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In this paper, the solution to the Hamilton-Jacobi equation for the one-dimensional harmonic oscillator damped with the Caldirola-Kanai
model is presented. Making use of a canonical transformation, we calculate the Hamilton characteristic function. It was found that the
position of the oscillator shows an exponential decay similar to that of the oscillator with damping where the decay is more pronounced when
increasing the damping constant It is shown that when, = 0, the behavior is of an oscillator with simple harmonic motion. However,
unlike the damped harmonic oscillator where the linear momentum decays with time, in the case of the oscillator with the Caldirola-Kanai
Hamiltonian, the momentum increases as time increases due to an exponential growth of thethassne™".
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1. Introduction lator in an RLC linear circuit. The starting point for the un-
derstanding of dissipative systems can be established in 1931.
In the study of physical phenomena of a real system, modelsiistorically, Bateman was the first to propose the time de-
are commonly used. A model is a well-defined mathematicapendent Hamiltonian in the classic context which describes
process associated with the real system which is the subje@iie damped oscillations [3]. Later on, P. Cardilora and E.
matter of study. These models represent a simplified versioRanai, independently constructed from Bateman’s Hamilto-
of the physical phenomenon. The selected model includes jgian, the Hamilton function of Caldirola-Kan@#l - x ) using
set of variables that completely characterize the system, ig time dependent canonical transformation [4,5]; With
which a small number of interactions are omitted or takenthe equation of motion is provided. This equation describes
into account. An example of the above is the interaction bethe behavior of a constant frequency and time-varying mass
tween particles forming a physical system in the presence djscillator. A comparative study of this model with the Lane-
a conservative force field; in this case the total work exerte&mden damped harmonic oscillator model is carried out by
over the system on a closed path vanishes and at any point gfzeren F. and Aguiar V. Works in the opposite direction have
the path its mechanical energy is constant, that is, the systepeen proposed using purely geometric considerations, to find
is conservative. Bateman’s Hamiltonian from that of Caldirola-Kanai [6-8].
Every physical system is not isolated, it is found inmersed
in a larger system called environment. The environment is  Along with the birth of quantum mechanics birth, there
not manipulable due to the great number of degrees of freehas been a constant interest in the dissipative systems with
dom. Information on the evolution of the system can onlythe inherent difficulties to describe damping in the harmonic
be obtained from the phenomenological equations of motionoscillator. In Schdinger’s representation thié: . Hamil-
The latter is established from experimental information evertonian is used with the problem that quantization does not
when the explicit interaction is not known [1]. The majority comply with the uncertainty relations. Brittin carried out an
of physical phenomena are irreversible: diffusion and dissiextensive study when addressing this type of quantum me-
pation are examples, whereby the mechanical energy is tranghanical solutions that violate the uncertainty principle [9].
formed into heat. This dissipation can be observed througlA attempt to overcome this difficulty is shown in Dedene’s
the interaction between the system of interest and its enviwork [10], who within the geometric field quantization de-
ronment [2]. Accordingly, and due to its complexity, an im- velops a sympletic formulation for the damped harmonic os-
portant issue of scientific interest is to study more real physeillator based on Dekker’'s dynamic variables [11]. L. Pe-
ical systems where irreversible and dissipative properties argrosa, solved the Sobdinger's equation using an auxiliary
present, whether or not its environment is known. function of Milney-Pinney’s equation, obtaining the wave
Dissipative systems are non-Hamiltonian. Among thesdunction for Hox with and without the presence of a sin-
systems we can mention: Systems with macroscopic fricgular potential [12]. A detailed research of two kinds of time
tion that can be well described by Newtonian mechanics, theependent damped harmonic oscillators including oscillators
damped harmonic oscillator (probably the standard exampleith H¢ k is presented by Bessa V. As a result quantum solu-
of a dissipative system) which can be described through ations through unitary transformations with Lewis-Reisenfeld
explicitly time-dependent Hamiltonian, and the loaded oscil-invariant method are obtained [13].
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In addition to the methods described in the precedingDespite the fact that Euler sketched this first dynamic inter-
paragraph for studying dissipative systems in a quantum mepretation of Maupertuis principle, the credit for the use of
chanical context, there is also the propagator evaluatiorthe principle of minimum action is attributed to Lagrange,
Cheng evaluates the propagator fdr;, and obtains the who with the purpose of defining the configuration of a sys-
time dependent wave function corresponding to the proptem of particles, introduced the concept of generalized co-
agator; nevertheless, the exact wave function is not oberdinates(¢;, p;) and using variational calculus obtained the
tained [14]. O. Roldan, presents tlié-; model for the Euler Lagrange-Poisson Equation [23]
damped harmonic oscillator using path integrals to calcu-
late the propagator with which the evolution of a squeezed ﬁ (E)L) _ ai -0 2)
state is obtained, and variances of the position and momen- ot \ 9q; 9q;
tum are calculated [15]. Currently, there are formally es-

tablished descriptions for studying dissipative systems sucwherEL = TV is the so-called Lagrange function. At this

as Schbdinger-Langevin equation (derived from Heisen- point, we can e;tablish t.hat .analytic mechanics is_grounded
berg equations of motion) [16], Weyl's generalized quanti-on scalar magnitudes, kinetics energy and potential energy.

; . . Magnitudes associated with the body and its motion, in this
zation [17], unitary transformations for damped and forced : ;
. . . o L formulation force has not been considered as a fundamental
harmonic oscillator [18], Sckdinger variational principle by

: concept.
Razavy [19], and the stochastic method by Nelson [20]. - . . i
As described throughout this work, the study of dissi- In 1835, William Hamilton observed that equation (2) re

; . . . . __ferred to only conservative systems, wherein poteritias
pative systems and in particular that of Caldirola-Kanai os- v af . f th di Hamil lized
cillator, is a field under continuous research from classicaf . & unction of the coordinateg. Hamilton generalized

' he results by including non-conservative systems for which

as well as from the quantum point of view. In this presentV — V(4i, q,t) enunciating his principle known since then
work we are interested in presenting the method for solv-. di s 9 P P

ing Hamilton-Jacobi equation for the oscillator damped withas Hamilton’s Principle [24],

Caldirola-Kanai Hamiltonian. The work has been organized to

in the following manner: in Sec. 2 we present the fundamen- § | L(gi,qit)dt =0 ©)
tal concepts of Lagrange and Hamilton-Jacobi equations, in
Sec. 3 we present the Caldirola-Kanai Hamiltonian, in Sec. 4
the solution of Hamilton-Jacobi equation and in Sec. 5 than addition, to a mechanical system whose dynamics is
obtained results and discussion. Finally, the conclusions andescribed by (2) in phase space it is associated with an
bibliography are given. H(q,p,t) function, named Hamiltonian function (Hamilto-
nian). In general, this function depends on the state variables
(¢i,p;) and on timet. The Hamiltonian of the mechanical
system is given by:

ty

2. Lagrange and Hamilton-Jacobi equations

Historically, the main statements of Newtonian mechanics ) )
are the three axioms, with which the solution to the motion H(q,p,t) =Y dipi — L(gi-qi,t) 4)
problem was proposed. Nevertheless, it is not the only con- @

ceptual scheme that allows to address that problem. The def_‘he above relation is a Legendre transformation which allows
velopment of classical mechanics was marked by two pathsg tyrm the set of Lagrangian's variables into the set of Hamil-

vector mechanics and analytic mechanics [21]. Vector Megynian variables, the generalized Hamilton equations are

chanics directly starts from the laws of motion. It is based
on linear momentum and force vectors. Knowing the forces @ _OH dp;  OH

acting on a particle along with the initial conditions (position ot Op;’ ot dq;
and velocity) allows to describe its time evolution.

The path followed by analytic mechanics traces back td-€t US 90 on now with Hamilton-Jacobi theory, widely de-

the XVIII century. In 1774, the French mathematician Pierreta”ed in the classical mechanics texts, such as that of Gold-
’ stein [25]. The Hamilton-Jacobi formalism central idea is to

Louis Moureau de Maupertuis, enunciated his famous prin= ) h !
ciple of minimum action. Starting from Fermat's principle search for a canonical transformation of coordinates and mo-
Moureau de Maupertuis used another quantity called actiof/€Ntum(¢, p) for a timet, into a new set of constant quan-
which is defined as the product of mass times the veloc- Uti€S, Which can be the initial values 68, P) for ¢o; the

ity v and times the distancetravelled by the particle [22]. POINts(¢,p) and(Q, P) represent the state of the system at

In that same year, Euler wrote the Maupertuis principle ofinstantst andt,. By definition, the transformation is canoni-
minimum action as follows: cal if Hamilton equation (5) are satisfied. As variall€s P)

represent the initial state of the system, these quantities do not
5/vd5 _ 5/v2dt —0 ) chqnge with time. For this to happen, the transformed I_-lam|l-

tonian H'(Q, P, t), cannot depend on eithér or P, that is,

H’ must be identically zero.

®)
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Then, every cyclic coordinate is related to a first integralwith damping coefficienty = \/m and the oscillation fre-
(its conjugated momentum), so that a canonical transformaguencyw. The corresponding Caldirola-Kanai Hamiltonian
tion turning into a set of cyclic coordinates, would ensure thes obtained from (4),
resolution of a mechanical problem. The generating function o -
verifying the purpose that the new Hamiltonian was zero, is H =t (mq L maw ) (12)
called the Hamilton main function and is a second class gen- 2 2
erating functionS(q, P, t) such that [26]:

apparently depending oty however, it does not generally

8S(q, p, 1) represent dissipative systems but it does represent physical
H =H+ 8’t =0 (6) systems with an exponentially increasing mass with time
m(t) = me™.
with,
oS oS . . . .
p= e =—5p 7 4. Solutlor_1 of Ha_mllton-J_acobl equ_atlon _for
the oscillator with Caldirola-Kanai Hamil-

Given thatH’ = 0, all Q's are cyclic and their conjugated tonian

momentum are constant. The equation
Replacing in the Euler-Lagrange-Poisson equations (2) with
H <q, 95 t> 95 (4,p:1) —0 8  (11), the equation of a damped harmonic motion (10) is ob-
dq’ ot tained. Inthe Herrera L.'s paper, it is proposed that in the mo-

tion of a damped system from a timeto ¢-, the action [28
is called Hamilton-Jacobi Equation and can be interpreted as P 4 elo b2 [28]

a partial differential equation fd§. In this equation there are ta

n + 1 variables, thewg’s and time. The general solution for S = /e”Lo(q, q)dt (13)

S depends om + 1 constants, one of them being additive.

As (8) depends on th& derivatives, ther + constant is

also a solution, since the additive constant is irrelevant in théas a stationary value for the correct movement path, where

canonical transformation. Ly is the Lagrangean of a conservative systém, V. When
defining a canonical transformation

ty

3. Caldirola-Kanai Hamiltonian Q= Q(q,p,t), P =P(q,p,t) (14)

Euler-Lagrange-Poisson equations (2) correspond to ththe new canonical variableg and P satisfy the variational
equations of motion of a system characterized by a Lagprinciple,
grangean function. Unlike the simple harmonic oscillator )
where one can easily obtain the equation of motion [27], 5/ "'(PQ—H")dt =0 (15)
in the case of the damped harmonic oscillator, obtaining the 0

equation of motion is not direct. A first attempt was presentedH
by Rayleigh, by introducing a dissipative functiéhin (2),

to

is the new Hamiltonian. When considering the following
canonical transformations,

0 (LY _ oL  OF
ot \ 9q; dq;  0Og

7

=0 9) Q=qe""?, P =pe /2 (16)

] , the generating function is given by:
of the form of I = \¢?/2 [24]. The well-known equation of

motion for a damped harmonic oscillator is obtained Fy(q,p, t) = qPe"'/? (17)
Ag ;
q+ ?q +w?q=0 (10) with,
8F2 8F2
Although Eq. (10) represents the movement equation for P = —5 - = P2, Q= P = ge"/? (18)

dissipative systems, it is a phenomenological description of
these systems as there is not any Lagrangean, nor any vafine new Hamiltonian is

ational principle that has been involved. The first attempts OFs  p?

to understand this difficulty were presented by Bateman, #'(@: P) = H(a,p,t) = == = 2*** wQ+ 5 QP (19)
Caldirola and Kanai by presenting a Lagrangian which in the

. A Which does not explicitly depend on time, the Hamilton-Jacobi
case of a one-dimension is given by:

equation forH’ is

2 2,,,2
L:evt(mzq—quw> (11) %(%) +ymrQ?+ 2000 + %5 —0 o)
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In addition, we can separate the time variable with the ansatz

S(Q,a,t) = W(Q,a) — at, with W the Hamilton characteristic
function, (20) is expressed in the form

1 8[/L 2 1 2 2 Y 8LL _
Thus we obtain a quadratic equation%%, its solution is
oW ym 1 5
= __1r= - — 4w2)m20?2 22
20 2Q:l:Q\/(’y w?2)m2Q? + 8ma (22)
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After integrating (22) we found the characteristic function, the result

obtained was derived with respectdo

ow
L 49
% +2m

aQ
\/(72 — 4w?)m2Q? + 8ma

From the above expression we solve fptaking into account that

OW 0o =t + 3, [24]
\/% sin[Q(t + 3)]

with Q@ = /w? — (y2/4), the constants: and 5 are determined
through the initial conditions. Finally the solution in terms of the

original variable (16) is:
222 Gnioe + B))
m

The above result represents the time variatiog wfith decreasing

(23)

1

Q

Q) (24)

(25)

FIGURE 2. Variation of momentuny(¢) for the oscillator with
Caldirola-Kanai Hamiltonian withy < 0.4w.
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amplitude: a similar behavior for the case of a damped harmonic o ) )
oscillator (sub-critically). Now we present the results obtained inFIGURE 3. Variation of momentuny(¢) for the oscillator with
Sec. 3 making use of the mathematical package Wolfram MatheCaldirola-Kanai Hamiltonian withy = 0.0.

matica 10.0.

5. Results and discussion

For the Caldirola-Kanai oscillator, the equation of motion is identi-

cal to Eg. (10). The variation of the positigf(it) given by solution

Figure 2 represents the canonical momeng{m for a value of
the constanty < 0.4w. It is observed that the behavior is different
from that expected one in a damped harmonic oscillator, whghe
increases as time increases. This is due to the exponential increase
of the Caldirola-Kanai oscillator mass. Only when damping is null,

(25), is shown in Fig. 1 for the different values of the damping the behavior is identical to that of an oscillator with simple harmonic

constant. It has been observed th&t) oscillates with a decreas-

ing amplitude asy increases and reaches zero for asymptotic times.

motion [23], see Fig. 3.
Despite that from the Caldirola-Kanai Hamiltonian (12), the

The behavior shown is similar to that of a harmonic oscillator with equation of motion of a damped harmonic oscillator is obtained,

subcritical damping~y < 2w). Furthermore, in the limity ~ 0,

it could be inferred that the mechanical energy must exponentially

the resulting motion is equal to that of a simple harmonic oscillator.decrease with as it occurs with dissipative systems. However, this

The results obtained coincide with those reported in Ref. 7.

LOFF r r v -
0.5F
)
& On Wt
53 \
705. r
—~ 10k A s " i 23
0 2 4 6 38 10

FIGURE 1. Variation of positiong(t) for different values ofy.
Color curves: black ~ 0.0, redy < w/2, bluey < w and green
v < 2w.

Hamiltonian does not represent dissipative systems since when re-
placing (25) in (12) it is demonstrated that

72

2a 2 yw .
H= = <w — = cos [2Qt'] 5 sin [2Qt'}> (26)
with ¢’ = ¢t + 8. The time average value of (26) is
2c

Thus, it is proven thatH) is a constant as it was demonstrated by

J. Ray, [29] in 1979. The Lagrangean (11) and therefore Hamilto-
nian (12) do not represent dissipative systems, but they do represent
variable mass physical systems in the time.
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6.

Within the Hamilton-Jacobi theoretical framework through the sep-
aration method of variables(Q, a,t) =
solved the equation of motion for the oscillator with Caldirola-Kanai

THE ONE-DIMENSIONAL HARMONIC OSCILLATOR DAMPED WITH CALDIROLA-KANAI HAMILTONIAN

Conclusions

W(Q,a) — at, we

Aguiar, and I. Guides, [7]. However, this system does not represent

51

a dissipative system as the momentuft) increases with time and

it has been demonstrated that the time average value of the Hamil-

tonian is constant.

Hamiltonian. We found out that the exponential decrease with tim%cknow|edg ments
of the position of the oscillator increases as the damping param-
eter increases; this behavior is identical to that of a sub-dampe#.A. Segovia acknowledges the financial support from the Vicerrec-
harmonic oscillator. The results coincide with those reported in V.itoria de Investigaéin, Universidad Surcolombiana Neiva-Huila.
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