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The optical properties of an electron with an impurity in a spherical quantum dot under parabolic confinement are studied and energies, wave
functions, binding energies, radial matrix elements, polarizability, susceptibility and oscillator strength have been evaluated. The numerical
method used is the finite difference method in the framework of the effective mass approximation. The variation of the energy levels and
radial matrix elements have been studied as function of the radius of the GaAs sphere and also as function of the frequency of the harmoni
oscillator potential or parabolic potential. In addition we have studied how polarizability, susceptibility and the oscillator strength vary as a
function of dot radius and at different parabolic potential frequencies.
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1. Introduction Coulomb interaction with the impurity. With the characteris-
tic dimensions comparable to the de Broglie wavelength of

There has been a tremendous improvement in research actilectron, these structures are particularly sensitive to atomic
ties on the low dimensional semiconductor quantum dots dugC@lé variations in geometry. Thus, impurity can dramati-
to the advanced fabrication techniques invented for the pa&@'ly alter the properties of a quantum device [14]. In or-
few decades. The study of semiconductor quantum dots arfi" t@ understand how a hydrogenic donor impurity affects

nanocrystals has been of a great interest from the experimef1€ Spectrum of a single electron in low-dimensional semi-
tal and theoretical point of view in recent years [1-13]. Theconductor structures, many researchers focused their atten-
tion on energy quantized states of the charged carriers. The

origin of the interest lies in the size of quantization. The elec- ; : _ _
tron energy spectrum of an ideal quantum dot comprises a satudy of the impurity states in semiconductor nanostructures

of discrete levels. This makes the semiconductor quanturi¥@S initiated only in the pioneering works of Bastard [15]. In
dot very important in the applications of optical and trans-SPité of the growing interest in the topic of impurity doping
port properties of semiconductors. The physical properties of! nanocrystallites, most of j[he theoretical works carried qut
the quantum dot are attractive not only from the fundamenta" Shallow donors in spherical quantum dots employ varia-
scientific point of view, but also because of its potential ap-ional approaches [16,17] or alternatively, perturbation meth-

plication in the development of semiconductor optoelectroni®dS limited to the strong confinement regime using square-
devices [13]. well barriers [18,19], while exact solution has been obtained

L _ _ only for centered impurities [20,21]. The binding energy of
_ Impurities in semmonduptors can affect tr_\e electrical, 0P shallow hydrogenic impurity in a spherical quantum dot
Flcal, gnd transport properties. Understand!ng the nature hith a parabolic potential shape has also been reported [22].
impurity states in semiconductor structures is a crucial prObDipole and quadrupole oscillator strengths also have been re-

lem. Usually impurities are classified as deep or shallow acp e recently by Stevanoviac for the hydrogenic impurity
cording to their ionization energy. Shallow impurities are de-;, 5 spherical quantum dot with an infinite confining poten-
fined as those impurities whose ionization energy is comparg;| [23].

ble or smaller than the thermal energy at room temperature.

Shallow impurities are usually known as hydrogenic impu-  The effects of hydrogenic impurity, hydrostatic pressure,
rities since they are well described by the hydrogen atontemperature and geometrical parameters on optical absorp-
model. The underlying assumptions behind this model ar¢ion coefficients and refractive index of spherical quantum
that the binding energy is small compared with the energydots and raman scattering cross-sections have been reported
gap and the spatial extent of the wave function is larger thaiby Karimi et al. [24,25]. Safarpour investigated the binding
the lattice period. As a consequence, carriers have an energyergy, and optical properties of an off center donor impu-
close to the band edge, move with an energy-independent efity in a quantum dot embedded in a nanowire and empha-
fective massn and see the uniform medium of the semicon-sized on how orientation and distance of impurity from cen-
ductor characterized by a dielectric constathtat screens the ter can serve as good factors in fabricating desired structures
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with specific electronic and optical properties [26]. The ef-of the electron originating from the center of the dat; is
fect of dot radius and parabolic potential on binding energythe effective mass of the electron represents the impurity
1s-, 2p-, 3d- and 4f-states of a spherical quantum dot (QD3trength and V(r) is the parabolic confining potential in the
with parabolic potential has been recently reported [27,28form of

and the effect of electric field and magnetic field on the low V(r) = lm:wgﬁ )
lying states and optical properties of hydrogenic impurity has ) ] 2 )
also been studied [29]. where wy is the confinement potential frequency. In our

The presence of impurities in QD's can significantly mode!, the Hamiltonian of single hydrogenic impur.ity ina
change the localization states. For simplicity and to protecBPherical QD can be expressed as the sum of the original har-
the symmetric situation the impurity can be located at themenic oscillator Hamiltonian terni/, and a Coulomb inter-
center of the dot. An electron bounded to an impurity lo-2Ction termi,
cated at the center of quantum dot behaves like a bounded H = Ho +H ®3)
three-dimensional electron when the radius of the dot is veryhere

large. However, as the dot radius is reduced, spatial confine- H p? 1 L 99

. 0= -+ smiwyr 4)
ment becomes very important. Thus, spectroscopy tools pro- 2m; 2
vide information about the confining properties of electronsy g
and holes bound to hydrogenic impurities in zero dimensional - e? 5
nanostructures. 1= ©)

The purpose of this work is to investigate hydrogenicUsingp = —ihV the Hamiltonian becomes
impurities in spherical quantum dots characterized by the
parabolic confining potentials, which have broader appli- o h? v2 4 }m*wO%z _vej ©)
cations to realistic problems. The first part of the study 2ms 2°° €r
contains the evaluation of the spectrum of hydrogenic im- . .
purity states and the second part involves study of opti—T he Schodinger equation for the system
cal properties. The emphasis is placed on the level ener- H(r,0,6) = EV(r,0, ) @

gies, wave functions, binding energies, radial transition ele-

ments, and optical properties of hydrogenic impurities, varytan pe solved using method of separation of variables based

ing with the confining potentials and the range of quan-on spherical symmetry, whee, ., (r, 6, ) is defined as
tum dot. The Schirdinger equation is solved by finite dif-

ference method. We have calculated energy eigenvalues, Ui (7,0, 0) = NRyy (7)Y (0, 6) (8)
eigenfunctionsV¥,,;,,,) and also the coupling matrix elements

(Ui cos 01 rme )y (W g |12 €082 0| W,y0,y, ) for calcu-  whereN is the normalization coefficient; .., (1, 6, ¢) is the
lating the dipolar polarizability and als@V,,;,,, [72| ¥,y complete wave functioniz,,; (r) is the radial party;,, (0, ¢)

for calculating the susceptibility of the hydrogenic impurity. is the angular part of the wavefunction which correspond
Another practical quantity in the study of optical propertiesto spherical harmonics and [, m are respectively, the ra-

is oscillator strength. The oscillator strength gives us infor-dial, angular momentum and azimuthal quantum numbers.
mation about magnitude of the absorptiog, the amount While the angular part of the wavefunction¥s,, (6, ¢) for

of the oscillator strength is directly proportional to the ab-all spherically symmetric situations, the radial part varies.
sorption coefficient. In the work we have reported how os-The equation forR,,; can be simplified in form by substi-
cillator strength varies with confinement potential and dottutingu,,;(r) = rR;(r). Therefore

size. A large number of researchers have recently investi-

gated these optical properties and found out how these can Ui (1,0, ¢) = “L(T)Ylm(g, ?), 9)
be tuned with different dot geometries, size and confinement r
parameters [30-35]. Substituting Eq. (9) into the Sabdinger equation (7) and

using separation of variables and simple mathematical steps

the radial equation is written as:
2. Theory q

2 2 2
Within the framework of effective-mass approximation, the W d AU+ 1)

Hamiltonian of a center hydrogenic donor confined by a 2mg dr? 2mer?
spherical QD with a parabolic potential can be written by ! 9
« (&
9 5 + §m€w027’2 —y— | Uni(r) = Epptin (1) (10)
I P e €r

= o +V(7’)—75 1)
c The energy eigenvalu&,,; for a particular energy state is
where the hydrogenic impurity is located at the center of thesolved numerically using the finite difference method as ex-

QD, ¢ is the charge of the electron,is the position vector plained in the next section.
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2.1. Energy spectra and radial matrix elements This induces polarization, which is an important microscopic
quantity because of its established relationship with another
The eigenenergies and the wavefunctions are obtained by perimentally significant macroscopic property called re-
solving the time independent Schlinger equation for the fractive index. The electric dipole polarizability materializes
system, using finite difference method. This is a numeriyhe second order response of the system in a weak electric
cal method for solving the partial differential equation (PDE) fie|d. From perturbation theory, using the second order en-
based on discretization of the Hamiltonian on a spatial gridergy correction, the polarizability is obtained from the sum

We have taken the grid poinf§ = 1201 and the tolerance gyer states formula. The statié-pole polarizability is given
of 1.0e-6 is considered. Finite difference method is a Simyy:

ple method that gives useful and accurate results for a wide (Worcos'6]w 2

range of problems dealing with differential equations. In this I ’ o|r'cos’0|Wy,) (15)
method, continuous wave functionsofs represented by a set ! k70 E, — Ey

of N discrete quantities and effective potential energy wherel = 1,2, 3 for dipole, quadrupole and octupole cases,

B21(1 + 1 1 2 respectively.
Ri+1) + —miwe’r? — 'ye— (12)
€r

Uers = 2m*r? 2
e

2.3. Oscillator strength
is given by(N — 2) x (N — 2) diagonal matrix. Boundary
condition used isi,p = uxy = 0. For second order centered
finite difference approximation

Another physical quantity of practical importance in the
study on the optical properties is the dimensionless oscilla-
tor strengthPy;, which is defined by

w_u(ripn) = 2u(ry) +u(rj—1)

u = 12 2m}
A2 ( ) sz‘ = F(E‘f — Ei) Zif (16)
u(r;) is the eigenvector of the Sdbtinger equation and where
A = r;11 — r; is the spacing between the two neighboring
. . S X i 5
discrete points. The second derivative matrix becomes: P ‘ /Rn’l’ (F)r Ry (r)r2dr
-2 1 oo 0 )
1 -2 1 0 . . 0 X Yy (0, 0)(cos 0) Yy (0, ¢) sin dOdg (17)
0 1 -2 1 0 0
1
K= A2 : : o (13)  for 1s-2p transition2l’ =1, =0andm’ = m = 0 the
’ ’ oo T 1 matrix eIemen{zif becomes
1 -2 -
L - 2 1 3 2
ltis a (N —2) x (N — 2) matrix. Hamiltonian matrix is zif| = §’ /R2,1(T)T Rl,odT‘ (18)
[H] = [K] + [Uerf] , Schibdinger equation in matrix form 0
becomes and
(H]|U) = [E]|U) (14)
where H is the Hamiltonian of the hydrogenic impurity in 2m} T 3 Ik
the semiconductor quantum dot(SQD) afdis the eigen- Py = 352 (Ef - Ei) /R“(T)T R1’°d7’ (19)
0

value. The Hamiltoniar is reduced to tridiagonal matrix
and is diagonalized using standard matlab subroutines to ohy
tain the eigenvalues and the wavefunctions of a hydrogenic™
impurity in a SQD. This method has been implemented inyt is fully known that the magnetic susceptibility has a key
various semiconductor heterostructures to obtain the unpefspect on quantum mechanics, magnetism, and optics. The
turbed eigenvalues and wavefunctions [36,37]. magnetic susceptibility indicates the degree of magnetization
In addition we have calculated optical properties like po-of a material in response to an external magnetic field. Sub-
larizability, oscillator strengths and susceptibility for a hy- stances with a negative magnetic susceptibility are called dia-

drogenic impurity in SQD atom under the effect of parabolicmagnetic. The diamagnetic susceptibility is given by [38]
potential.

Magnetic Susceptibility

NZe?

— 2
2.2. Polarizability X= G (20)

When a confined system is exposed to static electric field, thin the next section we have presented the results of our cal-
electron cloud gets displaced from its equilibrium position.culations.
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FIGURE 1. Radial wave function,;(r)) of ground state and excited states with r at different parabolic potential frequenslegd)
wo=0¢eV (b)wy =0.2eV (C)wy = 0.5 eV.
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FIGURE 2. Variation of energies of ground state and excited states as a function of parabolic potential frequandifferent dot radii{o)
and zero impurity strength (a) = 0.5a™,7 =0 (b)ro = 1a*, v =0(c) 70 = 5a™, v = 0.

3. Results and Discussion potential as can be seen going from Fig. 1(a) with= 0
eV to Fig. 1(c) withwy = 0.5 eV. Stronger is the strength

In this study we report a detailed theoretical investigationof harmonic potential (Fig. 1(c)) larger is the confinement in
of the hydrogenic impurity in a spherical quantum dot un-the radial wave function.
der parabolic confinement. Effective atomic units are used In Fig. (2) we have shown how energies of ground state
throughout the paper. Length is expressed in terms of effecand other excited states vary as a function of the frequepcy
tive Bohr radiusa* = h%c/mje®. Effective mass of elec- of parabolic potential for different confinementg)and zero
tronmg = 0.067mo wherem, is mass of free electron and impurity strengths{ = 0). It is observed that energies of
e = 12.5. The effective Bohr radius* = 1004° for GaAs.  ground state and other excited state increases as the frequency
Energies, wave functions, radial matrix elements of groundncreases. Figure 2(a) shows this variationsfgr= 0.5 a*
states and excited states of impurity in spherical QD and opandy = 0. The same variation is studied in Fig. 2(b) for
tical properties are calculated. largerrg = 1 a* and still higher in Fig. 2(c) withrg = 5

In Fig. 1 the behaviour of radial wave functiar;(r) of  «*. The quantum confinement becomes weak for larger
ground and excited states has been shown for different vaknd at large dot radiug, (Fig. 2(c)), the energy eigenvalues
ues of harmonic potential frequency. It is observed that approach a free-space hydrogenic atom. As the confinement
the wave functions get modified by the presence of harmonics decreased the spacing between the energy levels decreases
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FIGURE 4. Variation of energies of ground state and excited states with ragiofthe dot at impurity strength = 0 and different parabolic
potential frequencies (a)o = 0 eV and (bywo = 1 eV.

as expected and their parabolic variation with frequency alsoegative energy states. Also the change in frequency of the
disappears. harmonic potential is not affecting the energy of states sig-
) ) o _nificantly in this case and the curves are nearly straight lines.
In Fig. (3) we explore the effect of increase in impurity £ smaller values of impurity strength (Fig. 3(b)= 20)
strength ) on the energies of ground state and excited stateg s seen that the effect of change in energy with change in

on similar lines. We can observe that when the value & quency is significant and the curves are more steeper in-

large (Fig. 3(a)y = 80) we are getting states having neg- gicating a participation of the harmonic potential along with
ative energies and these are bound states. Also states Wighe coulombic potential. In this case there is a mixed com-
same n a'nd, d|fferent,’|’ ha\{e been f‘?“”d to be degeneratg)ination of negative and positive energy states. These results
.e. "2s-2p’, '3s-3p-3d’ and "4s-4p-4d’ are seen nearly de- 516 in coherence with the two-mode model described by Gue-
generate. This is due to the fact that the attractive Coulom rguievet al. [39] and a similar competition between the con-

potential dominates over the harmonic potential leading t4jnement potential and impurity potentials can be seen in our
the reduction of the energy eigenvalues and hence degenerate

Rev. Mex. Fis. 54 (2018) 7-15
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results. These results have been further extended to figure owm confinement on the electron relaxes with the enlarging
a critical value ofy = ~. above which negative energy states size of the dot. Also these states approach each other for
emerge and this critical value has been found to be 3.5. Ifarge value of dot radius, which is also explained by other
the Fig. 3(c) the energy of different states is plotted for theauthors [40,41]. As the dot radius is increased, it can be seen
critical value ofy. = 3.5 and there are only positive energy that the constancy occurs for all states at different dot radii.
states present indicating that the results are dominated by tHehis limiting value corresponds to the case where the elec-
harmonic potential over the Coulombic potential. Thus fortron is not confined anymore. Figure 4(a) shows the variation
~v. < 3.5 only positive energy states exist. of excited state energies fay = 0 eV andy = 0 (absence

In Fig. 4 we have shown how energies of ground stateof impurity). The same is studied at a highgy = 1 eV and
and other excited states vary as a function of radius of the = 0 (Fig. 4(b)). In the strong confinement region, the max-
dot (ro) for different values of frequency of parabolic poten- ima of the energies are relatively insensitive to the parabolic

tial (wg) and zero impurity strengthyj. It is observed that
the energy of all the states is decreased as the size of the didl can be seen only at higheg as for smaller values of,
increased for all energy levels due to the fact that the quanthe Coulombic interaction is more dominating.
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In Fig. (5) we have calculated the binding energies of In Fig. 7 we have reported variation of radial matrix ele-
different states as a function of radius of the daf)( The  ments of ground state and other excited states vary as a func-
binding energy of a hydrogenic impurity is known as the dif- tion of dot radius at different frequencies and at different im-
ference between the energy states without impurjty=(0) purity strength. Figure 7(a) shows the radial matrix elements
and with impurity § = 1) for a particular state. Figure 5(a) as function of dot radius in the absence of impurits0 at a
shows the binding energies witly for wy = 0.5 eV and in  frequencyw,=0 eV. These are constantly increasing functions
Fig. 5(b) the same is studied at a higher frequengy= 1 eV.  of dot radii in the absence of harmonic potential and impu-
As seen the binding energy decreases wittas expected. rity as expected. An increase in thgwill also mean a radial
Also the binding energy for a particular state is also depenspread in the probability density of electron. Figure 7(b) to
dent on the frequency of the harmonic potential. /4sn- 7(d) shows the radial matrix elements for different frequen-
creases the binding energy approach a constant value and tltieswy = 0.5 eV (Fig. 7(b)),wy = 1 eV (Fig. 7(c)) both
constant value is higher for highgg. Similar results are also in the absence of impurity = 0, and in the presence of im-
reported by Yakaet. al.[27]. purity v = 1 andwy = 0.5 eV in Fig. 7(d). It can be seen

Next, we have calculated the radial matrix elementsthat asrg increases the radial matrix elements first increases
which are defined aéR,,|r|R, /). These are very impor- and achieve a constant value at a particular dot radii and this
tant in defining the effect of external fields on the system. Inimiting value is different for different states and is also de-
Fig. (6) we have shown how radial matrix elements betweependent upon the frequency of the harmonic potential. Also
ground state and other excited states vary as a function of thtee effect of presence of impurity is apparent only at higher
parabolic potential frequency for different confinements andvalues ofr.
different impurity strength. The radial matrix elements de-
crease as the frequency is increased. Figure 6(a) shows tmg
variation forry=0.5 a.u. and/=0. The same variation is stud-
ied in F|g 6(b) but for weaker confinemeirg. |arger7=0:]_ We have calculated tmé-pole static polarizability of the
a*. The attractive Coulomb potential is dominant at small ~ System forl = 1 for various harmonic potential frequencies
(stronger confinement) and this leads to reduction of spatiads & function of-,. The effect of parabolic potential on such
extension of wave function and thus smaller values of radiaPolarizabilities has been explored by considering four values
matrix elements (Fig. 6(a)). As the confinement is weak-0f wo = 0,0.5ev, 0.8 eV and 1 eV and their variation with dot
ened the magnitude of the radial matrix elements increasg@dius is given in Fig. 8. It is observed that the polarizabil-
largely (Fig. 6(b)). In Fig. 6(c) we have explored the effectity increases as dot radius increases and becomes constant at
of increasing the impurity strength and we observed that th&igherro. However at higher frequencies its value is smaller
magnitude of some of the radial matrix elements increasetan at lower frequency. Since static polarizability is one of
where as of others decreases due to the mixed role of attrathe very important experimentally measurable properties, the

The next set of figures is for the study of optical proper-
S.

tive Coulomb potential and harmonic potential. study of such variation is very crucial for predicting the be-
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FIGURE 8. Variation of polarizability with the dot radius, for FIGURE 10. Variation of oscillator strength with the dot radiug
different frequencies of parabolic potentiaky. for different frequencies of parabolic potentiak) and-y.
— wave functions of the states, especially that of the 1s state, are
T, _— 1 localized near the center of the dot because of the attractive
T —— J Coulomb potential of the impurity. And hence there is some

- . ‘ limitation on the overlapping and the dipole matrix element
has a constant value. These results are in good agreement
g 1 with different studies [44].

4. Summary and Conclusion
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FIGURE 9. Variation of susceptibility with the dot radius, for ~ We investigated the energy spectra, wave functions, binding
different frequencies of parabolic potentiak{. energies, radial matrix elements of the ground and excited
states and optical properties of hydrogenic impurity of the
haviour the behaviour of such confined systems under ana|®pherica| QD with parabolic potential. Energy eigenvalues
gous experimental situations. strongly depend on dot radius and parabolic potential param-
The diamagnetic susceptibility of a hydrogenic impurity eters. Removal of degeneracy is observed with the increase of
as a function of-y has been shown in Fig. 9. It is observed dot radius. Spectra of the system change drastically with the
from the figure that the diamagnetic susceptibility decreasegarabolic confinement. In addition, calculated results have
from a maximum value as the radius increases. For higheshown that the existence of an impurity has a great effect on
frequency of harmonic potential the diamagnetic susceptibilthe energy spectra. The radial matrix elements and optical
ity decreases more slowly. This indicates that there is a Strongroperties of the system show dependence on dot radius and
influence of the confining potential and dimensions of the doparabolic confinement. We believe that our study makes an
on the diamagnetic susceptibility. Similar results using differ-important contribution to the literature. The theoretical inves-
ent shapes and potentials have been reported by [42,43]. tigation of the optical properties in a spherical QD will lead
In Fig. 10 we have investigated how the oscillator to a better understanding of the properties of QDs. Such theo-
strengths (1s-2p) varies with the dot radius and study howetical studies may have profound consequences for practical
these get modified with the presence or absence of impuritgpplication of the optoelectronic devices and in optical com-
at different frequencies of harmonic potential. From figuremunication.
one can easily see that at the given radius (abost 2a*),
P;; displays a maximum and obtains the major portion of 1
(larger than 0.965), so at this given radius the other transitio\Cknowledgments
probabilities have a very small portion of 1 and tend toward 0.
In addition as the dot radius increases the oscillator strengthriti Batra is thankful to the Hon’ble Vice Chancellor GGS
increases and reaches a constant value at fgrg@/hile the  Indraprastha University for the research grant under the Fac-

energy difference decreases with increasing dot radius, thelty Research Grant scheme for the year 2016-17(F.No.
overlapping grows. As a result, the oscillator strength is to bdRC/GGSIPU/FRGS/USBAS/Dr.Kriti Batra/2016-13f)

fixed at a constant value in |arge QDs. In |arge QD radii, theWide letter number GGSIPU/DRC/ Ph.D./Adm./2016/1565.
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