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We emphasize that using only a personal computer, it is possible to perform a Monte Carlo simulations in reasonable computing time find the
equilibrium structure of a gas consisting of hard spheres in for a Euclidean multi-dimensional spaces. We study the equilibrium conditions
and determine the equation of state for two to seven dimensions. The results show that the pressure is in agreement with different theoretical
models based on the virial expansion As expected, when the dimension of the space increases, the system of hard spheres loses its structure
and the pressure decreases.
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1. Introduction ration) depends on the effects of volume exclusion, which are
proportional to the dimension of the space and the number of
A standard and nontrivial model for studying the equilibrium accessible states of the system [20]. With this in mind, it is il-
properties of a liquid is the hard sphere (HS) system [1]. Thdustrative to ask the question if it is possible to simulate a gas
hard sphere model serves as a reference for the study of mooé hard spheres in multi-dimensional spaded{mensions)
complex systems, for example multicomponent fluid systemsising a standard personal computer (PC). Our results show
or mixtures [2,3], and also for models described by meanshat equilibrium states can be calculated as a function of par-
of a perturbation expansion [4]. The HS model is used taicle density and the equation of state of gas of hard spheres
study the dynamical properties of fluids such as the calculafor spaces of four to seven dimensions can be found, in a
tion of transport and diffusion coefficients [5]. From a gen-reasonable PC computing time (about three days for a seven-
eral point of view, this model has served for the developmentiimensional systems). The results are illustrative of how we
of research areas such as liquid crystals, granular, and safan expand the Monte Carlo (MC) simulation algorithm to
matter, colloids and polymers, etc. One may think that thestudy a system in a high dimensional space. The program
HS model is elementary, however, the system has a fascireeds minor modifications when it is extended frddimen-
nating behavior: it has a complex phase structure (metastaions to ad-dimensional space.
bles states, mixing and demixing states, solid and crystalline
phase, see chapter 3, Ref. [1]). Moreover, the HS syste ; ;
is independent of temperature (athermal). Different workingrjﬁ' Theory and simulation

groups have found a series of general state equations that athe (MC) method was used in the simulation with the stan-
tempt to represent all equilibrium conditions for this complex (g Metropoli algorithm in a microcanonical ensemble,
system [1,6,7]. where fixed values of the variables of enedgy number of

A remarkable number of theoretical and simulation re-particlesN,, and volumeV,; are used [8,21]. The system of
sults has typically been calculated for the HS system in twhard spheres was prepared in the following form: Initially, the
and three dimensions [8]. A straightforward extension of thespheres were located in a simpldattice (-box), avoiding
system consists of studying the properties of a gas in high dieverlapping between all the spheres. In the systems, all co-
mensions, with a Euclidean metric space [5-11]. These studbrdinate axes were considered perpendicular. The Euclidean
ies are relevant not only from a theoretical perspective, sincglistance between the centers of two spheres is
for some complex physical systems it has provided a better
understanding of the equilibrium states [12-19]. For example, R=1|F — | = \/x%xf +afad o +ala? Q)
the average distance of a polymer in a good or poor solvent
for a d-dimensional space depends on the balance betweemhered is the dimension of the spac&, and, are the po-
entropic and energetic interactions. De Gennes showed thaitions of the centers of the two spheres arjdz?2) is the
the characteristic length of the equilibriuR), (Radius of gy-  rectangular coordinate of the poifit(7;). The number of
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particlesNV, and the size of the simulation bdx, were ad- whereo is the diameter of the sphere. For this HS potential,
justed to the value of the particle densjty= N, /(L;)?.  the equation of state Eq. (3) is:

Values in the range oV, = 2182 ton, = 16384 were used,

according to the dimension of the space and the value of the P
density. The thermalization of the system was performed on e T
the first8 x 10° steps, each step of the simulation consists PRB
of moving one particle. The construction of the histograms ) )
was performed aftef x 105 steps. Periodic boundary condi- whereg(R™) is the contact valuer(= ¢/2) of the radial
tions were taken into account in all directions, and minimumdistribution function['(x) is the gamma function anid, the
image convention for the pairwise interaction potentials wa&/©/Ume of a hypersphere:

used. For the simulations, we employed a Hp workstation

Z240 with intel corei7 processor at 3.8 Hz and 16 GB of V= 7254 5
memory. The MC program was extended, with small modifi- 4= F(% +1) ©)
cations, from the code of a two dimensions space to the code

in d-dimensions space. The main changes are:

n 27T'd/2
g(R") 4/2T(d)2)

=1 o
v,

®)

The radial distribution functiop(r) is evaluated numerically

e The distance is calculated by adding a new coordinatein the MC simulation [8,21] by calculating the number of
Eq. (1) particlesn(r, Ar) within a spherical shell of widtir, cen-

e tered on the particle, and at a distaneg. A number of

e In the initial configuration (subroutind-box) a new  discrete distances; is sampled, ang(r) is constructed as
loop is added for the new coordinate. Similar changest normalized histogram. The average value is over different
are made for the calculation of the radial distribution €quilibrium configurations of the system, and normalization
function, the periodic boundary conditions and mini- was taken on the total number of particlgs and volumeV/;:

mum image convention.

NP

e A new loop was added for the new coordinate in the Z"'(T Ar)
part of the code that uses the Metropolis algorithm. 1 = o ;

AppendixB shows an example of some critical changes in

the program to go from two-dimensional space to a three-

dimensional space. In the simulation all physical quantitiesThe equation of state was evaluated numerically [Eq. (5)]

are dimensionless, the dimensionless lengthjis= L, /o, ?st')n? anfextr?pole;tzron fodr the contact V?jlue.t?]f the ratcrj:al d'f'
the dimensionless energy i8* = Ug, the dimensionless m Iu lon Itmc ion [ (]jabn was comp?r:e W|Thsome tgore 'f
pressure i?* — P3/p, the dimensionless density ji§ — ical results proposed by various authors. e equations o

po, wheref = 1/kpT andky; is Boltzmann’s constant and state used are su_Jmmarlze_d below (for a general review see
o is the diameter of the sphere Ref. [16]). The first equation of state is a generalization of

The equation of state of a perfect gas can be caIcuIate@e Clausius equation that can be written by the virial expan-

explicitly in the canonical ensemble, with the definition of
pressure and its connection with the partition function

In|Z
p=kpT <a al N]) 2)
N wheren = pVyo? is the packaging fraction. The values of
wherek is the Boltzmann constarit is the temperature and  the reduced virial coefficients andb, are defined as
7 is the classical system’s partition function [22,23]. After

sion truncated to terms up to second order in density

Zoo =1+ ban + byn? 8

some algebra (appendl), the final relation for the pressure by = 2041 9)
is , ) 22(d-1) B,
_ _ [ poU by = ——5— (10)
p=kpTp— o | Repg(R)QadR 3) B2
0

whereg(r) is the radial distribution function an@, is the ~ whereB, = 2¢71V,;0% is the second virial coefficient and
d-dimensional solid angleU (r) is the pairwise interaction the third virial coefficient is defined by

between the particles of the system. For the system of a HS,

part_lcles have only excluded volume interactions. The poten- Bs By %)

tial is: oz = 2—) (11)

0 if R>o 2
U(R):{oo if R <o )
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with B, (a,b) the incomplete beta function arél(«,b) the  the radial distribution function of the HS gas disappears as
beta function. Another equation of state is the suggested Baube space dimension increases. For the cage-6f7 (pink
and Color with a truncated rescaled virial expansion: line) the system almost loses all its correlations and its dis-
) tribution function shows a decay similar to what is observed
Zpo = 1 (b2 — d)n + (b3 — bed + d(d — 1)/2)n (12) foranideal gas. This means that a gas of HS at small densi-
(L—n)? tiesp < 3 behaves like an ideal gas in higher space dimen-
sions. The configuration space of a system of HS is higher
when the dimensional space is increased. Also in Fig. 1(a),
it is observed that the contact values of the radial distribu-
by + (b3 — bs)n tion functiong(R™) is smaller when the space dimension in-
= bhom (13)  creases. The pressure of a system of hard spheres decreases
in a space of high dimension. Figure 1(b) shows results for
Zoa = (1= ban + (b3 — bs)n*) ™! (14 a particle density) = 0.9. Theg(r) shows several maxima
and minima that disappear when increasing the space dimen-
sion; for a valuel = 7 (green line) the system does not show
1 minima nor maxima and presents an exponential decay. The
ZyMsav = W black line is for a system of hard diskg & 2) where the
g(r) is highly structured. It is well known that for this den-
by —d + (d(d+1)/2 + by(by — d) — b3)n (15)  sity the system is in a fluid hexatic coexistence phase [25].
by —d — (b — bad +d(d — 1)/2)n The orange points correspond to an analytical solution devel-
Finally, Song proposed using a generalization of Carnahanc-)ped by, Henderson Egs. (14) to (16)_for a 'Fhree-d|mens!ons
Starling the following equation of state: space [4]._ It can be seen that_ our S|mylat|on_ (qrange line)
fits well with Henderson analytical solution. Similar results
1+ (bs/bs — d)n (16) were obtained for other density values (not shown). Itis well
(1—n)d known that the HS gas undergoes a liquid-solid state transi-
tion for a density close tp. = 0.99 in three-dimensional
All these equations of state will be compared to our MC sim-gpace ¢ = 3). In Fig. 1 the analysis of the radial distribution

A more general approach involves constructing&ap-
proximants from thes,n) viral coefficients:

Z
o by — b3

A rescaled Paglapproach proposed by Maeo is:

Zsys =1+ban

ulations. function shows, as we can expect, that for a larger spatial di-
mensiond, the value of the critical density of the transition
3. Results pc also increases. In our simulations, we are limited to maxi-

mum values op = 0.9 (higher values op demand a signifi-
In Fig. 1 we show the radial distribution function for two val- cant number of particles, which is a severe limitation for the
ues of the particle densifyand different values of the space simulation time in our MC method). For this reason, in this
dimensiond. Figure 1(a) shows results for a density= 0.3 ~ work, the complete phase diagram of the hard sphere system

and a space dimensiods= 2, 4,5, 7 The structure of was not explored, but in general, we can say that different
space dimensions have qualitatively different phase behav-
] '\ ] oo ' T — iors.
6 ’. d=3 p=03 | In Fig. 2, we show the radial distribution function for
\ 723 1 73;2' different values of the particle densipywith the space di-
s | d=4 1] =4l ] mensiond constant. Figure 2(a) is for a space of four di-
1 ‘\\ d=5 T ———d=5 mensions! = 4. We can notice how increasing the particle
4 g"\ ood=7 T d=7/ | density fromp = 0.3 to p = 0.9 the structure of the gas is
s | well-ordered, whereas fgr= 0.9, (black line) the radial dis-
ad |\ tribution function has several maxima and minima. Also as
the density increases, the contact values of the radial distri-

bution function cause a higher pressure [see Eq. (5)]. For a

space of seven dimensions, Fj(b), we obtain comparable

results with the critical difference of a less structugécd) for

- all densities. We can conclude, from the analysis of Figs. 1

T . T - . . T . . . — and 2, that increasing the dimension of space creates a less
rlc ' ' structured HS gas. From Eg. (6) we note that the volume of

FIGURE 1. Radial distribution function for two fixed values of par- the sphere IS Z€ro when the_ space dlmen5|on INCreases (with

ticle density(a) p = 0.3 and(b) p = 0.9, and different dimensional @ = 1), while the box of simulation is proportional ta

space. The continuous lines are our MC results. The orange point§mes the size of the spherég = mo. This means that the

are an analytic solution proposed by Henderson, see the Eq. (14)system’s translational entropy increases and its equilibrium is

(16) in Ref. [4]. The density in units of N, /(Ls)<. mostly a geometry problem.
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FIGURE 2. The radial distribution function. Figui@) is ford = 4
and Fig.(b) is for d = 7, and different values of particle densjty
Note that the vertical scale g(r) has been cut for clarity purposes.
The densityp is in units of N, /(L )“.

FIGURE 4.The hard sphere pressure as a function of particle den-
sity. Figure(a) is for d = 3 and Fig. (b) is for d = 7. The full
symbols are our MC simulations, and the open symbols are differ-
ent analytical solutions, see Sec. 2. The dengitg in units of
N, /(Ly)™.

B mensions. In Fig. 4, we compared our MC simulation, for

104 2 o= C the calculation of the equation of state with some analytical

{ ay results [Egs. (8) to (16)] for the case of a thrde= 3, Fig.

8 - A & 4a) and seveni(= 7, Fig. 4(b)) dimensional space. At small
7 particle densities, our MC simulation data and the theoretical

results are roughly the same. When the density of particles

increases the theoretical model that best fits our data is given

by Eq. (16). TheZ,;s4yv model provides good results for

d = 3 but is very bad in dimensiot = 7. In Fig. 4(b) Zss

is not shown since it is approximately equaldg,;s 4y for

high dimensions. The intention of these simulations is not to

1g== 1 show which of these equations of state are correct, we intend

AP S st S L S only to emphasize that the MC program used provides results

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 i
[y of the comparable to theoretical models.

FIGURE 3. The hard sphere pressure as a function of particle den-
sity for three, four and five dimensional space. The full symbols are
our MC simulations, and the open symbols are a dynamical com-4
puter simulation of Michels and Trappeniers, Ref. [5]. The density

p in units of N,/ (Ly).

. Conclusions

In this work, the MC simulation method was applied to study

In Fig. 3, we show the numerical pressure [see Eq. (5)the equilibrium structure and the equation of state for a HS
as a function of density for three different values of the Eu-gas spheres. The results show that a HS gas in a space with
clidean space dimension (straight line). The dotted lines ard < 4 is more structured than a HS gas in high-dimensional
a dynamical computer simulation proposed by Michels andpacesl > 5. The pressure of the HS system decreases as the
Trappeniers [5]. For three space dimensibe 3, 4, 5, the  dimension of the space increases. Our simulations fit approx-
model of Michels and Trappeniers fits well with our simu- imately well with some theoretical results in dimensions from
lation points. The Monte Carlo model of HS is capable ofd = 2 tod = 7. This work did not focus on finding the criti-
reproducing previous results, with the advantage that our prazal value of the particle densipy. where the liquid-solid tran-
gram can be extended to study systems of higher dimensiorsition occurs (work in progress). The results show that with
(see AppendixB). Also, we can see in Fig. 3, that small a standard personal computer, one can study complex sys-
particle densitiesd < 0.4) there are not significant differ- tems in multi-dimensional spaces where, for example, new
ences between the three numerical solutions and the spaequilibrium states can be found. These phases are essential
dimension. Essential differences appear when the density @fince they can correspond to a three-dimensional system, as
particles is larged = 0.8). These results confirm how the in scaling theories for the study of equilibrium states in poly-
entropic effects increase in spaces of high di- mer solutions.

Rev. Mex. 5. E 65(2019) 206—212
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Appendix A Integrating on a box with sides equi}’?, we get:
First, we find a general expression to calculate the mean value vie oy
of a functionF" in a d-dimensional space. The mean value N
(F) in the canonical ensembl&'(,N) is given by the rela- / / exp[~4 Un(RT)JdR; ---dRy (A.9)
tion

F) = /"'/P(RN)F(RN)dRN (A.1)  with the change of variables for spatial coordinates:
whereP(R™) is the probability density to observe a config- zy, =V, (A.10)

uration andR is thed-dimensional Position vector, with:
with i = 1,2, ...,d. The integral takes the form

dR = dRydR,...dR, (A.2)
1 1
If F has a pairwise additivity functional form: Zn =V} / . /exp[_g UN(RN)]drclldx; . dffld
0 0
R)=Y f(Ri,R))  (i#]) (A3) (A11)
i, To calculate the derivative of ;, we need to know the

_ derivative of the potential/y (RY) with respect to the vol-
then Eg. (A.1) can be written as ume. Using the change of variables of the Eq. A.10 we have
for the potential

(F) =N -1 [ [ PR fRLR)RY (A 1
=3 S U, R ) (A.12)
Using the definition of the pair correlation function iJ

p?(Ry,R1), we obtain the relation
According to the metric properties didimensional space:

// ®)(Ry,Ry)f(Ry,R1)dR 1 dRy (A.5) i g

R =V, (A.13)

4,J
For a system where the separation between the two particles
R, andR, depends only on the distanée— R, — Rs Eq. and the previous considerations, for the derivative of the po-

(1). Then, the integration ové®, leads to a result which is t€ntial, one can write

independent oR2, hence:

N ..
dUNRY) 1 UxRip  (a14)

(F)= Vd/P(2)(R)f(R)dR (A.6) Wa  2dVas= OR;

whereV; is the d-dimensional volume Eq. (6). For a sys- Then, we have for the pressure the following equation:

tem with rotational symmetry we can integrate over all the

orientations, we get — (2)
i 8UN
(F) = Va [ gBARRS AR (AD) 1 2dR1dR2 (A15)

0
finally, using the same arguments of Eq. (A.7), we have the
wherep?(R) = pg?(R) is the radial distribution function and Eq. (2).
dQq is thed-dimensional solid angle. Now, we calculate the
pressure with Eq. (2). We only show the main results, for a
detailed description see Appendikin Ref. [23]. The con- .
figurational partition functiorZ v is defined by: Appendix B

In this Appendix, we show the section of the code that
performs the Metropolis algorithm for a space of two-
dimensions. The parts to be included for a three-dimensional
system are shown as commented with the label: !-For d=3.

Zy = [ - [ exp[=B Un(RV)dRY (A8)
/]
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Metropolis algorithm
do k =1, np

Call random_number(rr) ! Random Number

desl = (rr—0.5)*amp
Call random_number (rr)

des2 = (rr—0.5)*amp

Call random_number (rr)

rr —0.5) xamp
rik = r1(k)
r2k = r2(k)

r3k = r3(k)

rl = rlk + desl
r2 = 2k + des2
3 = 13k + des3
dom=1, np
if (m .ne. k) then !cond. diff. par
ril = rl
ri2 = r2
ri3 = r3
rrl = ril — rld(m)
rr2 = ri2 — r2d(m)
rr3 = ri3 — r3d(m)
call mic (rrl,rr2,Lbox) !
call mic (rrl,rr2,rr3,Lbox)
r = rrlxrrl + rr2%rr2 ! distance eq. (1)
+ rr2%rr2 + rr3xrr3

r — grlsrrl

if (r .1t. 1d0) go to 1 !Pot.eq.(4
endif
end do
naccept = naccept + 1 ! count
naccepth = nacceptb + 1
rld(k) = rl
r2d (k) = r2

r3d(k) = r3

1 end do

211

Same as above, but to get the histogram of the radial distri-
bution function.

! Histogram for g(r)
subroutine gdr(np,Lbox,hr)
8e Coor
implicit real«8(A-H,0-Z)
real (kind=8) :: Lbox,hr
integer (kind=8) :: np
doji =t 1'; np—1

do j =i+ 1,np

rrl = r1(i) — r1(j)

rr2 = r2(i) — r2(j)
For d=3 rr3 = r3(i) 3(j)
call mic (rrl,rr2,Lbox)
I-For d=3 call mic (rrl,rr2,rr3,Lbox)
r = rrlxrrl 4+ rr2srr2
For d=3 r = rrlxrrl rr2*rr2 rr3*rr3
rr = dsart(r)
if (rr .1t. Lbox/2) then

k= rr/hr + 1
gr(k) = gr(k) + 2
end if
end do
end do

end subroutine

Similar changes are made in other parts of the code. For

a system withd = 4 (or 5,6, 7) it is necessary to increase
the number of coordinates. In the program, one more line is
added (for each coordinate), as we do with the commented
line (I-For d=3) shown above in the code.
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