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Monte Carlo simulation for a gas of hard spheres ind-dimensional space:
equilibrium structure and state equations
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We emphasize that using only a personal computer, it is possible to perform a Monte Carlo simulations in reasonable computing time find the
equilibrium structure of a gas consisting of hard spheres in for a Euclidean multi-dimensional spaces. We study the equilibrium conditions
and determine the equation of state for two to seven dimensions. The results show that the pressure is in agreement with different theoretical
models based on the virial expansion As expected, when the dimension of the space increases, the system of hard spheres loses its structure
and the pressure decreases.

Keywords: Monte Carlo simulations; phase equilibria; fluids; thermodynamics.

PACS: 05.20.Jj; 02.70.Uu; 05.70.-a; 64.10.+h DOI: https://doi.org/10.31349/RevMexFisE.65.206

1. Introduction

A standard and nontrivial model for studying the equilibrium
properties of a liquid is the hard sphere (HS) system [1]. The
hard sphere model serves as a reference for the study of more
complex systems, for example multicomponent fluid systems
or mixtures [2,3], and also for models described by means
of a perturbation expansion [4]. The HS model is used to
study the dynamical properties of fluids such as the calcula-
tion of transport and diffusion coefficients [5]. From a gen-
eral point of view, this model has served for the development
of research areas such as liquid crystals, granular, and soft
matter, colloids and polymers, etc. One may think that the
HS model is elementary, however, the system has a fasci-
nating behavior: it has a complex phase structure (metasta-
bles states, mixing and demixing states, solid and crystalline
phase, see chapter 3, Ref. [1]). Moreover, the HS system
is independent of temperature (athermal). Different working
groups have found a series of general state equations that at-
tempt to represent all equilibrium conditions for this complex
system [1,6,7].

A remarkable number of theoretical and simulation re-
sults has typically been calculated for the HS system in two
and three dimensions [8]. A straightforward extension of the
system consists of studying the properties of a gas in high di-
mensions, with a Euclidean metric space [5-11]. These stud-
ies are relevant not only from a theoretical perspective, since
for some complex physical systems it has provided a better
understanding of the equilibrium states [12-19]. For example,
the average distance of a polymer in a good or poor solvent
for a d-dimensional space depends on the balance between
entropic and energetic interactions. De Gennes showed that
the characteristic length of the equilibriumRg (Radius of gy-

ration) depends on the effects of volume exclusion, which are
proportional to the dimension of the space and the number of
accessible states of the system [20]. With this in mind, it is il-
lustrative to ask the question if it is possible to simulate a gas
of hard spheres in multi-dimensional space (d-dimensions)
using a standard personal computer (PC). Our results show
that equilibrium states can be calculated as a function of par-
ticle density and the equation of state of gas of hard spheres
for spaces of four to seven dimensions can be found, in a
reasonable PC computing time (about three days for a seven-
dimensional systems). The results are illustrative of how we
can expand the Monte Carlo (MC) simulation algorithm to
study a system in a high dimensional space. The program
needs minor modifications when it is extended from3 dimen-
sions to ad-dimensional space.

2. Theory and simulation

The (MC) method was used in the simulation with the stan-
dard Metropoli algorithm in a microcanonical ensemble,
where fixed values of the variables of energyE, number of
particlesNp and volumeVd are used [8,21]. The system of
hard spheres was prepared in the following form: Initially, the
spheres were located in a simpled-lattice (d-box), avoiding
overlapping between all the spheres. In the systems, all co-
ordinate axes were considered perpendicular. The Euclidean
distance between the centers of two spheres is

R = |~r1 − ~r2| =
√

x1
1x

2
1 + x1

2x
2
2 + · · ·+ x1

dx
2
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whered is the dimension of the space,~r1 and~r2 are the po-
sitions of the centers of the two spheres andx1

n(x2
n) is the

rectangular coordinate of the point~r1(~r2). The number of
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particlesNp and the size of the simulation boxLb were ad-
justed to the value of the particle densityρ = Np/(Lb)d.
Values in the range ofNp = 2182 to np = 16384 were used,
according to the dimension of the space and the value of the
density. The thermalization of the system was performed on
the first8 × 105 steps, each step of the simulation consists
of moving one particle. The construction of the histograms
was performed after7× 105 steps. Periodic boundary condi-
tions were taken into account in all directions, and minimum
image convention for the pairwise interaction potentials was
used. For the simulations, we employed a Hp workstation
Z240 with intel corei7 processor at 3.8 Hz and 16 GB of
memory. The MC program was extended, with small modifi-
cations, from the code of a two dimensions space to the code
in d-dimensions space. The main changes are:

• The distance is calculated by adding a new coordinate,
Eq. (1).

• In the initial configuration (subroutined-box) a new
loop is added for the new coordinate. Similar changes
are made for the calculation of the radial distribution
function, the periodic boundary conditions and mini-
mum image convention.

• A new loop was added for the new coordinate in the
part of the code that uses the Metropolis algorithm.

AppendixB shows an example of some critical changes in
the program to go from two-dimensional space to a three-
dimensional space. In the simulation all physical quantities
are dimensionless, the dimensionless length isL∗b = Lb/σ,
the dimensionless energy isU∗ = Uβ, the dimensionless
pressure isP ∗ = Pβ/ρ, the dimensionless density isρ∗ =
ρσd, whereβ = 1/kBT andkB is Boltzmann’s constant and
σ is the diameter of the sphere.

The equation of state of a perfect gas can be calculated
explicitly in the canonical ensemble, with the definition of
pressure and its connection with the partition function

p = kBT

(
∂ ln[ZN ]

∂V

)

T,N

(2)

wherekB is the Boltzmann constant,T is the temperature and
ZN is the classical system’s partition function [22,23]. After
some algebra (appendixA), the final relation for the pressure
is

p = kBTρ− ρ2

2d

∞∫

0

R
∂U

∂R
g(R)ΩddR (3)

whereg(r) is the radial distribution function andΩd is the
d-dimensional solid angle.U(r) is the pairwise interaction
between the particles of the system. For the system of a HS,
particles have only excluded volume interactions. The poten-
tial is:

U(R) =

{
0 if R > σ

∞ if R < σ
(4)

whereσ is the diameter of the sphere. For this HS potential,
the equation of state Eq. (3) is:

P

ρ kB T
= 1 +

η

4Vd
g(R+)

2πd/2

d/2 Γ(d/2)
(5)

whereg(R+) is the contact value (r = σ/2) of the radial
distribution function,Γ(x) is the gamma function andVd the
volume of a hypersphere:

Vd =
πd/2σd

Γ(d
2 + 1)

(6)

The radial distribution functiong(r) is evaluated numerically
in the MC simulation [8,21] by calculating the number of
particlesn(r,∆r) within a spherical shell of width∆r, cen-
tered on thei particle, and at a distanceri. A number of
discrete distancesri is sampled, andg(r) is constructed as
a normalized histogram. The average value is over different
equilibrium configurations of the system, and normalization
was taken on the total number of particlesNp and volumeVd:

g(r) =
1

Np
×

〈
Np∑

i=1

ni(r,∆r)

〉

ρ ∆Vd
(7)

The equation of state was evaluated numerically [Eq. (5)]
using an extrapolation for the contact value of the radial dis-
tribution function [24] and was compared with some theoret-
ical results proposed by various authors. The equations of
state used are summarized below (for a general review see
Ref. [16]). The first equation of state is a generalization of
the Clausius equation that can be written by the virial expan-
sion truncated to terms up to second order in density

Z2,0 = 1 + b2η + b3η
2 (8)

whereη = ρ Vdσ
d is the packaging fraction. The values of

the reduced virial coefficientsb1 andb2 are defined as

b2 = 2(d−1) (9)

b3 =
22(d−1)B3

B2
2

(10)

whereB2 = 2d−1Vdσ
d is the second virial coefficient and

the third virial coefficient is defined by

B3

B2
2

= 2
B3/4(d
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(11)
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with Bx(a, b) the incomplete beta function andB(a, b) the
beta function. Another equation of state is the suggested Baus
and Color with a truncated rescaled virial expansion:

ZBC =
1 + (b2 − d)η + (b3 − b2d + d(d− 1)/2)η2

(1− η)d
(12)

A more general approach involves constructing Padé ap-
proximants from the (m,n) viral coefficients:

Z1,1 =
b2 + (b2

2 − b3)η
b2 − b3η

(13)

Z0,2 = (1− b2η + (b2
2 − b3)η2)−1 (14)

A rescaled Pad́e approach proposed by Maeo is:

ZMSAV =
1

(1− η)d

× b2 − d + (d(d + 1)/2 + b2(b2 − d)− b3)η
b2 − d− (b3 − b2d + d(d− 1)/2)η

(15)

Finally, Song proposed using a generalization of Carnahan-
Starling the following equation of state:

ZSMS = 1 + b2 η
1 + (b3/b2 − d)η

(1− η)d
(16)

All these equations of state will be compared to our MC sim-
ulations.

3. Results

In Fig. 1 we show the radial distribution function for two val-
ues of the particle densityρ and different values of the space
dimensiond. Figure 1(a) shows results for a densityρ = 0.3
and a space dimensionsd = 2, 4, 5, 7 The structure of

FIGURE 1. Radial distribution function for two fixed values of par-
ticle density(a)ρ = 0.3 and(b) ρ = 0.9, and different dimensional
space. The continuous lines are our MC results. The orange points
are an analytic solution proposed by Henderson, see the Eq. (14)-
(16) in Ref. [4]. The densityρ in units ofNp/(Lb)

d.

the radial distribution function of the HS gas disappears as
the space dimension increases. For the case ofd = 7 (pink
line) the system almost loses all its correlations and its dis-
tribution function shows a decay similar to what is observed
for an ideal gas. This means that a gas of HS at small densi-
tiesρ . 3 behaves like an ideal gas in higher space dimen-
sions. The configuration space of a system of HS is higher
when the dimensional space is increased. Also in Fig. 1(a),
it is observed that the contact values of the radial distribu-
tion functiong(R+) is smaller when the space dimension in-
creases. The pressure of a system of hard spheres decreases
in a space of high dimension. Figure 1(b) shows results for
a particle densityρ = 0.9. Theg(r) shows several maxima
and minima that disappear when increasing the space dimen-
sion; for a valued = 7 (green line) the system does not show
minima nor maxima and presents an exponential decay. The
black line is for a system of hard disks (d = 2) where the
g(r) is highly structured. It is well known that for this den-
sity the system is in a fluid hexatic coexistence phase [25].
The orange points correspond to an analytical solution devel-
oped by, Henderson Eqs. (14) to (16) for a three-dimensions
space [4]. It can be seen that our simulation (orange line)
fits well with Henderson analytical solution. Similar results
were obtained for other density values (not shown). It is well
known that the HS gas undergoes a liquid-solid state transi-
tion for a density close toρc = 0.99 in three-dimensional
space (d = 3). In Fig. 1 the analysis of the radial distribution
function shows, as we can expect, that for a larger spatial di-
mensiond, the value of the critical density of the transition
ρc also increases. In our simulations, we are limited to maxi-
mum values ofρ = 0.9 (higher values ofρ demand a signifi-
cant number of particles, which is a severe limitation for the
simulation time in our MC method). For this reason, in this
work, the complete phase diagram of the hard sphere system
was not explored, but in general, we can say that different
space dimensions have qualitatively different phase behav-
iors.

In Fig. 2, we show the radial distribution function for
different values of the particle densityρ with the space di-
mensiond constant. Figure 2(a) is for a space of four di-
mensionsd = 4. We can notice how increasing the particle
density fromρ = 0.3 to ρ = 0.9 the structure of the gas is
well-ordered, whereas forρ = 0.9, (black line) the radial dis-
tribution function has several maxima and minima. Also as
the density increases, the contact values of the radial distri-
bution function cause a higher pressure [see Eq. (5)]. For a
space of seven dimensions, Fig.2-(b), we obtain comparable
results with the critical difference of a less structuredg(r) for
all densities. We can conclude, from the analysis of Figs. 1
and 2, that increasing the dimension of space creates a less
structured HS gas. From Eq. (6) we note that the volume of
the sphere is zero when the space dimension increases (with
σ = 1), while the box of simulation is proportional tom
times the size of the spheresLb = mσ. This means that the
system’s translational entropy increases and its equilibrium is
mostly a geometry problem.
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FIGURE 2. The radial distribution function. Figure(a) is for d = 4
and Fig.(b) is for d = 7, and different values of particle densityρ.
Note that the vertical scale ing(r) has been cut for clarity purposes.
The densityρ is in units ofNp/(Lb)

d.

FIGURE 3. The hard sphere pressure as a function of particle den-
sity for three, four and five dimensional space. The full symbols are
our MC simulations, and the open symbols are a dynamical com-
puter simulation of Michels and Trappeniers, Ref. [5]. The density
ρ in units ofNp/(Lb)

d.

In Fig. 3, we show the numerical pressure [see Eq. (5)]
as a function of density for three different values of the Eu-
clidean space dimension (straight line). The dotted lines are
a dynamical computer simulation proposed by Michels and
Trappeniers [5]. For three space dimensiond = 3, 4, 5, the
model of Michels and Trappeniers fits well with our simu-
lation points. The Monte Carlo model of HS is capable of
reproducing previous results, with the advantage that our pro-
gram can be extended to study systems of higher dimensions
(see AppendixB). Also, we can see in Fig. 3, that small
particle densities (ρ . 0.4) there are not significant differ-
ences between the three numerical solutions and the space
dimension. Essential differences appear when the density of
particles is large (ρ & 0.8). These results confirm how the
entropic effects increase in spaces of high di-

FIGURE 4.The hard sphere pressure as a function of particle den-
sity. Figure(a) is for d = 3 and Fig. (b) is for d = 7. The full
symbols are our MC simulations, and the open symbols are differ-
ent analytical solutions, see Sec. 2. The densityρ is in units of
Np/(Lb)

d.

mensions. In Fig. 4, we compared our MC simulation, for
the calculation of the equation of state with some analytical
results [Eqs. (8) to (16)] for the case of a three (d = 3, Fig.
4a) and seven (d = 7, Fig. 4(b)) dimensional space. At small
particle densities, our MC simulation data and the theoretical
results are roughly the same. When the density of particles
increases the theoretical model that best fits our data is given
by Eq. (16). TheZMSAV model provides good results for
d = 3 but is very bad in dimensiond = 7. In Fig. 4(b)Zsms

is not shown since it is approximately equal toZMSAV for
high dimensions. The intention of these simulations is not to
show which of these equations of state are correct, we intend
only to emphasize that the MC program used provides results
of the comparable to theoretical models.

4. Conclusions

In this work, the MC simulation method was applied to study
the equilibrium structure and the equation of state for a HS
gas spheres. The results show that a HS gas in a space with
d < 4 is more structured than a HS gas in high-dimensional
spacesd > 5. The pressure of the HS system decreases as the
dimension of the space increases. Our simulations fit approx-
imately well with some theoretical results in dimensions from
d = 2 to d = 7. This work did not focus on finding the criti-
cal value of the particle densityρc where the liquid-solid tran-
sition occurs (work in progress). The results show that with
a standard personal computer, one can study complex sys-
tems in multi-dimensional spaces where, for example, new
equilibrium states can be found. These phases are essential
since they can correspond to a three-dimensional system, as
in scaling theories for the study of equilibrium states in poly-
mer solutions.
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Appendix A

First, we find a general expression to calculate the mean value
of a functionF in a d-dimensional space. The mean value
〈F 〉 in the canonical ensemble (T ,V ,N ) is given by the rela-
tion

〈F 〉 =
∫
· · ·

∫
P (RN )F (RN )dRN (A.1)

whereP (RN ) is the probability density to observe a config-
uration andR is thed-dimensional Position vector, with:

dR = dR1dR2...dRd (A.2)

If F has a pairwise additivity functional form:

F (R) =
∑

i,j

f(Ri, Rj) (i 6= j) (A.3)

then Eq. (A.1) can be written as

〈F 〉 = N(N − 1)
∫
· · ·

∫
P (RN )f(R1, R1)dRN (A.4)

Using the definition of the pair correlation function
ρ(2)(R1, R1), we obtain the relation

〈F 〉 =
∫∫

ρ(2)(R1, R1)f(R1, R1)dR1dR2 (A.5)

For a system where the separation between the two particles
R1 andR2 depends only on the distanceR = R1 − R2 Eq.
(1). Then, the integration overR1 leads to a result which is
independent ofR2, hence:

〈F 〉 = Vd

∫
ρ(2)(R)f(R)dR (A.6)

whereVd is thed-dimensional volume Eq. (6). For a sys-
tem with rotational symmetry we can integrate over all the
orientations, we get

〈F 〉 = ρ2 Vd

∞∫

0

g(R)f(R)Rd−1dR dΩd (A.7)

whereρ2(R) = ρg2(R) is the radial distribution function and
dΩd is thed-dimensional solid angle. Now, we calculate the
pressure with Eq. (2). We only show the main results, for a
detailed description see AppendixH in Ref. [23]. The con-
figurational partition functionZN is defined by:

ZN =
∫

Ω

· · ·
∫

Ω

exp[−β UN (RN )]dRN (A.8)

Integrating on a box with sides equalV
1/d
d , we get:

ZN =

V
1/d

d∫

0

· · ·
V

1/d
d∫

0

exp[−β UN (RN )]dR1 · · · dRN (A.9)

with the change of variables for spatial coordinates:

x
′
i = V

−1/d
d xi (A.10)

with i = 1, 2, ..., d. The integral takes the form

ZN = V N
d

1∫

0

· · ·
1∫

0

exp[−β UN (RN )]dx
′
1dx

′
2 · · · dx

′
d

(A.11)

To calculate the derivative ofZN , we need to know the
derivative of the potentialUN (RN ) with respect to the vol-
ume. Using the change of variables of the Eq. A.10 we have
for the potential

UN (RN ) =
1
2

∑

i,j

U(V 1/d
d R

′
i,j) (A.12)

According to the metric properties ofd-dimensional space:

Ri,j = V
1/d
d R

′
i,j (A.13)

and the previous considerations, for the derivative of the po-
tential, one can write

∂UN (RN )
∂Vd

=
1

2 d Vd

∑

i,j

∂UN (Ri,j)
∂Ri,j

Ri,j (A.14)

Then, we have for the pressure the following equation:

P = KBTρ− 1
2 d Vd

∫∫
ρ(2)(R1, R1)

× ∂UN

∂R1,2
dR1dR2 (A.15)

finally, using the same arguments of Eq. (A.7), we have the
Eq. (2).

Appendix B

In this Appendix, we show the section of the code that
performs the Metropolis algorithm for a space of two-
dimensions. The parts to be included for a three-dimensional
system are shown as commented with the label: !-For d=3.
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Same as above, but to get the histogram of the radial distri-
bution function.

Similar changes are made in other parts of the code. For
a system withd = 4 (or 5, 6, 7) it is necessary to increase
the number of coordinates. In the program, one more line is
added (for each coordinate), as we do with the commented
line (!-For d=3) shown above in the code.
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Chemical Physics, 117(2002) 5785-5793.
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