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Virtual beams and the Klein paradox for the Klein-Gordon equation
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Whenever we consider any relativistic quantum wave equation we are confronted with the Klein paradox, which asserts that incident particles
will suffer a surplus of reflection when dispersed by a discontinuous potential. Following recent results on the Dirac equation, we propose
a solution to this paradox for the Klein-Gordon case by introducing virtual beams in a natural well-posed generalization of the method of
images in the theory of partial differential equations. Thus, our solution considers a global reflection coefficient obtained from the two
contributions, the reflected particles plus the incident virtual particles. Despite its simplicity, this method allows a reasonable understanding
of the paradox within the context of the quantum relativistic theory of particles (according to the original setup for the Klein paradox) and
without resorting to any quantum field theoretic issues.
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1. Introduction

Back in the early days of quantum mechanics, following
a suggestion of Debye, Schrödinger tried to find an equa-
tion describing the behavior of the waves introduced by De
Broglie. His first attempt started with Einstein’s equation for
the relativistic energy

E2 = p2c2 + m2c4 , (1)

which he expected to be satisfied by the quantum waves. To
this end, he observed that a possible solution for the wave
equation (deduced from Maxwell’s equations for the compo-
nents of the electromagnetic field)

∂2Φ
∂x2

− 1
c2

∂2Φ
∂t2

= 0 , (2)

is a plane monochromatic wave

Φ(x, t) = Φ0e
i(kx−wt) ,

wherek is the wave number andw the frequency (for sim-
plicity, we deal only with the one-dimensional case). Taking
into account Einstein’s relationE = ~w, and De Broglie’s
one,p = ~k, he rewrote the expression for the plane waves
arising in electromagnetic theory in terms of the energy and
momentum, as

Φ(x, t) = Φ0e
i(px−Et)/~ .

Substituting back in (2), of course we get the relativistic en-
ergy for a photon (the quantum of the electromagnetic field)

E2 = p2c2 ,

but, as previously stated, Schrödinger wanted (1) instead.
What he noticed, by a simple inspection, is that this relation
is precisely what results if we take as the wave equation

(
∂2

∂x2
− 1

c2

∂2

∂t2
− m2c2

~2

)
Φ(x, t) = 0 . (3)

Schr̈odinger went on to study the Hidrogen atom with this
equation, but soon he found that it gave an incorrect spec-
trum, so he discarded it as a valid quantum equation. After
this, the equation was rediscovered by Pauli, Klein, Gordon
and Fock, among others (Pauli called it “the equation with
many fathers”, see [4]), and today (3) is widely known as
the Klein-Gordon equation. It is a quantum relativistic wave
equation, used in the description of particles with spin0.

As in the case of the Schrödinger equation (which he de-
rived later starting from the non-relativistic expression for the
energy), it is instructive to explore the behavior of the solu-
tions to the Klein-Gordon equation for some simple poten-
tials. Perhaps the simplest is the step potential,

V (x) =

{
V, if x ≥ 0 ,

0, if x < 0 .
(4)

When the energy of an incident beam of particles (from the
left) is E < V , it is well-known that for particles described
by the Schr̈odinger equation there is some penetration in the
region to the right of the barrier, expressed by the fact that
there is a non vanishing transmission coefficient, but that den-
sity exponentially decays with distance.

What is surprising is that, as we shall see, when the step
potential is included in the Klein-Gordon equation the barrier
can become transparent at high values forV , and the (normal-
ized) reflection coefficient is greater than1, even when the
energy of the incident beam isE < V . This counter-intuitive
behavior is called the Klein paradox. It is a common feature
of quantum relativistic one-particle equations, and, indeed, it
was first discussed for the Dirac equation (see [8] and [3]).
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The Klein paradox is commonly solved for the case of the
Dirac equation within the framework of quantum field theory
(QFT) [9]: the strong potential to the right of the barrier ex-
cites the vacuum, creating electron-positron pairs, and acts at-
tracting the positron states, which couples with the electrons
outside the barrier with the same energy. Other solutions are
offered in [2] and [5]. However, there are no available exper-
iments where this phenomenon is considered, although re-
cent studies seem to point to bi-layer graphene as a possible
setup [7]. Anyway, as stated in [1], the main point is that the
paradox arises in the context of a quantum relativistic theory
for one particle, so it would be desirable (to assess the self-
consistency of the theory) to know if it can be solved also
without resorting to QFT. Indeed, we follow the ideas in that
paper (which deals with the Dirac equation) to show that this
is the case for the Klein-Gordon equation (there exists an ear-
lier, different treatment in [13] based on the consideration of a
finite non-zero width of the barrier, and [6] reviews the usual
pair creation solution in this setting). As in [1], our main tool
will be a suitable extension of the method of images.

The method of images is described in any textbook deal-
ing with electrostatics as an efficient tool for studying the
field created by charge distributions involving media discon-
tinuities. Its basic idea is to introduce virtual charges induc-
ing a field that compensates the one created by real charges,
in such a way that it satisfies the prescribed boundary con-
dition on the media discontinuities. Here, following [1], we
generalize it to show that if virtual beams, instead of virtual
charges, are introduced into the problem of the step potential
for the Klein-Gordon equation, with suitable matching con-
ditions, then the paradox is solved by considering the total re-
flection and transmission coefficients (that is, the coefficients
corresponding to both the real and the virtual beams).

To make the paper relatively self-contained, we very
briefly recall the basics of the method of images in Sec. 2,
and reproduce in detail the computations leading to the Klein
paradox in Sec. 3. Section 4 contains the solution of the
problem.

2. Preliminaries: the method of images

Let us begin by recalling that for any linear partial dif-
ferential operator of orderm with real-analytic coefficients
on Rn, P (x, D), and any non-characteristic, analytic regu-
lar submanifoldS ⊂ Rn, Holmgren’s uniqueness theorem
(see [10]) guarantees the uniqueness of the solution to the
Cauchy problem

{
Pu = f

Dαu = Dαg onS ,

for any multi-index0 ≤ |α| ≤ m− 1, whereg is a given an-
alytic function. This is the case, for example, of the Laplace
operator∆ = ∇2 or the Klein-Gordon one given in (3).

Consider now the Poisson equation, defined on a con-
nected domainD ⊂ Rn with regular boundaryS = ∂D:

∇2u = f , (5)

wheref : D → R is a given function, physically repre-
senting, for instance, a distribution of electrostatic sources in
empty space. The fundamental solution for this problem is a
distribution (in the sense of L. Schwartz, see [11] or the more
physics-oriented text [12])F (x− x′) such thati

∇2F (x− x′) = δ(x− x′) , (6)

whereδ is the Dirac (singular) distribution. Because of the
propertyδ ∗f = f = f ∗δ, it turns out that the solution to (5)
is given by convolution with the source:

u = F ∗ f .

The fundamental solution is not unique, of course. For in-
stance, the addition of any harmonic distributionh (such that
∇2h = 0) gives a new fundamental solutionG = F +h. The
method of images provides a judicious choice ofh to guar-
antee that prescribed boundary conditions onS = ∂D are
satisfied.

For the case of Dirichlet and Neumann problems, one
wants that the solutionG to satisfyG(x − x′) = 0 for any
x ∈ S, and in this case it is called the Green function. Other
conditions, such as asymptotic ones, can be imposed onG.

When the sources have support on a setΓ, given anyx′ ∈
Γ we construct the associated Green function asG = F + h
where

∇2h =
N∑

j=1

qjδ(x− xj) , (7)

and qj , xj are, respectively, a set of weights and positions
chosen in such a way thatG = F + h satisfyG(x− x′) = 0
for all x ∈ S = ∂D.

What we want to stress at this point is the fact that the
boundaryS provides the conditions required to build the so-
lution, and these conditions very often can be deduced from
symmetry conditions. We will return to this point later, in
Sec. 4.

The prototypical example where this method is applied
is that of a harmonic function inR3 with prescribed values
on the planez = 0. Thus, we look for a functionu(x, y, z)
such that∇2u = 0 andu(x, y, 0) = f(x, y, 0) for a given
function f(x, y, 0), which exists and is unique because the
Cauchy-Kowalevskaya and Holmgren theorems. Thus, if we
consider the problem of determining the field created by a
single chargeq located at a distanced of an infinite, grounded
conducting plane (which plays the rôle of the surfaceS), we
can arrange the coordinate system so the conductor coincides
with thez = 0 plane and the charge is located atz = d; then,
the problem reduces itself to finding the locationx1 of a sin-
gle charge such that the total potential in the points(x, y, 0)
vanishes. As stated above, symmetry considerations are an
essential part of the method. In the present case, the sym-
metry of the problem suggests to takex1 = (0, 0,−d) and
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q1 = −q in (7). The Green function becomes the sum of the
fundamental solution of the Laplacian inR3 (see [12]), and
the harmonic functionh so found:

G(x− x′) = − 1
4π‖x− x′‖ + h(‖x− x′‖)

= − 1
4π‖x− x′‖ +

1
4π‖x + x′‖ ,

and the uniqueness property assures that the solution for the
potential in the regionz > 0 is the well known expression

V (x, y, z) =
q

4π

(
1√

x2 + y2 + (z − d)2

+
1√

x2 + y2 + (z + d)2

)
.

3. The Klein paradox

Let us simplify the notation by taking natural units (~=1=c),
so the Klein-Gordon equation in three spatial dimension be-
comes (

∂

∂t2
−∆ + m2

)
Φ(x, t) = 0 ,

or, in terms of the operators∂µ = (∂/∂t,∇) and ∂µ =
ηµν∂ν = (∂/∂t,−∇) (whereηµν = diag(1,−1,−1,−1)
is Minkowski’s metric),

(∂µ∂µ + m2)Φ(x, t) = 0 .

The relativistic probability current for the Klein-Gordon
equation is defined as the4−vector

jµ = − 1
2mi

(Φ∗∂µΦ− Φ∂µΦ∗) .

It is readily seen that∂µjµ = 0, that is, the probability cur-
rent is conserved. The associated current density is given, as
usual, by the temporal component:

ρ = j0 = − 1
2mi

(
Φ∗∂0Φ− Φ∂0Φ∗

)

= − 1
2mi

(Φ∗∂tΦ− Φ∂tΦ∗) , (8)

so, from the conservation ofjµ we get the continuity equation

∂µjµ =
∂ρ

∂t
+∇j = 0 ,

wherejµ = (ρ, j). Notice that, for a free plane wave solu-
tion of definite3−momentump, Φ(x, t) = e−i(Et−p·x), the
density is given by

ρ(x, t) =
E

m
,

and the fact that we are dealing with relativistic particles,
where the energy and momentum are related through (1), im-
plies thatE can take any of the valuesE = ±

√
‖p‖2 + m2,

so ρ is not positive-definite and cannot be interpreted as a
probability density (that is the reason for calling it a current
density instead). This appearance of negative energies lies at
the heart of the Klein paradox, as we will see in what follows.

When including interaction with an electromagnetic field,
use must be made of the minimal coupling, replacingpµ by
pµ − Aµ (natural units), whereAµ = (V,A) is the elec-
tromagnetic potential. In this case, it is easy to see that the
density associated to the the conserved current is

ρ = − 1
2mi

(Φ∗∂tΦ− Φ∂tΦ∗)− 1
m

V Φ∗Φ , (9)

instead of (8).
Consider now a beam of particles in one spatial dimen-

sion, of positive unit charge, described by the Klein-Gordon
equation in the presence of a step (electric) potential (4). If
the particles fall on the barrier from the left, with an energy
E satisfying0 < E < V , by defining the effective momenta

k1 = +
√

E2 −m2 , k2 = +
√

(V − E)2 −m2 , (10)

it is readily found that the solution with positive energies is
given by

Φ(x, t) =

{
e−iEtuI(x), x < 0

e−i(V−E)tuII(x), x ≥ 0 ,
(11)

with the stationary functions
{

uI = eik1x + Ae−ik1x, x < 0

uII = Ceik2x + Be−ik2x, x ≥ 0 ,
(12)

and where we have normalized the incident beam, so the co-
efficient of the fraction that propagates to the right in the re-
gionx < 0 is 1. Notice that this solution is a superposition of
beams propagating to the right and to the left in both regions,
x < 0 (region I), andx ≥ 0 (region II). Our identification
of the incident beam is based upon the fact that the current
density in region I is given by (8),

ρI = − 1
2mi

(Φ∗∂tΦ− Φ∂tΦ∗)

=
i

2m
(−2iEu∗IuI) =

E

m
|uI |2 ,

so it has the same sign as the incident charge, while in the
region II it has the opposite sign, becauseV > E in (9),

ρII =
i

2m
(−2iEu∗IIuII)−V

m
u∗IIuII =

E − V

m
|uII |2 .

Thus, in the expression foruII we find that the termCeik2x

has an associated current running from left to right, with a
negative current densityρII = |C|2(E−V )/m; equivalently,
we could say that it describes a current of positive charges
running from right to left. Analogously, the termBe−ik2x

has an associated current running from right to left with neg-
ative current density, so it can be interpreted as a positive

Rev. Mex. Fis. E64 (2018) 1–6



4 A. MOLGADO, O. MORALES, AND J.A. VALLEJO

current from left to right. As the only charges present are
positive, and there are no sources to the right of the barrier,
we must takeC = 0 in (12), arriving at the proposed solution

{
uI = eik1x + Ae−ik1x, x < 0

uII = Be−ik2x, x ≥ 0 .
(13)

As a technical remark, let us note that a straightforward com-
putation with the wavefunction (11) (where the stationary so-
lutions are given by (13)) gives

(∂µ∂µ + m2)Φ(x, t)

=
{

(m2 − E2 + k2
1)Φ(x, t), x < 0

(m2 − (V − E)2 + k2
2)Φ(x, t), x ≥ 0 ,

so, in order to be a solution of the Klein-Gordon equation,
Φ(x, t) must have its support contained in the hyperboloids
m2−E2 +k2

1 = 0, for x < 0, andm2− (V −E)2 +k2
1 = 0,

for x ≥ 0. These on-shell conditions are automatically satis-
fied because of the definitions (10) of the effective momenta.

In this way, we have identified the incident, reflected
and transmitted beams,ui, ur, andut, respectively given as
ui = eik1x, ur = Ae−ik1x, andut = Be−ik2x. Now, we can
compute the corresponding incident, reflected, and transmit-
ted currents:

ji =
1

2mi

(
u∗i

∂

∂x
ui − ui

∂

∂x
u∗i

)
=

k1

m
,

jr =
1

2mi

(
u∗r

∂

∂x
ur − ur

∂

∂x
u∗r

)
= −|A|

2k1

m
,

jt =
1

2mi

(
u∗t

∂

∂x
ut − ut

∂

∂x
u∗t

)
= −|B|

2k2

m
.

Then, we get for the reflection coefficient the expression

R =
∣∣∣∣
jr

ji

∣∣∣∣ = |A|2 ,

while the transmission coefficient is

T =
jt

ji
= −k2

k1
|B|2 .

Imposing the continuity conditions at the barrier for the wave
function and its derivative,uI(0) = uII(0), andu′I(0) =
u′II(0), we get a system of equations forA, B whose solu-
tion is

A =
k1 + k2

k1 − k2
, B =

2k1

k1 − k2
,

so we can write, in terms of the effective momenta,

R =
(

k1 + k2

k1 − k2

)2

, T = −k2

k1

(
2k1

k1 − k2

)2

. (14)

Thus, the reflection and transmission coefficients make a pre-
tense of respecting the conservation of matter, as a straight-
forward computations shows that

R + T = 1 .

However, a look at (14) reveals thatT is negative, an already
shocking fact, but even more so since it impliesR > 1, mean-
ing that there are more reflected than incident particles. This
is the Klein paradox.

4. Virtual beams and resolution of the para-
dox

We will exploit the similarity between the geometric setup
of the Klein-Gordon paradox and that of the method of im-
ages. In both cases we have a surface of discontinuity which
determines some conditions to be satisfied by the solution to
the problem although, of course, there is a fundamental dif-
ference: The method of images is applied to a static charge
configuration, while in the Klein-Gordon case we have den-
sity currents; but let us focus on the formal similarities as a
means to obtain anansatzfor the structure of the solution.

Following the analogy with the method of images, we
look for a way to compensate the excess in the reflection coef-
ficientR > 1, found in the preceding section, by considering
it as a measure of the flux of particles in a beam through the
discontinuity surface determined by the barrier. Thus, we will
construct virtual beams out from symmetry considerations in
such a way that the net flux through the barrier, from left to
right, givesR < 1. Similarly, the net transmission coefficient
must beT < 1 while their sum satisfiesR + T = 1. As it is
the case with the virtual image introduced in the example of
Sec. 2, these virtual beams are not observable, so they can be
safely incorporated to the solution.

Now, recall that the Green solution given by the method
of images has the structureG = F + h, whereF is a funda-
mental solution andh is chosen soG satisfies the prescribed
boundary conditions. Let us choose as the analog ofF the
wavefunctionΦ(x, t) given by (11) with (13). Due to the
symmetry of the problem, as the functionh we choose the
wavefunction describing a beam of particles incident on the
barrier from right to left, whose stationary part is given by

w(x) =

{
wI = eik2x + Ce−ik2x , x ≥ 0

wII = De−ik1x , x < 0 .

It is straightforward to compute, for the functionΨ(x, t) =
e−iEtwI on x < 0, andΨ(x, t) = e−i(V−E)twII on x ≥ 0,
that

(∂µ∂µ + m2)Ψ(x, t)

=
{

(m2 − E2 + k2
1)Ψ(x, t), x < 0

(m2 − (V − E)2 + k2
2)Ψ(x, t), x ≥ 0 ,

so it is supported on the same subset asΦ(x, t). Thus, on-
shell we have two solutions to the Klein-Gordon equation
and by linearity we can form their superposition. Actually,
we only need to work with the stationary solutions, so we
will forget about the time dependence in what follows.
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Let us compute the reflection and transmission coeffi-
cients for the solutionw. A reasoning completely analogous
to that developed in the preceding section leads to the inci-
dent, reflected and transmitted beamswi, wr, andwt given
by wi = eik2x, wr = Ce−ik2x, andwt = De−ik1x, re-
spectively. Then, we can compute the corresponding currents
(where we have added a superscript to make clear the solution
used),

jw
i =

1
2mi

(
w∗i

∂

∂x
wi − wi

∂

∂x
w∗i

)
=

k2

m
,

jw
r =

1
2mi

(
w∗r

∂

∂x
wr − wr

∂

∂x
w∗r

)
= −|C|

2k2

m
,

jw
t =

1
2mi

(
w∗t

∂

∂x
wt − wt

∂

∂x
w∗t

)
= −|D|

2k1

m
.

For this virtual beam, the expressions of the reflection and
transmission coefficients are

Rw =
∣∣∣∣
jw
r

jw
i

∣∣∣∣ = |C|2 , Tw =
jw
t

jw
i

= −k1

k2
|D|2 .

A look at these formulas reveals a symmetric behavior with
respect to the wavefunction that represents the beam running
from left to right. Something more can be said if we consider
the continuity conditions forw(x) andw′(x) at the barrier.
Indeed, these conditions lead to a system of equations forC,
D with solution

C =
k1 + k2

k2 − k1
, D =

2k2

k2 − k1
,

leading to the following expressions forRw, Tw, in terms of
the effective momenta,

Rw =
(

k1 + k2

k2 − k1

)2

, Tw = −k1

k2

4k2
2

(k2 − k1)2
. (15)

It is readily seen that, again,Rw > 1 andTw < 0. Moreover,
we have the fake conservation relation

Rw + Tw = 1 .

However, the superpositionu(x) + w(x) solves all the prob-
lems. It has associated a global reflection coefficient ob-
tained by considering the fraction of particles (whatever their

charges) that after the dispersion lie at the left of the barrier.
This fraction come from two sources. On the one hand, we
have the reflected particles that were incident form the left.
On the other hand, there are the transmitted virtual particles
that were incident from the right. This is analogous as the
computation of the potential on the boundary surface in the
method of images, where we superimpose the potential of the
real and virtual charges.

Therefore, the global reflection coefficientRG can be
computed by adding the reflection coefficient for the original
beam,Ru in (14) (putting theu superscript for clarity), and
the transmission coefficient for the virtual beam,Tw in (15).
We then obtain, after some simple algebraic manipulations,

RG = Ru + Tw =
(

k1 + k2

k1 − k2

)2

− k1

k2

4k2
2

(k2 − k1)2
= 1 .

This result can be interpreted by saying that the superposition
u(x) + w(x) leads to a total global reflection of the particles
to the left, what is to be expected since the incident energy is
E < V , thus solving the paradox.

5. Conclusions

The Klein paradox appears for any relativistic quantum wave
equation when studying the dispersion by a discontinuous po-
tential. Following the treatment in [1] for the Dirac equa-
tion, we have shown that in the case of the Klein-Gordon
equation the excess in the reflection coefficient can be ex-
plained by the introduction of virtual beams, analog to the
introduction of virtual charges in the well-known method of
images of electrostatics. A detailed mathematical analysis of
this method allows a reasonable understanding of the paradox
within the context of the quantum relativistic theory of one
particle, without resorting to quantum field theoretic ideas.
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i. Note that, for a general differential operator,F will not be a
regular distribution, much less will have a functional depen-
dence onx,x′ ∈ Rn through the differencex − x′. In this
case, however, this happens because the Laplace operator has
constant coefficients, so translational invariance applies.
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