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Virtual beams and the Klein paradox for the Klein-Gordon equation
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Whenever we consider any relativistic quantum wave equation we are confronted with the Klein paradox, which asserts that incident particles
will suffer a surplus of reflection when dispersed by a discontinuous potential. Following recent results on the Dirac equation, we propose
a solution to this paradox for the Klein-Gordon case by introducing virtual beams in a natural well-posed generalization of the method of
images in the theory of partial differential equations. Thus, our solution considers a global reflection coefficient obtained from the two
contributions, the reflected particles plus the incident virtual particles. Despite its simplicity, this method allows a reasonable understanding
of the paradox within the context of the quantum relativistic theory of particles (according to the original setup for the Klein paradox) and
without resorting to any quantum field theoretic issues.
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1. Introduction (W Lo h2) () = 0. 3
Back in the early days of guantum mechanics, following
a suggestion of Debye, Sdittinger tried to find an equa- Schidinger went on to study the Hidrogen atom with this
tion describing the behavior of the waves introduced by Desquation, but soon he found that it gave an incorrect spec-
Broglie. His first attempt started with Einstein’s equation for trum, so he discarded it as a valid quantum equation. After
the relativistic energy this, the equation was rediscovered by Pauli, Klein, Gordon

B? = 2% 4 m2cd (1) and Fock, among others (Pauli called it “the equation with

’ many fathers”, see [4]), and today (3) is widely known as

which he expected to be satisfied by the quantum waves. Tée Klein-Gordon equation. It is a quantum relativistic wave
this end, he observed that a possible solution for the wavgquation, used in the description of particles with gpin
equation (deduced from Maxwell’s equations for the compo-  As in the case of the Sabdinger equation (which he de-

nents of the electromagnetic field) rived later starting from the non-relativistic expression for the
20 1 9% e_nergy), it is ins_tructive to explo_re the behavior_ of the solu-
5~ 55 =0, (2) tions to the Klein-Gordon equation for some simple poten-
Oz c? Ot tials. Perhaps the simplest is the step potential,

is a plane monochromatic wave

o I >
Bla, ) = Boet, Vi) = {V’ o @
0,ifx<0.

wherek is the wave number and the frequency (for sim-
plicity, we deal only with the one-dimensional case). TakmgWhen the energy of an incident beam of particles (from the

into account Einstein's relatioly = fuv, and De Broglie's left) is £ < V, it is well-known that for particles described

one,p = hk, he rewrote the expression for the plane wave o ; . S
P : . E)y the Schadinger equation there is some penetration in the
arising in electromagnetic theory in terms of the energy an

region to the right of the barrier, expressed by the fact that
momentum, as X N . L
there is a non vanishing transmission coefficient, but that den-
O(x,t) = el Pr—E/N sity exponentially decays with distance.
_ . L What is surprising is that, as we shall see, when the step
Substituting back in (2), of course we get the relativistic n-sanial is included in the Klein-Gordon equation the barrier
ergy for a photon (the quantum of the electromagnetic field) .5, hecome transparent at high valuedfoand the (normal-

E? =22, ized) reflection coefficient is greater thaneven when the
energy of the incident beam is < V. This counter-intuitive
but, as previously stated, Séllinger wanted (1) instead. behavior is called the Klein paradox. It is a common feature
What he noticed, by a simple inspection, is that this relatiorof quantum relativistic one-particle equations, and, indeed, it
is precisely what results if we take as the wave equation  was first discussed for the Dirac equation (see [8] and [3]).
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The Klein paradox is commonly solved for the case of the  Consider now the Poisson equation, defined on a con-
Dirac equation within the framework of quantum field theory nected domairD C R™ with regular boundany = 9D:
(QFT) [9]: the strong potential to the right of the barrier ex- 9
cites the vacuum, creating electron-positron pairs, and acts at- Viu=f, ®)
tracting the positron states, which couples with the electrongshere f : D — R is a given function, physically repre-
outside the barrier with the same energy. Other solutions argenting, for instance, a distribution of electrostatic sources in
offered in [2] and [5]. However, there are no available experempty space. The fundamental solution for this problem is a
iments where this phenomenon is considered, although refistribution (in the sense of L. Schwartz, see [11] or the more

cent studies seem to point to bi-layer graphene as a possibjhysics-oriented text [12}'(x — x') such thait
setup [7]. Anyway, as stated in [1], the main point is that the

paradox arises in the context of a quantum relativistic theory VIF(x —x') = §(x - x'), (6)

for one particle, so it would be desirable (to assess the selfyhere s is the Dirac (singular) distribution. Because of the
consistency of the theory) to know if it can be solved alsopropertyé*f — f— f+4, itturns out that the solution to (5)
without resorting to QFT. Indeed, we follow the ideas in thatiS given by convolution with the source:

paper (which deals with the Dirac equation) to show that this

is the case for the Klein-Gordon equation (there exists an ear- u=Fxf.
lier, different treatment in [13] based on the consideration of ar
finite non-zero width of the barrier, and [6] reviews the usual
pair creation solution in this setting). As in [1], our main tool
will be a suitable extension of the method of images.

he fundamental solution is not unique, of course. For in-
stance, the addition of any harmonic distributio(such that
V2h = 0) gives a new fundamental solutich= F + h. The

: . . . method of images provides a judicious choicehdb guar-

. The method of IMages 1S des_cr_lbed In any textbopk dealémtee that prescribed boundary conditionsSr= 0D are

ing with electrostatics as an efficient tool for studying thesatisfied

f!8|q preated by phgrge .dIStI‘I.bUtIOﬂS |nvc_)IV|ng media d!scon- For the case of Dirichlet and Neumann problems, one
tinuities. Its basic idea is to introduce virtual charges induc-

wants that the solutio to satisfyG(x — x’) = 0 for any

ing a field that compensates the one created by real Charge>§,e S, and in this case it is called the Green function. Other

in such a way that it satisfies the prescribed boundary con;

dition on the media discontinuities. Here, following [1], we When the sources have support on alsativen anyx’ €
generalize it to show that if virtual beams, instead of virtualr we construct the associated Green functioGas F 4+ h
charges, are introduced into the problem of the step potenti%here

onditions, such as asymptotic ones, can be impose&ed.on

for the Klein-Gordon equation, with suitable matching con- N

ditions, then the paradox is solved by considering the total re- V2h = Z g;0(x — x5), @)
flection and transmission coefficients (that is, the coefficients j=1

corresponding to both the real and the virtual beams). andg;, x; are, respectively, a set of weights and positions

To make the paper relatively self-contained, we verychosen in such a way that= F + h satisfyG(x —x') =0
briefly recall the basics of the method of images in Sec. 2forallx € S = 0D.
and reproduce in detail the computations leading to the Klein  What we want to stress at this point is the fact that the
paradox in Sec. 3. Section 4 contains the solution of thdoundaryS provides the conditions required to build the so-

problem. lution, and these conditions very often can be deduced from
symmetry conditions. We will return to this point later, in
Sec. 4.

2. Preliminaries: the method of images The prototypical example where this method is applied

is that of a harmonic function i3 with prescribed values

Let us begin by recalling that for any linear partial dif- N the plane = 0. Thus, we look for a functiom(z, y, z)
ferential operator of ordem with real-analytic coefficients Such thatv?u = 0 andu(z,y,0) = f(,y,0) for a given
onR", P(x, D), and any non-characteristic, analytic regu- function f(z,y,0), which exists and is unique because.the
lar submanifoldS ¢ R, Holmgren’s uniqueness theorem Cauchy-Kowalevskaya and Holmgren theorems. Thus, if we

(see [10]) guarantees the uniqueness of the solution to treensider the problem of determining the field created by a

Cauchy problem single charge located at a distangéof an infinite, grounded
conducting plane (which plays théle of the surfaces), we
Pu=f can arrange the coordinate system so the conductor coincides
with the z = 0 plane and the charge is locatedzat d; then,
{Dau =D%*gonsS, the problem reduces itself to finding the locationof a sin-

gle charge such that the total potential in the poiatg, 0)
for any multi-index0 < |a] < m — 1, whereg is a given an-  vanishes. As stated above, symmetry considerations are an
alytic function. This is the case, for example, of the Laplaceessential part of the method. In the present case, the sym-
operatorA = V2 or the Klein-Gordon one given in (3). metry of the problem suggests to take = (0,0, —d) and
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q1 = —qin (7). The Green function becomes the sum of theso p is not positive-definite and cannot be interpreted as a
fundamental solution of the Laplacian®® (see [12]), and probability density (that is the reason for calling it a current
the harmonic functiork so found: density instead). This appearance of negative energies lies at
1 the heart of the Klein paradox, as we will see in what follows.
G(x—x')= P E— + h(|jx —x'|]) When including interaction with an electromagnetic field,
X = x use must be made of the minimal coupling, replagindy
_ 1 n 1 p,. — A, (natural units), whered,, = (V,A) is the elec-
dr||x — x'||  Aw|x+ x|’ tromagnetic potential. In this case, it is easy to see that the

and the uniqueness property assures that the solution for tﬁiéansny associated to the the conserved current is

potential in the region > 0 is the well known expression - _L' (©0,® — DO,B*) — lvcp*cp, ©)
2msi m
V(z,y,2) = 4 ! ;
Y2 = \/;z;Q FRN instead of (8).
' Consider now a beam of particles in one spatial dimen-
n 1 sion, of positive unit charge, described by the Klein-Gordon
\/g;2 +12+(z+d)?) equation in the presence of a step (electric) potential (4). If

the particles fall on the barrier from the left, with an energy
3. The Klein paradox E satisfyingd < E < V, by defining the effective momenta

Let us simplify the notation by taking natural units{1=c), ~ k1 =+VE?>—m?,  ky=+v(V - E)*> —=m?, (10)

so the Klein-Gordon equation in three spatial dimension be-, . . . . . o
comes a P it is readily found that the solution with positive energies is

iven b
i—A—i—m2 d(x,t) =0, g Y
ot? —iBt
e " Flur(z), =<0
or, in terms of the operator8, = (9/0t,V) and 9" = O(z,t) = { v (11)
0o, = (9/0t,—V) (wheren,, = diag(1,—1,—1, 1) e V=Bt (x), x>0,

is Minkowski's metric), with the stationary functions

Iz 2 — ) .
(aua +m )@(x,t) =0. uy = ezklz + Aefzkla:’ <0 12
The relativistic probability current for the Klein-Gordon (12)

ury = Cet*2® 4 Be~tk22 1> (),
equation is defined as the-vector
and where we have normalized the incident beam, so the co-
(D*O D — POHD™) . efficient of the fraction that propagates to the right in the re-
2mi gionz < 0is1. Notice that this solution is a superposition of
It is readily seen thad,j* = 0, that is, the probability cur- beams propagating to the right and to the left in both regions,

rent is conserved. The associated current density is given, as < 0 (region 1), andx > 0 (region IlI). Our identification

L

usual, by the temporal component: of the incident beam is based upon the fact that the current
] density in region | is given by (8),
p=3"= -5~ (200~ 25°0") 1
71’“ pr =5 (0P~ 00, 0")
=5 (®*0,® — 9O, D*) , (8)

) E
= o (aimugun) = D,
so, from the conservation gf we get the continuity equation m m

so it has the same sign as the incident charge, while in the

Bt = % +Vj=0, region Il it has the opposite sign, becadse> E in (9),
. . : i N Vo, E-V
wherej* = (p,j). Notice that, for a free plane wave solu-  p;;r = —(—2iEuj;urr)——ujurr = lurr|”.
tion of definite3—momentump, ®(x,t) = e~ *F1=PX) the 2m m
density is given by Thus, in the expression far;; we find that the tern€'e?*>*
B has an associated current running from left to right, with a
p(x,t) = —, negative current densipy; = |C|?(E—V)/m; equivalently,

m we could say that it describes a current of positive charges

and the fact that we are dealing with relativistic particles,running from right to left. Analogously, the terfe—**>*
where the energy and momentum are related through (1), irhas an associated current running from right to left with neg-
plies thatE' can take any of the valuds = ++/||p||>2 + m?,  ative current density, so it can be interpreted as a positive
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current from left to right. As the only charges present areHowever, a look at (14) reveals thatis negative, an already

positive, and there are no sources to the right of the barrieshocking fact, but even more so since itimplie¢s- 1, mean-

we must take” = 0in (12), arriving at the proposed solution ing that there are more reflected than incident particles. This
is the Klein paradox.

ur = M 4 Ae~ T p <)
(13)

=B 7ik2x7 > 0. i .
= e v= 4. Virtual beams and resolution of the para-
As a technical remark, let us note that a straightforward com- dox
putation with the wavefunction (11) (where the stationary so-

lutions are given by (13)) gives We will exploit the similarity between the geometric setup
) of the Klein-Gordon paradox and that of the method of im-
(00" +m”)®(z,1) ages. In both cases we have a surface of discontinuity which
(m? — B + k2)®(a,t), <0 determines some conditions to be satisf_ied by the solution_to
= { (m? — (V — E)? + i2)®(z,t), >0, the problem although, of course, there is a fundamental dif-

ference: The method of images is applied to a static charge
so, in order to be a solution of the Klein-Gordon equation,configuration, while in the Klein-Gordon case we have den-
®(x,t) must have its support contained in the hyperboloidssity currents; but let us focus on the formal similarities as a
m?—E?+k? =0,forz < 0,andm? — (V — E)24+k? =0, means to obtain aansatzfor the structure of the solution.
for z > 0. These on-shell conditions are automatically satis- Following the analogy with the method of images, we
fied because of the definitions (10) of the effective momentalook for a way to compensate the excess in the reflection coef-
In this way, we have identified the incident, reflectedficient R > 1, found in the preceding section, by considering
and transmitted beams,, u,, andu;, respectively given as it as a measure of the flux of particles in a beam through the
w; = e*1® gy, = Ae”™*1% andu, = Be~"*2*. Now, we can  discontinuity surface determined by the barrier. Thus, we will
compute the corresponding incident, reflected, and transmitonstruct virtual beams out from symmetry considerations in

ted currents: such a way that the net flux through the barrier, from left to
. 1 L9 9 . ky right, givesRk < 1..Similquy, the ne_t t_ransmission coeffigient
Ji =omi <u7 %Ui — uzaxm) = must beT’ < 1 whllq thelr_sum sgtlsfleR + T = 1. Asitis
the case with the virtual image introduced in the example of
) 1 e 0 . |A|?kq Sec. 2, these virtual beams are not observable, so they can be
I = omi (uraqu - uTamur) T m safely incorporated to the solution.
1 5 5 B2k .Now, recall that the Green solution given py the method
ji =— <U,’§ut - utu§> = — ) of images has the structuée = F + h, whereF is a funda-
2mi Oz Oz m mental solution and is chosen sd- satisfies the prescribed

Then, we get for the reflection coefficient the expression ~ boundary conditions. Let us choose as the analog tifie
wavefunction®(z, t) given by (11) with (13). Due to the

=42, symmetry of the problem, as the functiGnwe choose the
wavefunction describing a beam of particles incident on the
barrier from right to left, whose stationary part is given by

g

R =

while the transmission coefficient is

T:j,—t:—@IBIQ. wp = e*2T 4 Ceh2m >0
Ji kq w(z) = ik
) o - ) wry = De™ % 1 < 0.

Imposing the continuity conditions at the barrier for the wave

function and its derivativey, (0) = ur;(0), anduj(0) =t js straightforward to compute, for the functid(x, ) =
:.L,,(Q), we get a system of equations fdr B whose solu-  .—iEty, ong < 0, and¥(z,t) = e V=Ety ona > 0,
ion is

Aotk o 2k that
ok — ko ok — ko

(0,0" +m*)¥(, )

(m? — E? + k2)¥(x,t), x<0

ky + ko \ ko 2k \? :{ ) R
= T = —-—= . 14 —(V — F +k /] 7t) ZO,
f (kl k2) ’ k1 (kl — kg) ( ) (m ( ) 2) (.’L‘ ) T

Thus, the reflection and transmission coefficients make a pre© it is supported on the same subsetbgs, ). Thus, on-
tense of respecting the conservation of matter, as a straighth€ll we have two solutions to the Klein-Gordon equation

SO we can write, in terms of the effective momenta,

forward computations shows that and by linearity we can form their superposition. Actually,
we only need to work with the stationary solutions, so we
R+T=1. will forget about the time dependence in what follows.
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Let us compute the reflection and transmission coefficharges) that after the dispersion lie at the left of the barrier.
cients for the solutiomw. A reasoning completely analogous This fraction come from two sources. On the one hand, we
to that developed in the preceding section leads to the incihave the reflected particles that were incident form the left.
dent, reflected and transmitted beams w,., andw; given  On the other hand, there are the transmitted virtual particles
by w; = e*2® w, = Ce 2% andw, = De 1% re-  that were incident from the right. This is analogous as the
spectively. Then, we can compute the corresponding currentsomputation of the potential on the boundary surface in the
(where we have added a superscript to make clear the solutionethod of images, where we superimpose the potential of the

used), real and virtual charges.
Therefore, the global reflection coefficie®; can be
o 1 . 0 a ko . : C -
Jit =g\ Wi wi — Wigowy | =5 computed by adding the reflection coefficient for the original
2mi r r m beam,R* in (14) (putting theu superscript for clarity), and
» 1 , 0 g |C ko the transmission coefficient for the virtual bedny; in (15).
Jr =g \(WrgpWr —Wra Wr | = =7 We then obtain, after some simple algebraic manipulations,
w1 ( . 0 9 ) |D|ks ki ko \? ko 4k3
Jo =g | wi mmwe —wpo—wy | = — : Re=R'+T% = — =2 _ 1.
L omi \ Ut ox or ' m “ - </€1 - kz) ko (k2 — k1)?

For this virtual beam, the expressions of the reflection an

. - dl'his result can be interpreted by saying that the superposition
transmission coefficients are P y saying berp

u(x) + w(z) leads to a total global reflection of the particles
to the left, what is to be expected since the incident energy is
E < V, thus solving the paradox.

-
=lcP. TV =5 =—IDP.
i ko

R® =

> w
Jr
;W

(2

A look at these formulas reveals a symmetric behavior with

respect to the wavefunction that represents the beam runnirg,. Conclusions

from left to right. Something more can be said if we consider

the continuity conditions fotw(xz) andw’(z) at the barrier.  The Klein paradox appears for any relativistic quantum wave
Indeed, these conditions lead to a system of equation§ for equation when studying the dispersion by a discontinuous po-

D with solution tential. Following the treatment in [1] for the Dirac equa-
ky + ko ko tion, we have shown that in the case of the Klein-Gordon
C= o — Ry equation the excess in the reflection coefficient can be ex-
2 — M 2 — M

_ _ _ _ plained by the introduction of virtual beams, analog to the
leading to the following expressions &, 7, in terms of  introduction of virtual charges in the well-known method of

the effective momenta, images of electrostatics. A detailed mathematical analysis of
Ey 4 ko \ 2 k AR this method allows a reasonable understanding of the paradox
RY — ( 1 2) LT = _71722 . (15)  within the context of the quantum relativistic theory of one
k2 — ko1 ka (k2 — k1) particle, without resorting to quantum field theoretic ideas.

Itis readily seen that, agai®™ > 1 and7T" < 0. Moreover,

we have the fake conservation relation
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