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Quantum geometry I: Basics of loop quantum gravity. The quantum polyhedra
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Apartado Postal 20-726, 01000, Ciudad de México, Ḿexico.
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General Relativity describes gravity in geometrical terms. This suggests that quantizing such theory is the same as quantizing geometry.
The subject can therefore be called quantum geometry and one may think that mathematicians are responsible of this subject. Unfortunately,
most mathematicians are not aware of this beautiful area of study. Here we give a basic introduction to what quantum geometry means to a
community working in a theory known as loop quantum gravity. It is directed towards graduate or upper students of physics and mathematics.
We do it from a point of view of a mathematician.
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1. Introduction

The two most important physical theories of the 20th century
are, of course, general relativity and quantum mechanics. It
is very well known to a physicist that classical physical the-
ories have a quantum version. The question then is: what is
the quantum version of general relativity? The thing is that
there is no known correct answer to this question.

Physically the question is what is quantum gravity? It is
impressive that such problem has been studied using many
different directions; each one of these directions claims their
theory is the solution to such problem.

Loop quantum gravity [1-5] is one of these many direc-
tions. Among all of these directions, loop quantum gravity is
the second most studied one, just after string theory.

There is no easy way to start learning loop quantum grav-
ity. It is a difficult theory, there is plenty of literature out
there most of which is very technical, and in fact there are
many different problems on which people are working.

In this paper we give a basic introduction to only one of
the constructions of loop quantum gravity. We selected this
particular problem because we personally think it is the easi-
est one of all and, in fact, it is very beautiful.

The problem is the following. It is known that general
relativity is a theory of gravity which is described in geomet-
rical terms. Therefore, quantizing general relativity must be
equivalent to quantizing classical geometry.

We can now rephrase the question what is quantum ge-
ometry? And this is again a question with no good answer,
because quantizing classical geometry may mean a different
thing to different scientific communities. For example, it may
mean something to a mathematician which is very different
from what a physicist thinks. Mathematically speaking quan-
tum geometry may refer to a theory known as noncommuta-
tive geometry [9] or in fact, it may refer to loop quantum
gravity. There have been some studies relating some ideas of

loop quantum gravity to noncommutative geometry. We do
not explore this latter problem here.

The problem we introduce here isi: if we want to start un-
derstanding what quantum geometry may be, we should ask
ourselves; is there a quantum version of a classical polyhe-
dron.

It turns out that the answer is yes. Classical polyhedra
such as the Platonic solids for example have a quantum ver-
sion. This is very exciting in fact. However, unfortunately
mathematicians are not aware of this fact and it may be be-
cause this idea emerged in loop quantum gravity which is a
theory mostly invented by physicists. This is why our inten-
tion is to spread the idea to the mathematical community, and
therefore give a basic introduction from the point of view of
a mathematician.

This review is directed from a mathematician point of
view towards advanced undergraduates or postgraduates in
mathematics and in physics. The mathematics of Sec. 2 will
be more familiar to mathematicians, whereas the mathemat-
ics of Sec. 3 will be more familiar to physicists.

We will start by recalling what classical polyhedra are
and then will describe the quantum analogues.

2. Classical Polyhedra

This section is based on reference [10]; however it is all writ-
ten as we understand it, that is, our own words. A classical
polyhedronP is just a solid in three dimensional spaceR3,
(P ⊂ R3) such that∂P is composed of a finite numberk
of flat polygonsii. The polygons forming the polyhedron are
called faces, and the sides and vertices of the faces are called
edges and vertices. We denote the set ofk faces of the poly-
hedron byf1, f2, . . . , fk.

We will restrict ourselves to convex polyhedra. Through
each flat facefi of a classical polyhedron there exists a plane
Pi that contains it. A convex polyhedronΠ is a classical poly-
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FIGURE 1. A Convex Polyhedron.

hedron such that any two polygonal facesfi 6= fj are con-
nected through other faces with common edges, and given a
planePi which contains thefi face, we have thatPi∩Π = fi

for all i = 1, . . . , k. Figure 1 shows a convex polyhedron,
whereas the polyhedron of Fig. 2 is not convex.

We will consider bounded convex polyhedra, that is,
polyhedra with bounded faces.

Given a convex polyhedronΠ, considerPi, the plane
which contains the facefi. The unit vectorni perpendicu-
lar to Pi and pointing to the side which does not contain any
points ofΠ is called the outward normal ofPi relative toΠ.

Now the most important theorem of this sectioniii.
Theorem 1(Minkowski) Let n1,n2, . . . ,nk be unit vectors,
k ≥ 4, such that any three different vectorsni,nj ,n`, are
linearly independent.

Let A(f1), A(f2), ...., A(fk) ∈ R>0 such that

k∑

i=1

A(fi)ni = 0

Then there exists a closed convex polyhedronΠ with facesfi

having areasA(fi) and outward normalsni.
This theorem implies that under given conditions there

exist a convex polyhedron which satisfies the prescribed
conditionsiv.

However, it also turns out that given a convex polyhedron
whose facesfi have areasA(fi) and whose outward unit nor-
mals to the faces areni, the equation

k∑

i=1

A(fi)ni = 0 (1)

is satisfied. This is easy to see.
Let n be a unit vector inR3. Consider the Euclidean in-

ner product< n ,ni > of the unit vectorn with all of the
unit normals to the faces of the convex polyhedronΠ. The
number< n ,ni > A(fi) is the area of the projection of the
facefi into a planen⊥ whose all vectors are orthogonal ton.

FIGURE 2. A Non Convex Polyhedron.

All of the unit vectorsn,n1, . . . ,nk ∈ S2, where

S2 = {(z, x, y) ∈ R3 | z2 + x2 + y2 = 1}
is the unit sphere; therefore we have that some of the interior
products< n ,ni > will be positive and some others will be
negative, since some of theni point in the same direction as
n, and some point in the opposite direction. The projection
to the planen⊥ of the faces whose normal vectorsni point
in the same direction asn and the projection of those whose
normal vectorsni point in the opposite direction asn cover
the same area. Then

k∑

i=1

< n ,ni > A(fi) = 0

⇒
< n ,

k∑

i=1

A(fi)ni >= 0

Sincen 6= ~0, and it is an arbitrary vector, we have that

k∑

i=1

A(fi)ni = 0

Therefore equation(1) is proved.

3. Quantum Polyhedra

Classical physical theories have a quantum versionv. The
question is can mathematics be quantized? Well, let us start
by asking, is there a quantum version of a classical convex
polyhedron described in the previous section?

Surprisingly there is, and loop quantum gravity has de-
scribed these quantum versions [5-7]. But the idea can be
generalised to quantizing any convex polyhedron. In this sec-
tion we describe the quantum version of a classical convex
polyhedron. We give a very basic introduction to this beau-
tiful subject. It is in fact a hard thing to do since the subject
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is full of difficult and advanced mathematics. At least in this
first introduction paper we keep it simple. This section is
mathematically inspired in [11].

There is an action of the Lie groupSO(3) of rotations in
the Euclidean spaceR3, and the areasA(fi) of the facesfi of
the convex polyhedronΠ as well as its volume remain invari-
ant under such rotations. The set of the normal unit vectors
ni to the faces obviously remain unit vectors.

Quantizing a convex polyhedron is defined by assigning a
Hilbert spaceHi to each of its facesfi and the tensor product
H1⊗H2⊗· · · ·⊗Hk to the polyhedron in the following way.
This implies that the observables are related to measures on
the quantum polyhedron faces. In classical geometry a poly-
hedronΠ has facesfi of certain areaA(fi). Area in classical
geometry is a classical observable. Therefore its quantum
counterpart is called quantum area and it must be an operator
defined on a Hilbert space. This is understood as follows.

As SO(3) sends the unit sphereS2 to itself, the Hilbert
space associated to each face is in factL2(S2), the space of
complex valued squared-integrable functionsvi. That is,

L2(S2) =
{

ψ : S2 → C |
∫

S2
| ψ(~x) |2 d~x < ∞

}

Just as the Lie group of rotationsSO(3) acts inS2, it also
acts in the Hilbert spaceL2(S2) by

R ψ(~x) := ψ(R−1 ~x)

whereR : S2 → S2 is a rotation andR−1 is its inverse.
To the polyhedron we assign the tensor product

⊗k L2(S2), so that a vector in⊗k L2(S2) is given by
ψ1( ~x1) ⊗ ψ2( ~x2) ⊗ · · · ⊗ ψk( ~xk) such that theSO(3) ac-
tion on this tensor product space is given by

R(ψ1( ~x1)⊗ ψ2( ~x2)⊗ · · · ⊗ ψk( ~xk)) := ψ1(R−1 ~x1)

⊗ ψ2(R−1 ~x2)⊗ · · · ⊗ ψk(R−1 ~xk)

Physically, the wave function of a quantum polyhedron is
a complex valued function defined on the tensor product
⊗k L2(S2) Hilbert space, such thatψ1( ~x1)⊗ψ2( ~x2)⊗· · ·⊗
ψk( ~xk) is a unit vector in the Hilbert space⊗k L2(S2).
Mathematically this is written

∫

S2×S2···×S2

| ψ1( ~x1)⊗ ψ2( ~x2)⊗ · · · ⊗ ψk( ~xk) |2

× d ~x1 d ~x2 . . . d ~xk = 1

where the integral is overk products ofS2. In fact this latter
integral is given by

k∏

i=1

∫

S2

| ψi(~xi) |2 d~xi.

When we study quantum mechanics, we know that the
wave function of a system is a superposition (linear combi-
nation of basis vectors in the Hilbert vector space) of states

which are eigenvectors of an observable (self-adjoint opera-
tor in the Hilbert space). The eigenvalues of the observable
are the observed quantities with a certain probability.

When we say that the quantum polyhedron has a wave
function, or is in the stateψ1( ~x1)⊗ ψ2( ~x2)⊗ · · · ⊗ ψk( ~xk),
we must understand that it is a superposition state. What are
the observed quantities? What is an observable in this theory
of quantum polyhedra? In order to answer these questions we
should know some more things. Let us discuss these issues.

The Hilbert spaceL2(S2) of squared-integrable functions
overS2 has an inner product given by

< ψ(~x) | χ(~x) > =
∫

S2

ψ(~x) χ(~x) d~x

If we introduce spherical coordinates inS2

f(θ, φ) = (cos θ, sin θ cosφ, sin θ sinφ)

such that0 < θ < π, 0 < φ < 2π. Then the functions
ψ(~x) become functions of the spherical anglesψ(θ, φ) and
the inner product can be written explicitly as

< ψ(θ, φ) | χ(θ, φ) >

=
1
4π

∫

S2

ψ(θ, φ) χ(θ, φ) sin θ dθ dφ

4π is the area of the unit sphere, or in other wordsvii.
In this Hilbert space the observables include the self-

adjoint operatorsJ1, J2, J3 : Dom(L2(S2)) → L2(S2)
given by

J1 = i

(
sin φ

∂

∂θ
+ cos φ

cos θ

sin θ

∂

∂φ

)

J2 = i

(
− cosφ

∂

∂θ
+ sin φ

cos θ

sin θ

∂

∂φ

)

J3 = −i
∂

∂φ

and the commutation relations of these operators are given by

[J1, J2] = i J3 , [J2, J3] = i J1 , [J3, J1] = i J2

There is also an operator known as the Casimir operator given
by

J2 = J2
1 + J2

2 + J2
3

Using the expressions forJ1, J2, J3 it can be seen that

J2 = − 1
sin θ

(
∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin θ

∂2

∂φ2

)

This latter expression is the minus Laplacian on the sphere
which has eigenvectors given by the well known spherical
harmonics functionsY (θ, φ). This means that

J2 Y (θ, φ) = j(j + 1) Y (θ, φ) (2)
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wherej ∈ Z≥0. Each eigenvaluej(j + 1) is of multiplicity
2j + 1 and therefore the eigenvectors of the operatorJ2 with
eigenvaluej(j + 1) generate a subspaceHj of L2(S2). This
implies that the Hilbert spaceL2(S2) is a direct sum given
by

L2(S2) =
∞⊕

j=0

Hj

It is customary to denote the orthogonal basis of eigenvectors
with eigenvaluej(j + 1) that generate the subspaceHj by
Y j

m(θ, φ) wherem takes integer values−j ≤ m ≤ j.
In loop quantum gravity the observableJ is the area

operatorviii, and formula(2) is interpreted physically as the
squared area of facefi of the quantum polyhedronΠ. Face
fi has therefore quantized area given by the numbers

A(fi) =
√

ji(ji + 1)

On the other hand, a general vectorψ(θ, φ) (wave func-
tion) in the Hilbert spaceL2(S2) is a linear combination of
bases vectors (superposition) given by

ψ(θ, φ) =
∞∑

j=0

j∑

m=−j

cj
m Y j

m(θ, φ)

wherecj
m ∈ C.

A wave function of a quantum polyhedron is given by

ψ1(θ1, φ1)⊗ ψ2(θ2, φ2)⊗ · · · ⊗ ψk(θk, φk)

wherek is the number of faces of the classical polyhedron. It
is of course a linear combination(superposition of states) of
basis vectors which can be written as

k⊗

i=1

ψi(θi, φi) =
∞∑

ji=0

ji∑

mi=−ji

k∏

i=1

cji
mi

k⊗

i=1

Y ji
mi

(θi, φi)

After a measurement of the observableJ the quantum
polyhedron will be in a particular state

Y j1
m1

(θ1, φ1)⊗ Y j2
m2

(θ2, φ2)⊗ · · · ⊗ Y jk
mk

(θk, φk)

This implies that we have a quantum polyhedron which area
faces are quantized and the total area of the quantum surface
isix

A(Π) = `2P

k∑

i=1

√
ji(ji + 1)

where`P is the Planck length and it is introduced in the pre-
vious formula in order to have the correct dimensions.

4. Conclusions

This short review was intended to be a simple first intro-
duction to one particular subject of loop quantum gravity;
quantum polyhedra. It was directed to undergraduate or to
first year postgraduate students in physics and mathematics.
It was our intention to describe it from the perspective of a
mathematician, and we hope we have succeeded in this task.

It is our intention to continue introducing loop quantum
gravity to mathematicians, since most mathematicians are not
aware of the beautiful subject called loop quantum gravity.

As this is a first introduction we have left so many things
out; loop quantum gravity is a very extensive field and no first
introduction will be satisfactory. Even dealing with quantum
polyhedra requires more formal, and advanced mathematics
we have not dealt with.

From what we studied in this first introduction, we have
learnt that quantum polyhedra states are superposed and once
we have performed a measure of its faces areas the superpo-
sition collapses to a polyhedron which faces have discrete ar-
eas. This means that the area operator is quantised and there-
fore we have a first glimpse of what quantum geometry is
form the perspective of loop quantum gravity.

When quantizing geometry, area is not continuous but
discrete. It happens the same when considering a volume
operator and finding that its spectrum is discrete. We did not
consider the volume operator here, since it is more compli-
cated. But physicists of loop quantum gravity interpret the
discrete spectrums as thinking of space formed by quantum
entities called quanta of space.

i. The one we consider is the simplest one in order to start under-
standing the idea behind loop quantum gravity.

ii. ∂P denotes the boundary of the polyhedronP .

iii. In this theorem we use loop quantum gravity notation when re-
ferring to face areas.

iv. For a proof of theorem 1 we refer the reader to [10].

v. For instance, a quantum version of space exists. See for exam-
ple [8].

vi. SO(3) not only acts on the Hilbert spaceL2(S2), it can also
act onL2(R3) for instance. However we choice the action re-
stricted toL2(S2) since our equations will not depend on the
radial coordinate.

vii. 1
4π

∫
S2 sin θ dθ dφ = 1

viii. The relation of the observable operatorJ and an area operator
is a construction derived in Loop Quantum Gravity. This rela-
tion derivation is out of the scope of this review and we do not
plan to deal with it at the moment. However it is our intention
to have a new review in a future and it will be explained there.

ix. We have studied a very simplified problem. We have not dealt
for instance with more complicated mathematics behind quan-
tum polyhedra, like the theory of representations, including the
quantum version of classical formula(1). We will deal with this
in a future review.
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