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Some remarks on the Bel-Robinson tensor and gravitational radiation
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The asymptotic form of the Bel-Robinson tensor in the gravitational radiation-zone is obtained in terms of the mass quadrupole of the source.
A comparison is made with the standard formula for the gravitational power emission. The problem of a fully covariant description of
gravitational radiation in terms of this tensor is briefly discussed.
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1. Introduction as in Ref. [13, 15, 16]. In analogy with the electromagnetic
case, we deduce in Section 2 the explicit form of the super-
Though the existence of gravitational waves is now well esPoynting vector in the asymptotic limit. In section 3, a com-
tablished, a manifestly covariant formulation of the energyparison is made with electromagnetic radiation and the stan-
density and flux of gravitational radiation, produced by adard result for gravitational radiation. As briefly discussed in
physically realistic system, is still lacking. The standardthe |ast section, there are some basic difficulties in relating the
approach is based on the definition of a pseudo-tensor gfresent approach to the well tested pseudo-tensor formalism,

energy-momentum [1, 2]. This approach, however, being cobasically due to the dimensions of the Bel-Robinson tensor.
ordinate dependent, has been the subject of decades of dis-

cussions (see Kennefick’s book [3] for an historical account)

Finally, the discovery of the Hulse-Taylor pulsar [4] came as

a dramatic confirmation of the standard formulation. In the weak field limit, the metric tensor ig,, = 1., + hyu-
From atheoretical point of view, the “wave zone” of grav- inina B — _ po i~ ie ra.

itational radiation can be defined covariantly, together with its,gf;'(;"tr;gtﬁg”ege?;}mo(nln/e%“rﬁ(?éﬁggr )t’htgi&ettﬂg IeSqLea_

corresponding Poynting-vector [5], but the problem of relat-q, [1,2] Y

ing it in a fully covariant form to the structure of its source, - —@T )

as in electromagnetism, remains open. An interesting ap- py ct THY

proach is through the definition of the Bel-Robinson tensokogether with the gauge condition

(Bel [6]), a fourth rank tensor that has been extensively stud- o

ied by many authors (see, e.g., references [7] to [17]). In Ouh =0. (2)

all cases, the underlying idea is that the Weyl ternsgg- s

that describes the purely gravitational part of the space-tim

curvature is, in some sense, analogous to the electromagneti

2. Basic equations

In the radiation zone, at large distanc&om the source,
e solution of Eq. (1) has the asymptotic form

field tensorf,s. Since the energy-momentum tensor of the P 2rG 2 A 3
latter is a second rank tensor quadraticfiry, the analogue T T T A w F(t,7)Mij, ®)
of the energy-momentum tensor of the former could be th%vhere

Bel-Robinson tensor, which is quadratic@f,zs. Follow- e—iwt+ikr

ing the original work of Bel [6], who proposed a definition of F(t,r)= - (4)

“super-energy” (and “super-Poynting”) for the gravitational 5nd the mass quadrupole is
field, most of the previously cited authors attempted to relate

. . . 2
this tensor to some appropriately defined concept of energy. ogy _ d /p(t,r)xil‘j AV — 2/TijdV )

L M. = —
However, an application to concrete problems, such as the W= g
generation of gravitational radiation by a binary pulsar, ha

not been achieved yet. i sinusoidal time dependence of the source with frequency
In the present paper, we calculate the asymptotic forn}md wave numbek = w/c is assumed for simplicity.

of the Bel-Robinson tensor in the linear approximation of The time-like components df,,; can be obtained from
general relativity, in order to shed some light on its phys-the gauge condition (2): oh

ical significance and compare with standard results. Since
energy conservation is related to the existence of a time-like —ikh® 4+ 9,h =0
Killing vector, one can define a “super-energy-momentum” _ _
A ) . thOO + 62 hmn =0 (6)
current in terms of this vector and the Bel-Robinson tensor, mn :

S(this last relation follows from the conditiofy, 7 = 0). A
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In the radiation zonekr > 1, we have 3.1. Electromagnetic field

ip(xu) = ik no F(z") (1 + O(l/kr)), (7)  Inthe dipole approximation, the electromagnetic figlg =

Dz 20/, Ap) is given en terms of the four-vectdr, whose space-
wheren® = (1, 1), andi = r/r. Thus we can set like components, in the radiation zoke > 1, are
— 2rG -
o = — P Mg (R)F (2, 1), (8) A =—ikpF(tT), an
C
in the understanding that with p _the _electric dipole (see, e.g.,'Jackson [1_8]). In this
approximation, we can sed,, = —ikp,F(t,r) in four-
Moo = Mijniﬁj dimensional notation, wherg, = (po,p). Due to the
Lorentz conditiond,, A* = 0, we haven,p* = 0 and there-
Moy, = —Mj,n". (9)  forep, = f - p. It then follows that the electromagnetic
Notice, in particular, thad/,sn” = 0 and therefore energy-momentum tensor is
. - o k2 ’
Oahpy = ik nahgy. (20) TE@ _ (pup; ) nanﬁ’

47r?

2.1. Bel-Robinson tensor with p,p# = |ii x (A x p)|?

In the linear approximation of general relativity the Riemann  If the space-time admits a time-like Killing vectqr,

tensor reduces quite generally to such thatV (&) = 0, the four-vectorT® = T3¢ is con-
served ifVs Ty, = 0, that isV,J* = 0. In Minkowski
Ro‘f(; = 728[0‘5‘[%@]. (11)  space-time, such Killing vector can be simgly = (1,0)

and thus, in the radiation zong? is the energy density and

In vacuum, the Ricci tensor is identically zero and they _ . 704 is the Poynting vector. The electromagnetic power
Riemann tensor reduces to the Weyl tenSgp,s. The Bel- o itiag by the dipole is [ .JOr2dS).

Robinson tensdf,s+5 is defined as

Tupys = CH " (12) 32 Gravitational field

a vy

C;J,,Bl/é + *lex lfy * Cpﬂu&

where«Cogys = (1/2)y/=geasu C"™ 5. It is completely For the gravitational field in vacuum admitting a time-like
symmetric ,T,] its four indicesT:mg i‘s T(agys), traceless Killing vector in the flat-space background, the four-vector
T7 . =0, and divergence-free
ady J Jo =N Tapys £767°
VT oy =0 13) . : -
fro (13) is conservedy ,J“ = 0, due to the properties of the Killing

in vacuum. vector and the Bel-Robinson tensor; a constant fattdras

Using the condition (10), it follows from the defini- been included for later convenience. Thus, wgith= (1,0),

tion (12), with some lengthy but straightforward algebra, ~ we can interpret/’ as the “super-energy” density add=

. ) ¢Jh as the “super-Poynting vector”.
w® (271G The angular integrals over products of the rectangular
Topvs==— | —— ] Wnq , 14
Fr0 = et ( cir > MaTpliyTs (14) components of: are

where o dr
W =MyM?-. (15) / Ay dfl = —=dij, (18)

Defining M = M,,, and the trace-free quadrupole ten- o A7
sorQ;; = M;; — (1/3)8;;M, we can expresH’ in terms of /”inj"k”l dQr = T5(5ij5kl + 0y + dudjr),  (19)
purely spatial components:
from where it follows that

(Qz A“?) _*MQz A“j _
J " [wae—an(fasQy+ i) (@
. 2
—2Qu QxR P + Qi Qqj + = M?. 16
Wk 7YY (16) Accordingly the “super-power? P radiated is
3. From electromagnetism to gravitation A?Z/W i, (21)
7I

Let us compare the electromagnetic and gravitational fields
and see how the definition of the energy of the former can beedefining)\’ = X ¢®/873G for comparison purposes. Ob-
extended to the latter. serve thak P/ has dimensions (energy / tifje
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4. Discussion of results On the other hand, the charged particles producing the cur-

) rents define an energy-momentum ter@”ﬁ;ﬂttw of matter
Compare the above formula feP with the well-known (and  g,ch that

tested) standard formula for the total gravitational radiated
power [1, 2] vﬁTr?Lgtter = _C_lfaﬁ‘]fzatter
G
Pstandard = %?MGQMQU, (22)  due to the Lorentz force on the particles (see Landau and Lif-
shitz [1], Sect. 33). The net result is that the total energy-

with dimensions (energy / time) as it should be. The dlf'momentum tensor, electromagngilasmatter, is conserved.

ference (beside the tradd) is that the super-power is pro- . L
portional tow® while the standard power is proportional to ~ AS for the Bel-Robinson tensor, its divergence does not
w5. In order for the two quantities to coincide (or at least bevanish in the presence of matter [6]. Accordingly, in order to
proportional), one could choosex w2, but then the pro- relate the emitted super-power to some mechanical properties
portionality factor would not have a universal character sincéf & Physical system (such as a binary pulsar), an independent
it would depend on the physical parameters of each particugeflnltlon ofmechanicakuper-energy would be required (for

lar system. This problem with dimensions has been noticedstance, for a distribution of point-masses). Such definitions

by most previous authors (for instance, a quantum of “superf-or an electromagnetic field [7] or a Klein-Gordon field has

energy” should be proportional to? [14]). bfa_en proposed in the_ past _[13, 14]. However, a useful defi-
In order to further clarify this point, let us remind how an r_1|t|on ShOUId_ be obtamed_ dlrectly from tlub'namlcal_equa-

equivalent problem is treated in electromagnetism. A distri.loNS Of motion for massive particles, analogous in general

bution of electric charges and currents defines a four-vectd€!ativity to the Lorentz force equation. As far as this author

ng ..o, and the electromagnetic energy-momentum tensolfno,ws’ no suqh definition is known, and _therefore a fully co-
variant formalism based on the Bel-Robinson tensor and ap-

Ty 1S not conserved since . _ - -
plicable to practical problems, such as gravitational radiation,
VaTol =l gh . is still an open problem.
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