, and
tions. Among all of these directions, loop quantum gravity istherefore give a basic introduction from the point of view of
the second most studied one, just after string theory. a mathematician.
There is no easy way to start |earning |00p quantum grav- This review is directed from a mathematician pOint of
ity. It is a difficult theory, there is plenty of literature out View towards advanced undergraduates or postgraduates in

there most of which is very technical, and in fact there aremathematics and in physics. The mathematics of Sec. 2 will
many different problems on which people are working. be more familiar to mathematicians, whereas the mathemat-
In this paper we give a basic introduction to only one of €S 0f Sec. 3 will be more familiar to physicists.
the constructions of loop quantum gravity. We selected this e will start by recalling what classical polyhedra are
particular problem because we personally think it is the easiand then will describe the quantum analogues.
est one of all and, in fact, it is very beautiful.
The problem is the following. It is known that general 2 Classical Polyhedra
relativity is a theory of gravity which is described in geomet-
rical terms. Therefore, quantizing general relativity must beThis section is based on reference [10]; however it is all writ-
equivalent to quantizing classical geometry. ten as we understand it, that is, our own words. A classical
We can now rephrase the question what is quantum gepolyhedronP is just a solid in three dimensional spaRe,
ometry? And this is again a question with no good answer(P C R3) such thatd P is composed of a finite numbér
because quantizing classical geometry may mean a differenf flat polygon$’. The polygons forming the polyhedron are
thing to different scientific communities. For example, it may called faces, and the sides and vertices of the faces are called
mean something to a mathematician which is very differentedges and vertices. We denote the set tices of the poly-
from what a physicist thinks. Mathematically speaking quan-hedron byfi, fa, ..., fx.
tum geometry may refer to a theory known as noncommuta- We will restrict ourselves to convex polyhedra. Through
tive geometry [9] or in fact, it may refer to loop quantum each flat facef; of a classical polyhedron there exists a plane
gravity. There have been some studies relating some ideas &f that contains it. A convex polyhedrahis a classical poly-
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FIGURE 1. A Convex Polyhedron. FIGURE 2. A Non Convex Polyhedron.

hedron such that any two polygonal facgs# f; are con-

nected through other faces with common edges, and given

planeP; which contains th¢; face, we have tha; N1 = f; S ={(z,2,y) ER? | 22+ 2>+ 92 =1}

foralli = 1,... k. Figure 1 shows a convex polyhedron,

whereas the polyhedron of Fig. 2 is not convex. is the unit sphere; therefore we have that some of the interior
We will consider bounded convex polyhedra, that is,products< n ,n; > will be positive and some others will be

polyhedra with bounded faces. negative, since some of thg point in the same direction as
Given a convex polyhedrofl, considerP;, the plane n, and some point in the opposite direction. The projection

which contains the facg;. The unit vectom; perpendicu- to the planen' of the faces whose normal vectats point

lar to P; and pointing to the side which does not contain anyin the same direction as and the projection of those whose

%II of the unit vectorsn, ny, ..., n; € S?, where

points ofII is called the outward normal @ relative toll. normal vectorsn; point in the opposite direction as cover
Now the most important theorem of this sectién the same area. Then
Theorem 1 (Minkowski) Letny, ns, ..., n; be unit vectors, &
k > 4, such that any three different vectoss;, n;, n,, are Z <n,n;>A(f;) =0
linearly independent. =1
Let A(f1), A(f2), ..., A(fr) € Rsg such that = )
k < H7ZA(fi)Ili >=0
ZA(fi>ni =0 i=1

=t Sincen # 0, and it is an arbitrary vector, we have that

Then there exists a closed convex polyhedibwith facesf; .

having areasA( f;) and outward normals;. ZA(f')n‘ —0
This theorem implies that under given conditions there !

exist a convex polyhedron which satisfies the prescribed

conditionsv. Therefore equatiofil) is proved.
However, it also turns out that given a convex polyhedron

whose faceg; have areasl( f;) and whose outward unit nor- 3. Quantum Polyhedra

mals to the faces ane;, the equation

i=1

Classical physical theories have a quantum vetsiomhe
question is can mathematics be quantized? Well, let us start
by asking, is there a quantum version of a classical convex
polyhedron described in the previous section?
is satisfied. This is easy to see. Surprisingly there is, and loop quantum gravity has de-
Let n be a unit vector irR3. Consider the Euclidean in- scribed these quantum versions [5-7]. But the idea can be
ner product< n ,n; > of the unit vectom with all of the  generalised to quantizing any convex polyhedron. In this sec-
unit normals to the faces of the convex polyhedibnThe  tion we describe the quantum version of a classical convex
number< n ,n; > A(f;) is the area of the projection of the polyhedron. We give a very basic introduction to this beau-
facef; into a planen'’ whose all vectors are orthogonahio tiful subject. It is in fact a hard thing to do since the subject

k

ZA(fi)ni =0 (1)

1=1
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is full of difficult and advanced mathematics. At least in thiswhich are eigenvectors of an observable (self-adjoint opera-
first introduction paper we keep it simple. This section istor in the Hilbert space). The eigenvalues of the observable
mathematically inspired in [11]. are the observed quantities with a certain probability.
There is an action of the Lie grougO(3) of rotations in When we say that the quantum polyhedron has a wave
the Euclidean spadg?®, and the aread( f;) of the facesf; of  function, or is in the state); (71) @ ¥2(73) ® - - - @ (7%,
the convex polyhedroH as well as its volume remain invari- we must understand that it is a superposition state. What are
ant under such rotations. The set of the normal unit vectorthe observed quantities? What is an observable in this theory
n, to the faces obviously remain unit vectors. of quantum polyhedra? In order to answer these questions we
Quantizing a convex polyhedron is defined by assigning ahould know some more things. Let us discuss these issues.
Hilbert spaceH; to each of its faceg; and the tensor product The Hilbert spac&.?(5?) of squared-integrable functions
Hi @Ho® - - - - @Hy, to the polyhedron in the following way. over.S? has an inner product given by
This implies that the observables are related to measures on
the quantum polyhedron faces. In classical geometry a poly- < () | x(@) > = /M x(%) dit
hedronlI has faced; of certain area( f;). Areain classical
geometry is a classical observable. Therefore its quantum
counterpart is called quantum area and it must be an operattfrwe introduce spherical coordinates$t
defined on a Hilbert space. This is understood as follows.
As SO(3) sends the unit spherg? to itself, the Hilbert f(8,) = (cos 0, sinb cos ¢, sinbsing)
space associated to each face is in 1attS?), the space of

complex valued squared-integrable functiénd hat is, such that0 < 6 < m,0 < ¢ < 2r. Then the functions

(&) become functions of the spherical angle®, ¢) and
L2(5?) = {¢ .82 . C| / | (Z) 2 dF < OO} the inner product can be written explicitly as
52

. : o <9(0,9) | x(0,¢) >
Just as the Lie group of rotatior80(3) acts inS?, it also
acts in the Hilbert spack?(S?) by il /1/, 0,) x(6,6)sin 6 do do

R(7) := (R 7)
whereR : S2 — S2 is a rotation andz-" is its inverse. 4 is the area of the unit sphere, or in other wéttls
To the polyhedron we assign the tensor product N this Hilbert space the observables include the self-
©x L2(S%), so that a vector ing;, L2(S2) is given by adjoint operatorsJy, Jo,J3 : Dom(L2(S?%)) — L2(S?)
U1 (27) ® a(35) ® -+ ® Yy (2) such that theSO(3) ac-  9ven by

tion on this tensor product space is given by ) cosf
Ji=1 (smgb 08 ¢ — )
R (1) @ o (@) @ -+ @ ¢y () 1= ¢ (R #1) 06 "% S 96
® o (R 1:E2)®"'®1/1k(R 1Ik) J2:i<—008¢869 n¢§?§3 %)
Physically, the wave function of a quantum polyhedron is P
a complex valued function defined on the tensor product J3 = —i —
@ L?(S?) Hilbert space, such that; (77) ® 1 (72) @+ - - ® 0¢

Yr(<}) is @ unit vector in the Hilbert space, L*(S?).  and the commutation relations of these operators are given by
Mathematically this is written
[J17J2}:Z.J3 ’ [']2a']3}:i‘]1 ) [J37J1]:iJ2
| 1(27) ® 12 (73) @ -+ - @ (@) |

P There is also an operator known as the Casimir operator given
X S2..x

by
x iy sy . .. dasj, = 1 J?=J} + I3+ J3
where the integral is over products ofS2. In fact this latter ~ Using the expressions foh;, .J», Js it can be seen that
integral is given by S 1 9 no Q N 1 372
k el " sinf \ 96 06 sin 0 O¢?
1 [ 1wt P s . . .
; This latter expression is the minus Laplacian on the sphere

=15,
s which has eigenvectors given by the well known spherical

When we study quantum mechanics, we know that theyarmonics functiond” (¢, ¢). This means that
wave function of a system is a superposition (linear combi-
nation of basis vectors in the Hilbert vector space) of states J2Y(0,0) =3(j+1)Y(0,0) )
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wherej € Z>(. Each eigenvalug(j + 1) is of multiplicity ~ This implies that we have a quantum polyhedron which area
2j + 1 and therefore the eigenvectors of the operdtowith  faces are quantized and the total area of the quantum surface
eigenvalugi(j + 1) generate a subspaég of L?(S?). This  is®®

implies that the Hilbert spack?(S?) is a direct sum given oo
by A = 63> VGG + 1)
o =1
20 @2y _ ]
(5%) = 690 Hy wherelp is the Planck length and it is introduced in the pre-
J:

) ) ] vious formula in order to have the correct dimensions.
It is customary to denote the orthogonal basis of eigenvectors

with eigenvaluej(j + 1) that generate the subspale by
Y7 (0, ¢) wherem takes integer values;j < m < j. 4. Conclusions
In loop quantum gravity the observablk is the area
operatot®, and formula(2) is interpreted physically as the This short review was intended to be a simple first intro-
squared area of facg of the quantum polyhedrof. Face duction to one particular subject of loop quantum gravity;

fi has therefore quantized area given by the numbers quantum polyhedra. It was directed to undergraduate or to
first year postgraduate students in physics and mathematics.
A(f) = V3G +1) It was our intention to describe it from the perspective of a

mathematician, and we hope we have succeeded in this task.
It is our intention to continue introducing loop quantum

gravity to mathematicians, since most mathematicians are not

aware of the beautiful subject called loop quantum gravity.
As this is a first introduction we have left so many things

On the other hand, a general vectg(, ¢) (wave func-
tion) in the Hilbert spacd.?(S?) is a linear combination of
bases vectors (superposition) given by

00 J
»(0, 9) = Z Z ¢ Y0, ) out; loop quantum gravity is a very extensive field and no first
=0 m=—j introduction will be satisfactory. Even dealing with quantum
, polyhedra requires more formal, and advanced mathematics
wherec], € C. we have not dealt with.

A wave function of a quantum polyhedron is given by From what we studied in this first introduction, we have
learnt that quantum polyhedra states are superposed and once
V101, $1) @ Pa(b2, p2) @ - - - @ Y (O, P1) we have performed a measure of its faces areas the superpo-

wherek is the number of faces of the classical polyhedron. tSition collapses to a polyhedron which faces have discrete ar-

is of course a linear combination(superposition of states) of@S- This means that the area operator is quantised and there-
basis vectors which can be written as fore we have a first glimpse of what quantum geometry is

form the perspective of loop quantum gravity.
Ji k

k oo k - - .
, , When guantizing geometry, area is not continuous but
(f: ) — i Ji . . . . .
®w1(9“¢1) - Z Z chm ®Ymi(eﬂ¢l) discrete. It happens the same when considering a volume
=1 Ji=0mi==ji i=1 =1 operator and finding that its spectrum is discrete. We did not
After a measurement of the observablehe quantum consider the volume operator here, since it is more compli-

polyhedron will be in a particular state cated. But physicists of loop quantum gravity interpret the
_ } _ discrete spectrums as thinking of space formed by quantum
YL (01,61) @ Y2 (02,02) @ - - @Y (On, 1) entities called quanta of space.

i. The one we consider is the simplest one in order to start undersii. - [, sin6 df dp =1

standing the idea behind loop quantum gravity.
ii. OP denotes the boundary of the polyhedi®n viti. The relation of the observable operafband an area operator
is a construction derived in Loop Quantum Gravity. This rela-
tion derivation is out of the scope of this review and we do not
plan to deal with it at the moment. However it is our intention
to have a new review in a future and it will be explained there.

#i. Inthis theorem we use loop quantum gravity notation when re-
ferring to face areas.

. For a proof of theorem 1 we refer the reader to [10].
v. For instance, a quantum version of space exists. See for exam-

ple [8]. iz. We have studied a very simplified problem. We have not dealt

vi. SO(3) not only acts on the Hilbert spade? (S?), it can also for instance with more complicated mathematics behind quan-
act onL?(R?) for instance. However we choice the action re- tum polyhedra, like the theory of representations, including the
stricted toL?(S?) since our equations will not depend on the quantum version of classical formul&). We will deal with this
radial coordinate. in a future review.
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