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Some remarks on the Bel-Robinson tensor and gravitational radiation
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The asymptotic form of the Bel-Robinson tensor in the gravitational radiation-zone is obtained in terms of the mass quadrupole of the source.
A comparison is made with the standard formula for the gravitational power emission. The problem of a fully covariant description of
gravitational radiation in terms of this tensor is briefly discussed.
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1. Introduction

Though the existence of gravitational waves is now well es-
tablished, a manifestly covariant formulation of the energy
density and flux of gravitational radiation, produced by a
physically realistic system, is still lacking. The standard
approach is based on the definition of a pseudo-tensor of
energy-momentum [1,2]. This approach, however, being co-
ordinate dependent, has been the subject of decades of dis-
cussions (see Kennefick’s book [3] for an historical account).
Finally, the discovery of the Hulse-Taylor pulsar [4] came as
a dramatic confirmation of the standard formulation.

From a theoretical point of view, the “wave zone” of grav-
itational radiation can be defined covariantly, together with its
corresponding Poynting-vector [5], but the problem of relat-
ing it in a fully covariant form to the structure of its source,
as in electromagnetism, remains open. An interesting ap-
proach is through the definition of the Bel-Robinson tensor
(Bel [6]), a fourth rank tensor that has been extensively stud-
ied by many authors (see, e.g., references [7] to [17]). In
all cases, the underlying idea is that the Weyl tensorCαβγδ

that describes the purely gravitational part of the space-time
curvature is, in some sense, analogous to the electromagnetic
field tensorfαβ . Since the energy-momentum tensor of the
latter is a second rank tensor quadratic infαβ , the analogue
of the energy-momentum tensor of the former could be the
Bel-Robinson tensor, which is quadratic inCαβγδ. Follow-
ing the original work of Bel [6], who proposed a definition of
“super-energy” (and “super-Poynting”) for the gravitational
field, most of the previously cited authors attempted to relate
this tensor to some appropriately defined concept of energy.
However, an application to concrete problems, such as the
generation of gravitational radiation by a binary pulsar, has
not been achieved yet.

In the present paper, we calculate the asymptotic form
of the Bel-Robinson tensor in the linear approximation of
general relativity, in order to shed some light on its phys-
ical significance and compare with standard results. Since
energy conservation is related to the existence of a time-like
Killing vector, one can define a “super-energy-momentum”
current in terms of this vector and the Bel-Robinson tensor,

as in Ref. [13, 15, 16]. In analogy with the electromagnetic
case, we deduce in Section 2 the explicit form of the super-
Poynting vector in the asymptotic limit. In section 3, a com-
parison is made with electromagnetic radiation and the stan-
dard result for gravitational radiation. As briefly discussed in
the last section, there are some basic difficulties in relating the
present approach to the well tested pseudo-tensor formalism,
basically due to the dimensions of the Bel-Robinson tensor.

2. Basic equations

In the weak field limit, the metric tensor isgµν = ηµν + hµν .
Defininghµν ≡ hµν − (1/2)ηµν(ηρσhρσ), the metric is re-
lated to the energy-momentum tensorTµν through the equa-
tion [1,2]

¤hµν = −16πG

c4
Tµν , (1)

together with the gauge condition

∂µh
µν

= 0. (2)

In the radiation zone, at large distancer from the source,
the solution of Eq. (1) has the asymptotic form

hij = −2πG

c4
ω2F (t, r)Mij , (3)

where

F (t, r) ≡ e−iωt+ikr

r
(4)

and the mass quadrupole is

−ω2Mij ≡ d2

dt2

∫
ρ(t, r)xixj dV = 2

∫
TijdV (5)

(this last relation follows from the condition∂µTµν = 0). A
sinusoidal time dependence of the source with frequencyω
and wave numberk = ω/c is assumed for simplicity.

The time-like components ofhαβ can be obtained from
the gauge condition (2):

−ikh̄a0 + ∂nh̄an = 0

k2h̄00 + ∂2
mnh̄mn = 0. (6)
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In the radiation zone,kr À 1, we have

∂

∂xα
F (xµ) = ik nαF (xµ)

(
1 + O(1/kr)

)
, (7)

wherenα = (1, n̂), andn̂ = r/r. Thus we can set

hαβ = −2πG

c4
ω2Mαβ(n̂)F (t, r), (8)

in the understanding that

M00 = Mijn
in̂j

M0k = −Mkrn
r. (9)

Notice, in particular, thatMαβnβ = 0 and therefore

∂αh̄βγ = ik nαh̄βγ . (10)

2.1. Bel-Robinson tensor

In the linear approximation of general relativity the Riemann
tensor reduces quite generally to

Rαβ
γδ = −2∂[α∂[γh

β]
δ]. (11)

In vacuum, the Ricci tensor is identically zero and the
Riemann tensor reduces to the Weyl tensorCαβγδ. The Bel-
Robinson tensorTαβγδ is defined as

Tαβγδ = Cµ ν
α γCµβνδ + ∗Cµ ν

α γ ∗ Cµβνδ, (12)

where∗Cαβγδ = (1/2)
√−gεαβµνCµν

γδ. It is completely
symmetric in its four indices,Tαβγδ = T(αβγδ), traceless
T γ

αβγ = 0, and divergence-free

∇δTαβγδ = 0 (13)

in vacuum.
Using the condition (10), it follows from the defini-

tion (12), with some lengthy but straightforward algebra,

Tαβγδ =
ω8

2c4

(
2πG

c4r

)2

W nαnβnγnδ, (14)

where
W = Mα

βMβ
α. (15)

Defining M̄ = Mnn and the trace-free quadrupole ten-
sorQij = Mij − (1/3)δijM̄ , we can expressW in terms of
purely spatial components:

W = (Qij n̂
in̂j)2 − 2

3
M̄Qij n̂

in̂j

− 2QikQjkn̂in̂j + QijQij +
2
9
M̄2. (16)

3. From electromagnetism to gravitation

Let us compare the electromagnetic and gravitational fields
and see how the definition of the energy of the former can be
extended to the latter.

3.1. Electromagnetic field

In the dipole approximation, the electromagnetic fieldfαβ =
2∂[αAβ] is given en terms of the four-vectorAα whose space-
like components, in the radiation zonekr À 1, are

A = −ik pF (t, r), (17)

with p the electric dipole (see, e.g., Jackson [18]). In this
approximation, we can setAµ = −ikpµF (t, r) in four-
dimensional notation, wherepµ = (p0,p). Due to the
Lorentz condition∂µAµ = 0, we havenµpµ = 0 and there-
fore p0 = n̂ · p. It then follows that the electromagnetic
energy-momentum tensor is

Tαβ
EM =

k2

4πr2
(pµpµ) nαnβ ,

with pµpµ = |n̂× (n̂× p)|2.
If the space-time admits a time-like Killing vectorξα

such that∇(αξβ) = 0, the four-vectorJα = Tαβ
EMξβ is con-

served if∇βTαβ
EM = 0, that is∇αJα = 0. In Minkowski

space-time, such Killing vector can be simplyξα = (1,0)
and thus, in the radiation zone,J0 is the energy density and
J = cJ0n̂ is the Poynting vector. The electromagnetic power
emitted by the dipole isc

∫
J0r2dΩ.

3.2. Gravitational field

For the gravitational field in vacuum admitting a time-like
Killing vector in the flat-space background, the four-vector

Jα ≡ λ′ Tαβγδ ξβξγξδ

is conserved,∇αJα = 0, due to the properties of the Killing
vector and the Bel-Robinson tensor; a constant factorλ′ has
been included for later convenience. Thus, withξα = (1,0),
we can interpretJ0 as the “super-energy” density andJ =
cJ0n̂ as the “super-Poynting vector”.

The angular integrals over products of the rectangular
components of̂n are

∫
n̂in̂j dΩ =

4π

3
δij , (18)

∫
n̂in̂j n̂kn̂l dΩ =

4π

15
(δijδkl + δikδjl + δilδjk), (19)

from where it follows that
∫

W dΩ = 4π
( 7

15
QijQij +

2
9
M̄2

)
. (20)

Accordingly the “super-power”sP radiated is

sP = λ
G

c5

ω8

4π

∫
W dΩ, (21)

redefiningλ′ = λ c6/8π3G for comparison purposes. Ob-
serve thatsP/λ has dimensions (energy / time3).
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4. Discussion of results

Compare the above formula forsP with the well-known (and
tested) standard formula for the total gravitational radiated
power [1,2]:

Pstandard =
G

45c5
ω6QijQij , (22)

with dimensions (energy / time) as it should be. The dif-
ference (beside the tracēM ) is that the super-power is pro-
portional toω8 while the standard power is proportional to
ω6. In order for the two quantities to coincide (or at least be
proportional), one could chooseλ ∝ ω−2, but then the pro-
portionality factor would not have a universal character since
it would depend on the physical parameters of each particu-
lar system. This problem with dimensions has been noticed
by most previous authors (for instance, a quantum of “super-
energy” should be proportional toω3 [14]).

In order to further clarify this point, let us remind how an
equivalent problem is treated in electromagnetism. A distri-
bution of electric charges and currents defines a four-vector
Jβ

matter, and the electromagnetic energy-momentum tensor
Tαβ

EM is not conserved since

∇βTαβ
EM = c−1fαβJβ

matter.

On the other hand, the charged particles producing the cur-
rents define an energy-momentum tensorTαβ

matter of matter
such that

∇βTαβ
matter = −c−1fαβJβ

matter

due to the Lorentz force on the particles (see Landau and Lif-
shitz [1], Sect. 33). The net result is that the total energy-
momentum tensor, electromagneticplusmatter, is conserved.

As for the Bel-Robinson tensor, its divergence does not
vanish in the presence of matter [6]. Accordingly, in order to
relate the emitted super-power to some mechanical properties
of a physical system (such as a binary pulsar), an independent
definition ofmechanicalsuper-energy would be required (for
instance, for a distribution of point-masses). Such definitions
for an electromagnetic field [7] or a Klein-Gordon field has
been proposed in the past [13, 14]. However, a useful defi-
nition should be obtained directly from thedynamicalequa-
tions of motion for massive particles, analogous in general
relativity to the Lorentz force equation. As far as this author
knows, no such definition is known, and therefore a fully co-
variant formalism based on the Bel-Robinson tensor and ap-
plicable to practical problems, such as gravitational radiation,
is still an open problem.
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