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In this paper, the solution to the Hamilton-Jacobi equation for the one-dimensional harmonic oscillator damped with the Caldirola-Kanai
model is presented. Making use of a canonical transformation, we calculate the Hamilton characteristic function. It was found that the
position of the oscillator shows an exponential decay similar to that of the oscillator with damping where the decay is more pronounced when
increasing the damping constantγ. It is shown that whenγ = 0, the behavior is of an oscillator with simple harmonic motion. However,
unlike the damped harmonic oscillator where the linear momentum decays with time, in the case of the oscillator with the Caldirola-Kanai
Hamiltonian, the momentum increases as time increases due to an exponential growth of the massm(t) = meγt.
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1. Introduction

In the study of physical phenomena of a real system, models
are commonly used. A model is a well-defined mathematical
process associated with the real system which is the subject
matter of study. These models represent a simplified version
of the physical phenomenon. The selected model includes a
set of variables that completely characterize the system, in
which a small number of interactions are omitted or taken
into account. An example of the above is the interaction be-
tween particles forming a physical system in the presence of
a conservative force field; in this case the total work exerted
over the system on a closed path vanishes and at any point of
the path its mechanical energy is constant, that is, the system
is conservative.

Every physical system is not isolated, it is found inmersed
in a larger system called environment. The environment is
not manipulable due to the great number of degrees of free-
dom. Information on the evolution of the system can only
be obtained from the phenomenological equations of motion.
The latter is established from experimental information even
when the explicit interaction is not known [1]. The majority
of physical phenomena are irreversible: diffusion and dissi-
pation are examples, whereby the mechanical energy is trans-
formed into heat. This dissipation can be observed through
the interaction between the system of interest and its envi-
ronment [2]. Accordingly, and due to its complexity, an im-
portant issue of scientific interest is to study more real phys-
ical systems where irreversible and dissipative properties are
present, whether or not its environment is known.

Dissipative systems are non-Hamiltonian. Among these
systems we can mention: Systems with macroscopic fric-
tion that can be well described by Newtonian mechanics, the
damped harmonic oscillator (probably the standard example
of a dissipative system) which can be described through an
explicitly time-dependent Hamiltonian, and the loaded oscil-

lator in an RLC linear circuit. The starting point for the un-
derstanding of dissipative systems can be established in 1931.
Historically, Bateman was the first to propose the time de-
pendent Hamiltonian in the classic context which describes
the damped oscillations [3]. Later on, P. Cardilora and E.
Kanai, independently constructed from Bateman’s Hamilto-
nian, the Hamilton function of Caldirola-Kanai(HCK) using
a time dependent canonical transformation [4,5]; withHCK

the equation of motion is provided. This equation describes
the behavior of a constant frequency and time-varying mass
oscillator. A comparative study of this model with the Lane-
Emden damped harmonic oscillator model is carried out by
Ozeren F. and Aguiar V. Works in the opposite direction have
been proposed using purely geometric considerations, to find
Bateman’s Hamiltonian from that of Caldirola-Kanai [6-8].

Along with the birth of quantum mechanics birth, there
has been a constant interest in the dissipative systems with
the inherent difficulties to describe damping in the harmonic
oscillator. In Schr̈odinger’s representation theHCK Hamil-
tonian is used with the problem that quantization does not
comply with the uncertainty relations. Brittin carried out an
extensive study when addressing this type of quantum me-
chanical solutions that violate the uncertainty principle [9].
A attempt to overcome this difficulty is shown in Dedene’s
work [10], who within the geometric field quantization de-
velops a sympletic formulation for the damped harmonic os-
cillator based on Dekker’s dynamic variables [11]. L. Pe-
drosa, solved the Schrödinger’s equation using an auxiliary
function of Milney-Pinney’s equation, obtaining the wave
function for HCK with and without the presence of a sin-
gular potential [12]. A detailed research of two kinds of time
dependent damped harmonic oscillators including oscillators
with HCK is presented by Bessa V. As a result quantum solu-
tions through unitary transformations with Lewis-Reisenfeld
invariant method are obtained [13].
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In addition to the methods described in the preceding
paragraph for studying dissipative systems in a quantum me-
chanical context, there is also the propagator evaluation.
Cheng evaluates the propagator forHCK , and obtains the
time dependent wave function corresponding to the prop-
agator; nevertheless, the exact wave function is not ob-
tained [14]. O. Roldan, presents theHCK model for the
damped harmonic oscillator using path integrals to calcu-
late the propagator with which the evolution of a squeezed
state is obtained, and variances of the position and momen-
tum are calculated [15]. Currently, there are formally es-
tablished descriptions for studying dissipative systems such
as Schr̈odinger-Langevin equation (derived from Heisen-
berg equations of motion) [16], Weyl’s generalized quanti-
zation [17], unitary transformations for damped and forced
harmonic oscillator [18], Schrödinger variational principle by
Razavy [19], and the stochastic method by Nelson [20].

As described throughout this work, the study of dissi-
pative systems and in particular that of Caldirola-Kanai os-
cillator, is a field under continuous research from classical
as well as from the quantum point of view. In this present
work we are interested in presenting the method for solv-
ing Hamilton-Jacobi equation for the oscillator damped with
Caldirola-Kanai Hamiltonian. The work has been organized
in the following manner: in Sec. 2 we present the fundamen-
tal concepts of Lagrange and Hamilton-Jacobi equations, in
Sec. 3 we present the Caldirola-Kanai Hamiltonian, in Sec. 4
the solution of Hamilton-Jacobi equation and in Sec. 5 the
obtained results and discussion. Finally, the conclusions and
bibliography are given.

2. Lagrange and Hamilton-Jacobi equations

Historically, the main statements of Newtonian mechanics
are the three axioms, with which the solution to the motion
problem was proposed. Nevertheless, it is not the only con-
ceptual scheme that allows to address that problem. The de-
velopment of classical mechanics was marked by two paths:
vector mechanics and analytic mechanics [21]. Vector me-
chanics directly starts from the laws of motion. It is based
on linear momentum and force vectors. Knowing the forces
acting on a particle along with the initial conditions (position
and velocity) allows to describe its time evolution.

The path followed by analytic mechanics traces back to
the XVIII century. In 1774, the French mathematician Pierre
Louis Moureau de Maupertuis, enunciated his famous prin-
ciple of minimum action. Starting from Fermat’s principle,
Moureau de Maupertuis used another quantity called action
which is defined as the product of massm, times the veloc-
ity v and times the distances travelled by the particle [22].
In that same year, Euler wrote the Maupertuis principle of
minimum action as follows:

δ

∫
vds = δ

∫
v2dt = 0 (1)

Despite the fact that Euler sketched this first dynamic inter-
pretation of Maupertuis principle, the credit for the use of
the principle of minimum action is attributed to Lagrange,
who with the purpose of defining the configuration of a sys-
tem of particles, introduced the concept of generalized co-
ordinates(qi, pi) and using variational calculus obtained the
Euler Lagrange-Poisson Equation [23]

∂

∂t

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 (2)

WhereL = T −V is the so-called Lagrange function. At this
point, we can establish that analytic mechanics is grounded
on scalar magnitudes, kinetics energy and potential energy.
Magnitudes associated with the body and its motion, in this
formulation force has not been considered as a fundamental
concept.

In 1835, William Hamilton observed that equation (2) re-
ferred to only conservative systems, wherein potentialV is
only a function of the coordinatesqi. Hamilton generalized
the results by including non-conservative systems for which
V = V (q̇i, qi, t) enunciating his principle known since then
as Hamilton’s Principle [24],

δ

t2∫

t1

L( ˙qi,qi,t)dt = 0 (3)

In addition, to a mechanical system whose dynamics is
described by (2) in phase space it is associated with an
H(q, p, t) function, named Hamiltonian function (Hamilto-
nian). In general, this function depends on the state variables
(qi, pi) and on timet. The Hamiltonian of the mechanical
system is given by:

H(q, p, t) =
∑

i

q̇ipi − L( ˙qi,qi, t) (4)

The above relation is a Legendre transformation which allows
to turn the set of Lagrangian’s variables into the set of Hamil-
tonian variables, the generalized Hamilton equations are

dqi

∂t
=

∂H

∂pi
,

dpi

∂t
= −∂H

∂qi
(5)

Let us go on now with Hamilton-Jacobi theory, widely de-
tailed in the classical mechanics texts, such as that of Gold-
stein [25]. The Hamilton-Jacobi formalism central idea is to
search for a canonical transformation of coordinates and mo-
mentum(q, p) for a timet, into a new set of constant quan-
tities, which can be the initial values of(Q,P ) for t0; the
points(q, p) and(Q,P ) represent the state of the system at
instantst andt0. By definition, the transformation is canoni-
cal if Hamilton equation (5) are satisfied. As variables(Q,P )
represent the initial state of the system, these quantities do not
change with time. For this to happen, the transformed Hamil-
tonianH ′(Q,P, t), cannot depend on eitherQ or P , that is,
H ′ must be identically zero.
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Then, every cyclic coordinate is related to a first integral
(its conjugated momentum), so that a canonical transforma-
tion turning into a set of cyclic coordinates, would ensure the
resolution of a mechanical problem. The generating function
verifying the purpose that the new Hamiltonian was zero, is
called the Hamilton main function and is a second class gen-
erating functionS(q, P, t) such that [26]:

H ′ = H +
∂S(q, p, t)

∂t
= 0 (6)

with,

p =
∂S

∂q
, Q = − ∂S

∂P
(7)

Given thatH ′ = 0, all Q′s are cyclic and their conjugated
momentum are constant. The equation

H

(
q,

∂S

∂q
, t

)
+

∂S (q, p, t)
∂t

= 0 (8)

is called Hamilton-Jacobi Equation and can be interpreted as
a partial differential equation forS. In this equation there are
n + 1 variables, thenq′s and time. The general solution for
S depends onn + 1 constants, one of them being additive.
As (8) depends on theS derivatives, thenS + constant is
also a solution, since the additive constant is irrelevant in the
canonical transformation.

3. Caldirola-Kanai Hamiltonian

Euler-Lagrange-Poisson equations (2) correspond to the
equations of motion of a system characterized by a La-
grangean function. Unlike the simple harmonic oscillator
where one can easily obtain the equation of motion [27],
in the case of the damped harmonic oscillator, obtaining the
equation of motion is not direct. A first attempt was presented
by Rayleigh, by introducing a dissipative functionF in (2),

∂

∂t

(
∂L

∂q̇i

)
− ∂L

∂qi

+
∂F

∂qi
= 0 (9)

of the form ofF = λq̇2/2 [24]. The well-known equation of
motion for a damped harmonic oscillator is obtained

q̈ +
λq̇

2
+ w2q = 0 (10)

Although Eq. (10) represents the movement equation for
dissipative systems, it is a phenomenological description of
these systems as there is not any Lagrangean, nor any vari-
ational principle that has been involved. The first attempts
to understand this difficulty were presented by Bateman,
Caldirola and Kanai by presenting a Lagrangian which in the
case of a one-dimension is given by:

L = eγt

(
mq̇2

2
− mq2w2

2

)
(11)

with damping coefficientγ = λ/m and the oscillation fre-
quencyw. The corresponding Caldirola-Kanai Hamiltonian
is obtained from (4),

H = eγt

(
mq̇2

2
+

mq2w2

2

)
(12)

apparently depending ont; however, it does not generally
represent dissipative systems but it does represent physical
systems with an exponentially increasing mass with time
m(t) = meγt.

4. Solution of Hamilton-Jacobi equation for
the oscillator with Caldirola-Kanai Hamil-
tonian

Replacing in the Euler-Lagrange-Poisson equations (2) with
(11), the equation of a damped harmonic motion (10) is ob-
tained. In the Herrera L.’s paper, it is proposed that in the mo-
tion of a damped system from a timet1 to t2, the action [28]

S =

t2∫

t1

eγtL0(q, q̇)dt (13)

has a stationary value for the correct movement path, where
L0 is the Lagrangean of a conservative system,T −V . When
defining a canonical transformation

Q = Q(q, p, t), P = P (q, p, t) (14)

the new canonical variablesQ andP satisfy the variational
principle,

δ

t2∫

t1

eγt(PQ̇−H ′)dt = 0 (15)

H ′ is the new Hamiltonian. When considering the following
canonical transformations,

Q = qeγt/2, P = pe−γt/2 (16)

the generating function is given by:

F2(q, p, t) = qPeγt/2 (17)

with,

p =
∂F2

∂q
= Peγt/2, Q = −∂F2

∂P
= qeγt/2 (18)

The new Hamiltonian is

H ′(Q, P ) = H(q, p, t)− ∂F 2

∂t
=

p2

2m
+

1

2
mw2Q2+

γ

2
QP (19)

Which does not explicitly depend on time, the Hamilton-Jacobi
equation forH ′ is

1

2

(
∂S

∂Q

)2

+
1

2
mw2Q2 +

γ

2
Q

∂S

∂Q
+

∂S

∂t
= 0 (20)
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In addition, we can separate the time variable with the ansatz
S(Q, α, t) = W (Q, α) − αt, with W the Hamilton characteristic
function, (20) is expressed in the form

1

2

(
∂W

∂Q

)2

+
1

2
mw2Q2 +

γ

2
Q

∂W

∂Q
= α (21)

Thus we obtain a quadratic equation in∂W
∂Q

, its solution is

∂W

∂Q
= −γm

2
Q± 1

2

√
(γ2 − 4w2)m2Q2 + 8mα (22)

After integrating (22) we found the characteristic function, the result
obtained was derived with respect toα.

∂W

∂α
= ±2m

∫
dQ√

(γ2 − 4w2)m2Q2 + 8mα
(23)

From the above expression we solve forQ taking into account that
∂W/∂α = t + β, [24]

Q(t) = ± 1

Ω

√
2α

m
sin[Ω(t + β)] (24)

with Ω =
√

w2 − (γ2/4), the constantsα andβ are determined
through the initial conditions. Finally the solution in terms of the
original variable (16) is:

q(t) = ± 1

Ω

√
2α

m
e−γt/2 sin[Ω(t + β)] (25)

The above result represents the time variation ofq with decreasing
amplitude: a similar behavior for the case of a damped harmonic
oscillator (sub-critically). Now we present the results obtained in
Sec. 3 making use of the mathematical package Wolfram Mathe-
matica 10.0.

5. Results and discussion

For the Caldirola-Kanai oscillator, the equation of motion is identi-
cal to Eq. (10). The variation of the positionq(t) given by solution
(25), is shown in Fig. 1 for the different values of the damping
constant. It has been observed thatq(t) oscillates with a decreas-
ing amplitude asγ increases and reaches zero for asymptotic times.
The behavior shown is similar to that of a harmonic oscillator with
subcritical damping(γ < 2w). Furthermore, in the limitγ ≈ 0,
the resulting motion is equal to that of a simple harmonic oscillator.
The results obtained coincide with those reported in Ref. 7.

FIGURE 1. Variation of positionq(t) for different values ofγ.
Color curves: blackγ ≈ 0.0, redγ < w/2, blueγ < w and green
γ < 2w.

FIGURE 2. Variation of momentump(t) for the oscillator with
Caldirola-Kanai Hamiltonian withγ < 0.4w.

FIGURE 3. Variation of momentump(t) for the oscillator with
Caldirola-Kanai Hamiltonian withγ = 0.0.

Figure 2 represents the canonical momentump(t) for a value of
the constantγ < 0.4w. It is observed that the behavior is different
from that expected one in a damped harmonic oscillator, wherep(t)
increases as time increases. This is due to the exponential increase
of the Caldirola-Kanai oscillator mass. Only when damping is null,
the behavior is identical to that of an oscillator with simple harmonic
motion [23], see Fig. 3.

Despite that from the Caldirola-Kanai Hamiltonian (12), the
equation of motion of a damped harmonic oscillator is obtained,
it could be inferred that the mechanical energy must exponentially
decrease witht as it occurs with dissipative systems. However, this
Hamiltonian does not represent dissipative systems since when re-
placing (25) in (12) it is demonstrated that

H =
2α

Ω2

(
w2 − γ2

4
cos

[
2Ωt′

]− γw

2
sin

[
2Ωt′

])
(26)

with t′ = t + β. The time average value of (26) is

〈H〉 =
2α

Ω2
w2 (27)

Thus, it is proven that〈H〉 is a constant as it was demonstrated by
J. Ray, [29] in 1979. The Lagrangean (11) and therefore Hamilto-
nian (12) do not represent dissipative systems, but they do represent
variable mass physical systems in the time.

Rev. Mex. Fis. E64 (2018) 47–51



THE ONE-DIMENSIONAL HARMONIC OSCILLATOR DAMPED WITH CALDIROLA-KANAI HAMILTONIAN 51

6. Conclusions

Within the Hamilton-Jacobi theoretical framework through the sep-
aration method of variablesS(Q, α, t) = W (Q, α) − αt, we
solved the equation of motion for the oscillator with Caldirola-Kanai
Hamiltonian. We found out that the exponential decrease with time
of the position of the oscillator increases as the damping param-
eter increases; this behavior is identical to that of a sub-damped
harmonic oscillator. The results coincide with those reported in V.

Aguiar, and I. Guides, [7]. However, this system does not represent
a dissipative system as the momentump(t) increases with time and
it has been demonstrated that the time average value of the Hamil-
tonian is constant.
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