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An alternative solution to the radial quantum condition for the hydrogen atom
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The quantization method applied to the hydrogen atom involves the solution of the phase integral
∮

pr dr = nrh, which was named by
Sommerfeld as theradial quantum conditionand it was solved using complex integration. In this work, we present an alternative solution to
the radial quantum conditionusing real variable integration methods as an accessible way for students of introductory quantum mechanics
courses. In addition, we show that in the Sommerfeld model the degeneracy of the energy levels is related to the geometric properties of the
ellipse describing the electron motion around the nucleus.
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La aplicacíon del ḿetodo de cuantización alátomo de hidŕogeno implica resolver la integral de fase
∮

pr dr = nrh, la cual fue denominada
por Sommerfeld como lacondicíon de cuantización radial y fue resuelta empleando técnicas de integración de variable compleja. En
este trabajo, presentamos una solución alternativa para lacondicíon de cuantización radial, en la cual se utilizańunicamente ḿetodos
de integracíon de variable real como una forma accesible para los estudiantes de cursos introductorios de mecánica cúantica. Adeḿas,
mostramos que dentro del modelo de Sommerfeld, la degeneración que presentan los niveles de energı́a est́a relacionada con las propiedades
geoḿetricas de la trayectoria elı́ptica del electŕon alrededor del ńucleo.

Descriptores: Átomo de hidŕogeno;órbitas eĺıpticas; integral de fase.
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1. Introduction

One of the pillars of the atomic structure was established by
Bohr, by introducing the concept of quantization of circular
orbits for the electron around a fixed nucleus and developing
a theory, which was in quantitative agreement with the hydro-
gen spectrum data [1]. Subsequently, Sommerfeld extended
Bohr’s theory by assuming the existence of elliptical orbits in
an attempt to explain the splitting of the spectral lines in the
hydrogen spectrum [2–4]. The hydrogen atom was studied
by Sommerfeld as a planetary system according to the for-
mulation of Kepler’s law in the form:The electron moves in
an ellipse, in one focus of which the nucleus is situated. Con-
sequently, the motion in the elliptic path represents a prob-
lem of two degrees of freedom. For the present analysis, will
consider the polar coordinates measured from the nucleus,
namely azimuthφ and the radiusr (see Fig. 1). Thus, the
element of orbitds of the electron is given by

ds2 = dr2 + r2dφ2, (1)

with kinetic energy,T :

T =
m

2

(
ṙ2 + r2φ̇2

)
, (2)

and potential energy,V (r), in CGS is:

V = −Ze2

r
, (3)

wherer represents the distance between the particles. Thus,
the total energyE = T + V is given by

E =
m

2

(
ṙ2 + r2φ̇2

)
− Ze2

r
, (4)

which in terms ofpr = mṙ andpφ = mr2φ̇ can be rewritten
as

E =
1

2m

(
p2

r +
p2

φ

r2

)
− Ze2

r
, (5)

wherepr andpφ are the radial and angular momentum, re-
spectively.

The quantization for the phase-space was conducted over
many years before the Sommerfeld work [2–4]. First, Planck
suggested the rule defined by

∫ ∫
dp dq = h, (6)

whereq is a generalized coordinate andp is the correspond-
ing conjugated momentum. At the same time Sommerfeld
proposed that for every molecular process, the exchange
quantity of action is

τ∫

0

Ldt =
h

2π
, (7)

where τ is the duration of the process andL is the La-
grangian. It is interesting to mention that Sommerfeld and
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other involved in the development of the old quantum the-
ory were all experienced in the Hamiltonian formulation of
classical dynamics. Therefore, it was natural that they ex-
press the generalization of the quantum conditions in that lan-
guage [2–4]. Hence, Sommerfeld attempted to formulate the
idea of quantization in a universal way in order to be applied
to any classically finite motion. Thus, the Sommerfeld pro-
posal states that among all possible motions are allowed, only
those that satisfies the condition,

∫
pk dqk = nkh, (8)

whereq andp refer to a pair of canonical variables and the
integration is over a full period of classical motion. Conse-
quently, by settingnk = 1, 2, . . . in (8) we fix the first, sec-
ond, etc. quantized phase-orbit of thek-th freedom degree.
Interestingly, this quantization rule was proposed indepen-
dently by Wilson [5], Ishiwara [6], and Sommerfeld [7].

The Wilson-Sommerfeld quantization conditions applied
to elliptical orbits wich takes the form [8–10]:

∮
pφ dφ = nφh, (9)

∮
pr dr = nrh, (10)

whereh is the Planck constant. The numbernφ is the az-
imuthal quantum number and it can take the values: 1, 2, 3,
· · · ; whilenr is the radial quantum number and it can take the
values: 0, 1, 2,· · · . These integrals have to be computed for
one complete period. The Eqs. (9) and (10) were called the
azimuthal quantum conditionand theradial quantum condi-
tion [13], respectively.

From the subject of central forces in classical mechan-
ics, we know that for a particle of massm moving in a po-
tentialV (r), the angular momentumL is a constant of mo-
tion [11]. This fact can be easily demonstrated by taking the
time derivative of the angular momentum vector,L = r×p,
resulting:

dL

dt
= r × F . (11)

But for the case of a central potential, the general form of the
force is given by

F = f(r)
r

r
, (12)

wheref(r) = −dV/dr. Thus, substituting this expression
for F in (11) we find thatdL/dt = 0, which means that for
the case of a particle moving in a force field derived from a
central potentialV (r), the angular momentum is a constant
of motion. Hence, according to the law of conservation of
angular momentumpφ = mr2φ̇ = L is constant [11]. Thus,
the integral (9) becomes

pφ = nφ~, (13)

where~ = h/2π.

FIGURE 1. Geometrical representation of the hydrogen atom.

The Eq. (10) has to be restated in terms of the orbital
equation of the ellipse. From Fig. 1 and according to elemen-
tary analytical geometry [12], we have that:

OP = a

OQ = b

NP = a(1 + ε)

NM = a(1− ε)

NO = aε, (14)

wherea andb are the major and minor axis respectively, and
ε is the ellipse eccentricity(0 < ε < 1), which are related by

b = a
√

1− ε2. (15)

To obtain the equation of the electron orbit around the nu-
cleus, we will start by analyzing Fig. 1. We denote asd the
distance between the point N and the point where the electron
is located (see Fig. 1), sod can be expressed geometrically
as

d2 = r2 sin2 φ + (2aε + r cos φ)2 , (16)

and using the trigonometric identitysin2 φ + cos2 φ = 1, the
last equation is reduced to:

d2 = r2 + 4aε (aε + r cosφ) . (17)

But, by construccion, the left and right focal radii obey the
relationshipd + r = 2a. Therefore,

(2a− r)2 = r2 + 4aε (aε + r cos φ) . (18)

Thus, the parametric formula of the ellipse in polar coor-
dinates is written as:

1
r

=
1
a

(
1 + ε cosφ

1− ε2

)
. (19)

Then, before solving the integral in the radial quantum
condition (10), we notes that

pr = m
dr

dt
= m

dr

dφ

dφ

dt

=
1
r2

(
mr2 dφ

dt

)
dr

dφ
=

L

r2

dr

dφ
, (20)
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so that

∮
pr dr =

2π∫

0

L

r2

(
dr

dφ

)2

dφ = nrh.. (21)

From the parametric formula of the ellipse (19), we have that

1
r2

(
dr

dφ

)2

=
ε2 sin2 φ

(1 + ε cos φ)2
. (22)

Thus, we find that the integral (10) becomes

Lε2

2π∫

0

sin2 φ

(1 + ε cos φ)2
dφ = nrh. (23)

The constantL, is also so-calledareal constantand deter-
mines the size of the ellipse. Thus, the problem of quanti-
zation for the elliptical orbit has been reduced to solve the
integral,I, in Eq. (23):

I ≡
2π∫

0

sin2 φ

(1 + ε cos φ)2
dφ. (24)

This integral was evaluated by Sommerfeld using complex
integration on a closed contour [13]. We would like to men-
tion that details of this solution and other alternative methods,
based also on complex variable techniques, can be found in
reference [14]. In the next section, we show an alternative
solution which does not require the use of the complex vari-
able.

2. The radial quantum condition solved using
real variable integration methods

In this section we present a solution of the integral (24) using
real variable integration methods. We start integrating (24)
by parts [15], obtaining

I =

2π∫

0

sin2 φ

(1 + ε cos φ)2
dφ

= −1
ε

2π∫

0

cos φ

1 + ε cos φ
dφ. (25)

Now, we take the right hand integral and separate the interval
[0, 2π] in two parts[0, π] and[π, 2π]. Then we have:

−εI =

π∫

0

cos φ

1 + ε cosφ
dφ +

2π∫

π

cosφ

1 + ε cosφ
dφ. (26)

These integrals are rational functions ofcosφ, then we can
performe the following change of variable [16]:

u = tan
φ

2
. (27)

FIGURE 2. Plot ofg(u) for ε =
√

1/2.

Then

cos φ =
1− u2

1 + u2
, (28)

and

dφ =
2 du

1 + u2
. (29)

Because the function (27) presents a discontinuity atφ = π,
the limits corresponding to the change of variable in the Eq.
(26) are as follows:

−εI =

+∞∫

0

2(1− u2)du

(1 + u2)[(1− ε)u2 + (1 + ε)]

+

0∫

−∞

2(1− u2)du

(1 + u2)[(1− ε)u2 + (1 + ε)]
. (30)

The integrand in the equation is a function ofu that we will
denote byg(u). As we can seeg(u) = g(−u), that means
thatg is an even function inu. In order to observe the parity
of g(u), in Fig. 2 it is shown the plot ofg(u) for ε =

√
1/2.

Thus, as a result of the parity ofg(u) we have that:

−εI = 2

+∞∫

0

2(1− u2)du

(1 + u2)[(1− ε)u2 + (1 + ε)]
. (31)

Now, separating in partial fractions we obtain:

−εI = 2

+∞∫

0

2
εdu

1 + u2
− 2

+∞∫

0

2
εdu

(1− ε)u2 + (1 + ε)
. (32)

Manipulating algebraically we arrive to:

−εI = 2

[
2
ε

+∞∫

0

du

1 + u2
− 2

ε
√

1− ε2

×
+∞∫

0

√
1−ε
1+εdu

(√
1−ε
1+εu

)2

+ 1

]
. (33)
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4 S.ÁLVAREZ, R. ACOSTA, AND R. DE COSS

Integrating the two terms of the right side, we obtain:

−εI = 2 lim
u→+∞

[
2
ε

arctanu

− 2
ε
√

1− ε2
arctan

(√
1− ε

1 + ε
u

)]
. (34)

Finally, we find that:

I =
2π

ε2

(
1√

1− ε2
− 1

)
. (35)

Thus, with (35) in (23) we obtain:

2πL

(
1√

1− ε2
− 1

)
= nrh. (36)

This result is the same expression that was obtained by Som-
merfeld solving (24) using complex variable methods [13].

3. Quantization of energy orbits

After solving the phase-integral of the radial quantum con-
dition, in this section, we are obtaining the expression for
the quantization of energy. We start rewriting (4) using
φ̇ = L2/mr2, to obtain

E(r, pr) =
p2

r

2m
+

L2

2mr2
− Ze2

r
. (37)

From Fig. 1 we can see that when the electron is at the points
P and M, the radial component of the momentum vanishes
(pr = 0), because there are turning points [11]. Notice that
the distancer at P and M corresponds torP = a(1− ε) and
rM = a(1 + ε), respectively. Thus, evaluating (37) at the
points P and M, we obtain:

EP =
L2

2ma2(1− ε)2
− Ze2

a(1− ε)
, (38)

EM =
L2

2ma2(1 + ε)2
− Ze2

a(1 + ε)
. (39)

It is important to remember that the total energy is a constant
of motion, consequentlyEP = EM = E. Hence, in order to
find an expression forE in terms ofL, we take the difference
(1 + ε)EM − (1− ε)EP and we obtain:

E = − L2

2ma2(1− ε2)
. (40)

On the other hand, to find an expression forE in terms ofZ,
we take the difference(1 + ε)2EM − (1− ε)2EN to obtain

E = −Ze2

2a
. (41)

Now, combaining (36), (40) and (41) the following relation
for the energyE can be get

E = −m

2
Z2e4

(nr~+ L)2
, (42)

butL = pφ = nφ~, then

E = − m

2~2

Z2e4

(nr + nφ)2
. (43)

This result shows that the energy levels of the elliptical orbits
are degenerate because there are two quantum numbers (nr

andnφ) in the denominator. In this way, more than one set
of values fornr andnφ are producing the same value for the
energy. From here, the total or principal quantum numbern
rises and corresponds to the sum of the radial and azimuthal
quantum numbers:

n ≡ nr + nφ. (44)

Then the expression of the total energy in terms of the prin-
cipal quantum number is:

E = − m

2~2

Z2e4

n2
. (45)

To conclude, a relationship between the quantum numbers
and the geometric properties of ellipse can be obtained com-
bining (13), (15) and (36). From that we find

a

b
=

nr + nφ

nφ
, (46)

which can be rewritten as:
a

b
=

n

nφ
. (47)

This result shows that the ratio between semi-major (a) and
semi-minor (b) axes of the elliptic orbit is equal to the ratio
between the principal and azimuthal quantum numbers.

Finally, we want to mention that the problem of treating
a particle in an elliptical orbit as a de Broglie wave conducts
to the original quantum conditions proposed by Wilson [5],
Ishiwara [6], and Sommerfeld [7]. A didactic exposition of
this topic can be found in reference [17].

4. Final remarks

In summary, we presented an alternative solution to the ra-
dial quantum condition, based on the Sommerfeld model of
the hydrogen atom, using real variable integration methods,
which does not require the use of complex variable tech-
niques. Adittionally, we used a simple geometric approach
to show that the degeneracy of energy levels in the Sommer-
feld model is related to the properties of the ellipse describing
the electron motion around the nucleus. Both subjects can be
useful for the discussion of the Sommerfeld model in an in-
troductory quantum mechanics courses.
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