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Variable length pendulum analyzed by a comparative
Fourier and wavelet approach
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The motion of a pendulum with a variable length is analyzed by means of a comparative Fourier and Wavelet approach. In particular Fourier
and continuous Wavelet transforms have been jointly employed to investigate the non stationary signal of a variable length pendulum in an
easy-to-interpret scenario addressed to undergraduate and graduate students. The comparison between the two data analysis protocols allows
to easily show that while the Fourier transform is able to extract only an average frequency value for the variable length pendulum motion,
Wavelet analysis furnishes information on the time behaviour of the motion spectral content,i.e. provides a joint time-frequency analysis.
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1. Introduction

The basic assumption of this work is to show how, in teaching
and learning Mathematics and Physics, the close interrela-
tion between the two disciplines and with Laboratory should
not be circumvented or bypassed. On the contrary their in-
terplay and mutual influence as well as their deep episte-
mological affinities should be promoted. In this framework
Mathematics does not just provide tools for Physics but also
drives physical insight; vice-versa Physics and its Labora-
tory can provide a simple access to Mathematical topics of
not straighforward comprehension. Recent student learning
investigations suggest that the understanding of Physics and
Mathematics topics can be significantly facilitated by means
of an integrated approach (see Fig. 1) with Laboratory activ-
ities, so allowing to enreach topics of meanings.

In other words, in undergraduate and graduate courses,
disciplines as Physics and Mathematics are frequently set in
an autonomous way by means of the delimitation of their
frontiers, the building of specialistic languages and the em-
ployment of specific techniques and tools; such an approach
furnishes points of strength to the single disciplines but at the
same time furnishes the limits of the disciplinary knowledge.
Disciplines are observation windows on the World, points of
view on reality but if disciplines forget to be a part of a wider
system of knowledge the interdisciplinary boundary limits
become barriers and, in such a case, the word discipline re-
cover its original meaning of whip for who intends to break
the disciplinary walls.

In this reference contest, due to complexities encoun-
tered in dealing with time dependent frequencies, the study
of variable length pendula as well as the study of Fourier and
Wavelet transforms are rarely included within the program

FIGURE 1. In undergraduate and graduate courses, Physics, Lab-
oratory and Mathematics often tend to be autonomous through the
delimitation of their frontiers and the building of specialistic lan-
guages. An open dialogue among Mathematics, Physics and Lab-
oratory allows to confer to formal issues concrete form and utility
and vice-versa allows to provide effective analysis tools to physical
insights.

of Physics courses addressed to ungraduate and graduate stu-
dents.

Such physical systems are characterized by a chirp-like
time behavior,i.e. by local (i.e. time-dependent) pseudo-
frequencies [1,2].

In the present work it will be shown how while Fourier
Transform (FT) reveals an effective tool in analyzing station-
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ary signals, in the presence of a time changing spectral con-
tent FT is not able to furnish detailed information on the dif-
ferent physical states of the oscillating system but provides
only an average information on the motion frequency com-
ponents; on the contrary in this latter case Wavelet Trans-
form (WT) represents an effective tool for the time analysis
of the non stationary signal allowing to precisely characterize
the time variation of the oscillation motion frequency con-
tent [3-5]. WT is nowadays extensively used in several fields
of applications, such as audio, images, light and neutron scat-
tering spectra analysis, spectroscopy, geophysics time series,
biology and medicine [6-16].

In the following, in order to analyse the dynamics of a
pendulum with a time-varying length, we apply both the FT
with the WT approaches putting into evidence the pros et
cons of the two analysis techniques.

2. Comparison between Fourier and wavelet
transforms - historical background

From the historical point of view it is useful to mention that
in 1822, Joseph Fourier, French mathematician and physicist
who accompanied Napoleon on his Egyptian campaign, pub-
lished the treatise titled “Theorie Analytique de la Chaleur”
where he introduced the idea of expanding functions in sine
or cosine trigonometric series to solve the heat conduction
equation he had developed.

Starting from this study, FT allows to decompose a signal
and to reconstruct it without loss of information even if such
an analysis is localized in frequency but not in time; in other
words FT allows to properly analyse stationary signals [17].

In order to overcome the limitations of FT a new analy-
sis has been introduced later; such an analysis consists in in-
troducing a “window” function of given length which slides
along the time axis to execute a “time-localized” FT. This
approach gives rise to the Short Time Fourier Transform
(STFT) which was first introduced in 1946 by Dennis Gabor,
a Hungarian mathematician. Gabor chose as window func-
tion a Gaussian but soon he realized that STFT furnished an
equal resolution in time for lower and higher frequencies and
that the width of the window function was the same for the
entire analysis process [18].

In the mid 1970s Jean Morlet, a French geophysics work-
ing for an oil company, while investigating the acoustic
echoes sent into the soil for identifying the existence of oil on
the earth’s crest, developed the method of scaling and shift-
ing the STFT. In order to analyse such echoes, Morlet first
employed the STFT and observed that when holding constant
the width of the window function the analysis didn’t run well;
so, he proposed to maintain fixed the frequency of the win-
dow function and to change the width of the window by a
dilatation or compression procedure [19].

This new approach led to the term “ondelette” introduced
by Jean Morlet et Alex Grossmann in 1984. At first, the term
was French and then was translated in English as wavelet:

FIGURE 2. Historical route of the Wavelet genesis which starting
from Joseph Fourier with FT (1822), through Dennis Gabor with
FTFT (1946), arrives to Jean Morlet (1984) with WT.

i.e. wave (onde) and let (petite). Figure 2 shows the histori-
cal route of the wavelet concept genesis which starting from
Joseph Fourier with FT (1822), through Dennis Gabor with
STFT (1946), arrives to Jean Morlet (1984) with WT.

From a mathematical point of view Fourier series allow to
decompose a periodic functionf(x) defined for0 ≤ x ≤ 2π
into a sum of sine or cosine functions [20,21]:

f(x) ∼ a0

2
+

∞∑

k=1

[ak cos(kx) + bk sin(kx)] (1)

wherea0, ak andbk are the Fourier coefficient, defined as:

a0 =
1
2π

2π∫

0

f(x)dx; (2)

ak =
1
π

2π∫

0

f(x)dx cos(kx); (3)

bk =
1
π

2π∫

0

f(x)dx sin(kx); (4)

Figure 3 shows, as an example, the partial sums of the
Fourier series for a square wave.

The Fourier Transform is an extension of the Fourier se-
ries to non-periodic functions which decompose it into a set
of sine (or cosine) waves of different frequenciesω:

f̂(ω) =

∞∫

−∞
f(t)e−iωtdt, (5)

It should be stressed that in such a case it is not possible
to provide a connection between the frequency spectrum and
the signal evolution in time.

On this regard, WT results more advantageous in respect
to Fourier transform; in fact WT approach allows to decom-
pose a signal into its wavelets components, by means of
mother waveletψ:
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FIGURE 3. Partial sums of the Fourier series for a square wave.

fψ(a, τ) =
1√
a

∞∫

−∞
f(t)ψ ∗

(
t− τ

a

)
dt (6)

where the parametera > 0 denotes the scale and its value
is the inverse of the frequency; the parameterτ represent the
shift of the scaled wavelet along the time axis.ψ∗ represents
the complex conjugation of the wavelet while the mother
waveletψ can be expressed by [22]:

ψa,τ (t) =
1√
a
ψ

(
t− τ

a

)
(7)

In Fig. 4, as an example, scaled and shifted versions of
the mother wavelet are reported.

Differently from FT, which shows only which signal fre-
quencies are present, WT, in addition, also shows where, or at

what scale they are. Furthermore, while FT allows to decom-
pose the signal only in cosine and sine component functions,
the WT takes into account several wavelet mother functions,
that can be chosen according to the similarity degree of the
mother functions with the investigated signal [23-30] .

In this paper, according to the behavior of the investigated
oscillator, the wavelet Morlet has been chosen as mother
wavelet:

ψ(t) = e

(
iω0− t2

2σ2

)
(8)

whereω0 represents the center pseudo-frequency and ? pro-
vides the wavelet bandwidth [31].

It should be noticed that in the special case in which the
wavelet mother isψ(t) = e−2πit the WT transform reduces
to the FT.

Rev. Mex. Fis. E64 (2018) 81–86



84 M.T. CACCAMO AND S. MAGAZÚ

FIGURE 4. Scaled and shifted versions of the mother wavelet

3. Theoretical background

Let us first focus the attention on a pendulum, a toy physics
system full of lots of meanings (see Fig. 5), of length`(t)
whose mass ism in the absence of any friction.

From the physical point of view the dynamics of such a
system can be obtained by applying the fundamental second
law equation dynamics equation:

m~a = ~F (9)

ms̈ = −mg sin θ (10)

wherea is the acceleration,F is the total force acting on the
mass,θ is the pendulum angular deviation from the equilib-
rium position,s = `(t)θ(t) is the length spanned by the oscil-

FIGURE 5. Pendulum as represented by Lucia Grasso painter.

lation during its motion,̈s = d2s/dt2 is its second derivative,
and finally g is the gravity acceleration [32-37].

Being:

s(t) = `(t)θ(t) (11)

it results:

ṡ(t) = ˙`(t)θ(t) + `(t) ˙θ(t) (12)

and

s̈ = ῭θ + ˙̀θ̇ + ˙̀θ̇ + `θ̈ = ῭θ + 2 ˙̀θ̇ + `θ̈ (13)

Under the hypothesis that the pendulum length during the
oscillation changes with a constant rate,i.e. ˙̀ = const., it is:
῭ = (d2`)/(dt2) = 0. Furthermore if one can assume that,
during the oscillation, the pendulum length`(t) changes in
time slowly in respect to theθ(t) time changes,i.e. ˙̀ ¿ θ̇,
one can̈s = `θ̈ [38-41].

Under these assumption, Eq. (10) becomes:

m`(t) ¨θ(t) = −mg sin θ(t) (14)

and making the further assumption thatθ(t) ¿ 1 and hence
sin θ(t) ∼ θ(t), it results:

θ̈(t) = − g

`(t)
θ(t) (15)

whose solution can be put under the form:

θ(t) = θ0 sin(ω(t)t + ϕ) (16)

where:

ω(t) ≈
√

g

l(t)
(17)

4. The experimental setup and results

The experimental set-up includes:

• a spherical mass whose weight is 100 g;

• a fixed support to fix the pendulum;

• a step by step rotating device for changing the pendu-
lum length;

• a computer equipped with data acquisition program
(Logger Lite) and spreadsheet (Excel);

• an ultrasonic sensor device to measure the distance be-
tween itself and the oscillating mass which directly
transmit the recorded data to a PC.
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FIGURE 6. Behavior of the oscillation period T as a function of the
pendulum length under stationary conditions.

FIGURE 7. Length variation versus time. The pendulum length as
a function of time fulfils an linear trend with a slope of -0.025 m/s.

FIGURE 8. Comparison of the investigated signal analyzed by
means of FT and WT. More precisely, on the top of the figure the
collected oscillation signal, under the condition of varying length
is shown; on the right of the figure its FT showing only an aver-
age of the registered signal frequencies; on the bottom of the figure
the WT scalogram that shows how the oscillation pseudo-frequency
changes with time.

As far as the experiment procedure is concerned, the pen-
dulum motion was sampled through a GoMotion-Vernier sen-
sor. The system length variation as a function of time was
assured by the step by step rotating device and was registered
through a PC.

During the first part of the experience, the condition in
which the pendulum length is fixed was investigated, reiter-
atly registering the motion at different pendulum lengths. The
oscillation period evaluated for different lengths is reported in
Fig. 6 that, as expected, fulfills the expectedT = 2π

√
l/g

law.
First, we have studied the system under stationary condi-

tions, i.e. at fixed pendulum length, and then we have inves-
tigated and the analyzed, by a WT approach, a set of mea-
surements in which the length changed linearly as a function
of time [42-45,39-40]. In Fig. 7, as an example, the length
variation versus time plot is reported. As it can be seen the
pendulum length as a function of time fulfils a linear trend
with a constant slope of∆l/∆t = 0.025 ms−1.

Figure 8 reports a picture of the analyzed signal. In par-
ticular, on the top, the collected oscillation signal in the con-
dition of length change is shown. It is clear that oscillation
frequency increases with time. FT, that is reported on the
right of the picture, provides only an average of the frequen-
cies of the investigated signal; while, on the bottom of the
picture, the WT scalogram shows that the oscillation pseudo-
frequency changes with the time.

5. Conclusion

The present paper shows an example of how it is possible to
promote a fruitful alliance among different disciplines on a
specific study case which allows to access in an user-friendly
way to mathematical operations such as Fourier and Wavelet
transforms. Both these approaches have been applied to char-
acterize the effects of the pendulum length change on the
following time-dependent oscillation frequency. It is shown
that WT outperforms the FT approach highlighting which
frequencies are present (as FT) and, in addition, where they
are, so providing an easy-to-interpret physical significance of
time-frequency analysis.
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