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An alternative solution to the radial quantum condition for the hydrogen atom
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The quantization method applied to the hydrogen atom involves the solution of the phase ifitegdal = n..h, which was named by
Sommerfeld as theadial quantum conditiorand it was solved using complex integration. In this work, we present an alternative solution to
theradial quantum conditiorusing real variable integration methods as an accessible way for students of introductory quantum mechanics
courses. In addition, we show that in the Sommerfeld model the degeneracy of the energy levels is related to the geometric properties of the
ellipse describing the electron motion around the nucleus.
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La aplicacon del nétodo de cuantizagh alatomo de hidbgeno implica resolver la integral de fage, dr = n.-h, la cual fue denominada
por Sommerfeld como laondicbn de cuantizaéin radial y fue resuelta empleandédnicas de integran de variable compleja. En
este trabajo, presentamos una sdlacalternativa para laondicbn de cuantizaéin radial, en la cual se utilizafinicamente ratodos
de integraddn de variable real como una forma accesible para los estudiantes de cursos introductoriofrdeancémtica. Adenas,
mostramos que dentro del modelo de Sommerfeld, la degearrgue presentan los niveles de efi@esh relacionada con las propiedades
geonttricas de la trayectoriaiptica del electbn alrededor delicleo.

Descriptores: Atomo de hidbgeno;orbitas eipticas; integral de fase.
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1. Introduction wherer represents the distance between the particles. Thus,

. . ] the total energyy = 7'+ V' is given by
One of the pillars of the atomic structure was established by

Bohr, by introducing the concept of quantization of circular g (7;2 + 7,2&2) _ 2762 (4)
orbits for the electron around a fixed nucleus and developing 2 r’
a theory, which was in quantitative agreement with the hydro-

which in terms ofp,, = ms andpg = mr2¢ can be rewritten
gen spectrum data [1]. Subsequently, Sommerfeld extende by = mi by = mr¢

Bohr’s theory by assuming the existence of elliptical orbits in 1 pi 762
an attempt to explain the splitting of the spectral lines in the E= m ; 2T %)
hydrogen spectrum [2—-4]. The hydrogen atom was studied

by Sommerfeld as a planetary system according to the fowherep, andp, are the radial and angular momentum, re-
mulation of Kepler's law in the formThe electron moves in spectively.

an ellipse, in one focus of which the nucleus is situatuh- The quantization for the phase-space was conducted over
sequently, the motion in the elliptic path represents a probmany years before the Sommerfeld work [2—4]. First, Planck
lem of two degrees of freedom. For the present analysis, wilsuggested the rule defined by
consider the polar coordinates measured from the nucleus,

namely azimuthp and the radiug (see Fig. 1). Thus, the //dpdq = h,
element of orbitis of the electron is given by

(6)

whereq is a generalized coordinate apds the correspond-
ds® = dr* + r’d¢?, (1)  ing conjugated momentum. At the same time Sommerfeld
proposed that for every molecular process, the exchange

with kinetic energyl": quantity of action is

m /. - r
T = 0} (r2 + 7”2(;52) , (2) h
Lt = o, )
™
and potential energy/ (r), in CGS is: 0
762 where 7 is the duration of the process ard is the La-

V=——"-, (3)  grangian. It is interesting to mention that Sommerfeld and
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other involved in the development of the old quantum the- - 1
ory were all experienced in the Hamiltonian formulation of \\electron
classical dynamics. Therefore, it was natural that they ex- ' N c r
press the generalization of the quantum conditions in thatlan-_ / 0 ’Qb\-.‘
guage [2—4]. Hence, Sommerfeld attempted to formulate theMt """"""" e $ P
idea of quantization in a universal way in order to be applied " ’ nucieus
to any classically finite motion. Thus, the Sommerfeld pro- - P
posal states that among all possible motions are allowed, only ; -
those that satisfies the condition, Tt
Q
/pk dqx = nih, (8) FIGURE 1. Geometrical representation of the hydrogen atom.

whereq andp refer to a pair of canonical variables and the ~ The Eq. (10) has to be restated in terms of the orbital
integration is over a full period of classical motion. Conse-equation of the ellipse. From Fig. 1 and according to elemen-
quently, by settingy, = 1,2, ... in (8) we fix the first, sec- tary analytical geometry [12], we have that:

ond, etc. quantized phase-orbit of theh freedom degree.

Interestingly, this quantization rule was proposed indepen- OP =a
dently by Wilson [5], Ishiwara [6], and Sommerfeld [7]. 0Q=1b
The Wilson-Sommerfeld quantization conditions applied .
to elliptical orbits wich takes the form [8-10]: NP =a(l+e¢)
NM = a(l —¢)
§ pado = nah, © -
NO = ae, (14)
j[pr dr = n,h (10) wherea andb are the major and minor axis respectively, and
’ e is the ellipse eccentricitf0 < £ < 1), which are related by
whereh is the Planck constant. The num is the az-
' bey b=ayi_e. (15)

imuthal quantum number and it can take the values: 1, 2, 3,

-+ whilen,. is the radial quantum number and it can take the 14 gpain the equation of the electron orbit around the nu-
values: 0, 1, 2;-- . These integrals have to be computed forcleus, we will start by analyzing Fig. 1. We denoteda$ie
one complete period. The Egs. (9) and (10) were called thgjstance between the point N and the point where the electron

a}zimuthal quantgm conditioand theradial quantum condi- i |gcated (see Fig. 1), sbcan be expressed geometrically
tion [13], respectively.

~ From the subject of central forces in classical mechanfjls d? = r2sin® ¢ + (2ae + rcos §)? (16)
ics, we know that for a particle of mags moving in a po- _ _ o )

tential V(r), the angular momenturh is a constant of mo- and using the trigonometric identigin” ¢ + cos” ¢ = 1, the
tion [11]. This fact can be easily demonstrated by taking thd@st équation is reduced to:

time derivative of the angular momentum vectbr= r x p,

2 .2

reslting: d® =r° 4+ 4ae (ae + rcos ). a7

ar _ rx F. (11)  But, by construccion, the left and right focal radii obey the

dt relationshipd 4+ r = 2a. Therefore,
But for the case of a central potential, the general form of the ) )
force is given by (2a — )" =7* 4 4dae (ac + rcos @) . (18)

r
F=fr)_, (12) Thus, the parametric formula of the ellipse in polar coor-

where f(r) = —dV/dr. Thus, substituting this expression dinates is written as:

for F in (11) we find that/L /dt = 0, which means that for 1 1 (1 + e cos ¢) (19)
the case of a particle moving in a force field derived from a roa 1—e2 '
central potential/(r), the angular momentum is a constant
of motion. Hence, according to the law of conservation of

angular momenturpy = mr2¢ = L is constant [11]. Thus,

Then, before solving the integral in the radial quantum
condition (10), we notes that

the integral (9) becomes - m@ B m@@
Pr=" =" ag dt
ps = nyh, (13) 1 <mr2 d¢> dr  Ldr (20)
whereh = h/2x. r? at ) d¢  r*dp’
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so that
2

L (dr\?
j{pr dr = /72 <d;> dé = noh.. 1)
0

From the parametric formula of the ellipse (19), we have that

1 [(dr\? 2 gin2

1 (T) __ceng (22)

r? \do (1+ecos¢)

Thus, we find that the integral (10) becomes
27
in? FIGURE 2. Plot of g(u) fore = {/1/2.
Le? / L‘bzdaj = n,h. (23)
(1 +ecos¢) Then 2
. 1—
The constantl, is also so-calledreal constantand deter- cos ¢ = 17%, (28)
mines the size of the ellipse. Thus, the problem of quanti- tu
zation for the elliptical orbit has been reduced to solve theand 04
integral,/, in Eq. (23): dg = n ZT (29)
27
7= sin? ¢ d (24) Because the function (27) presents a discontinuity at ,
“J (1+ecosg)® the limits corresponding to the change of variable in the Eq.
(26) are as follows:

This integral was evaluated by Sommerfeld using complex
integration on a closed contour [13]. We would like to men- 2(1 — u?)du
tion that details of this soluti(_)n and othe_r alternative methods_, —el = / A+a)[(1—a)u+(1+o)
based also on complex variable techniques, can be found in
reference [14]. In the next section, we show an alternative 0
solution which does not require the use of the complex vari- n / 2(1 — u?)du (30)
able. 14+u)[(1—e)u2+ (1+¢)]

— 00

2. The radial guantum condition solved using The integrand in the equation is a functiomothat we will
real variable integration methods denote byg(u). As we can seg(u) = g(—u), that means
thatg is an even function im. In order to observe the parity
In this section we present a solution of the integral (24) usingf g(u), in Fig. 2 it is shown the plot of(u) for e = /1/2.
real variable integration methods. We start integrating (24) Thus, as a result of the parity gfu) we have that:
by parts [15], obtaining

+oo
2 2(1 — u?)du
.2 —el =2 . 31
e o=z [ Grmt e oy ©
(1 +ecos ) 0
o Now, separating in partial fractions we obtain:
_ _l/ﬂd(ﬁ (25)
&) l1+4ecosg 20 e 2 du
0 —el =2 -2 = . (32
| | | =2 [ 5n 2 [ ageirary @
Now, we take the right hand integral and separate the interval 0 0

[0, 27] in two parts[0, 7] and |, 27]. Then we have: ) ) ) )
Manipulating algebraically we arrive to:

cos ¢ Cos ¢ +o0
el = /1+<€cos¢ o+ /l—i-sco de. (26) _51_2l2/ du 2
14+u2  gy/1—¢2
These integrals are rational functionswf ¢, then we can 0
performe the following change of variable [16]: o 1+s T du
8 X / _—. (33)
uztana 27) 0 ( L_iu) +1
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Integrating the two terms of the right side, we obtain:

—el =2 lim

2
—arctanu
u——+o0

2 1-¢
_ ﬁ arctan ( 1+6u> ] . (34)
Finally, we find that:

27 1
I==—-1). 35
g ( - ) (35)
Thus, with (35) in (23) we obtain:
1
2w L (m — 1) =n,h. (36)

This result is the same expression that was obtained by Som-
merfeld solving (24) using complex variable methods [13].

3. Quantization of energy orbits

After solving the phase-integral of the radial quantum con-

but L = py = ngh, then
_m 2%
2h2% (n, +ng)?’

This result shows that the energy levels of the elliptical orbits
are degenerate because there are two quantum numbgers (
andng) in the denominator. In this way, more than one set
of values forn,. andn,, are producing the same value for the
energy. From here, the total or principal quantum number
rises and corresponds to the sum of the radial and azimuthal
guantum numbers:

E= (43)

n=n, + ne. (44)

Then the expression of the total energy in terms of the prin-
cipal quantum number is:

m Z2%et
2h2 n?
To conclude, a relationship between the quantum numbers

and the geometric properties of ellipse can be obtained com-
bining (13), (15) and (36). From that we find

E=-— (45)

a Ny + Ny

dition, in this section, we are obtaining the expression for -=— (46)

the quantization of energy. We start rewriting (4) using

¢ = L?/mr2, to obtain

p? L? Ze?

E(r,pr) = om | 2mr2

(37)

b n(b ’
which can be rewritten as:
a_n (47)
b nd,

From Fig. 1 we can see that when the electron is at the point§his result shows that the ratio between semi-majgprapd
P and M, the radial component of the momentum vanishe§emi-minor ¢) axes of the elliptic orbit is equal to the ratio

the distance at P and M corresponds t¢ = a(1 — ¢) and

Finally, we want to mention that the problem of treating

ra = a(l + €), respectively. Thus, evaluating (37) at the @ particle in an elliptical orbit as a de Broglie wave conducts

points P and M, we obtain:

L? Ze?
FEp = —
P oma2(1—e)?2  a(l—e)’ (38)
L? Ze?
En (39)

T 2ma2(1+¢e)? a(l+e)

to the original quantum conditions proposed by Wilson [5],
Ishiwara [6], and Sommerfeld [7]. A didactic exposition of
this topic can be found in reference [17].

4. Final remarks

In summary, we presented an alternative solution to the ra-

It is important to remember that the total energy is a constan;, quantum condition, based on the Sommerfeld model of

of motion, consequentlr = FE); = E. Hence, in order to
find an expression foF in terms ofL, we take the difference

(1+¢e)Ey — (1 —€)Ep and we obtain:
L2

F=——ror.
2ma?(1 — e?)

(40)

On the other hand, to find an expression fbin terms ofZ,

we take the differencél + ¢)?E,; — (1 — ¢)?Ey to obtain
Ze?

B=-F—. (41)

Now, combaining (36), (40) and (41) the following relation

for the energyE can be get
m  Z2%et

p=_0_Z°
2 (n.h+ L)%’

(42)

the hydrogen atom, using real variable integration methods,
which does not require the use of complex variable tech-
niques. Adittionally, we used a simple geometric approach
to show that the degeneracy of energy levels in the Sommer-
feld model is related to the properties of the ellipse describing
the electron motion around the nucleus. Both subjects can be
useful for the discussion of the Sommerfeld model in an in-
troductory quantum mechanics courses.
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