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Easy route to Tchebycheff polynomials
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Tchebycheff Polynomials are obtained thorough linear algebra methods. A matrix corresponding to the Tchebycheff differential operator is
found and its eigenvalues are obtained. The elements of the eigenvectors obtained correspond to the Tchebycheff polynomials.
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Se obtienen los polinomios de Tchebycheff usando métodos déalgebra lineal. Se encuentra la matriz correspondiente al operador difer-
encial de Tchebycheff y sus eigenvalores y eigenvectores son obtenidos. Los elementos de los eigenvectores obtenidos corresponden a los
polinomios de Tchebycheff.
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1. Introduction

Tchebycheff differential equation and its solutions,i.e.
Tchebycheff polynomials, are found in many important
physics, mathematics, and engineering problems. A capac-
itor whose plates are two eccentric spheres is an interesting
example [1], another one can be found in aircraft aerodynam-
ics [2]. Many more applications are found in systems the-
ory in connection with approximation theory and numerical
analysis. Tchebycheff polynomials are studied in most sci-
ence and engineering mathematics courses, mainly in those
courses focused on differential equations or special functions.
These polynomials are typically obtained as a result of the so-
lution of Tchebycheff differential equation by power series.
Usually, it is also shown that they can be obtained by a gen-
erating function, and also by Rodriguez formula for Tcheby-
cheff polynomial. Finally, they can also be defined as a con-
tour integral. Most mathematics courses also include a study
of the properties of these polynomials such as: orthogonality,
completeness, recursion relations, special values, asymptotic
expansions, and relation to other polynomials and hyperge-
ometric functions [3,4]. There is no doubt that this is a de-
manding subject that requires a great deal of attention from
most students.

In this paper, Tchebycheff polynomials are obtained us-
ing basic concepts of linear algebra (which most students are
already familiar with) and which contrast in simplicity with
the standard methods as those described in the previously out-
lined syllabus. In the next section the Tchebycheff differen-
tial operator matrix is obtained as well as its eigenvalues and
eigenvectors. From the eigenvectors found, the Tchebycheff
polynomials follow. The method here presented has been ap-
plied to other polynomials such as Gegenbauer, Hermite and
Laguerre [5-7].

2. Tchebycheff Polynomials

The algebraic polynomial of degreeN ,

a0 + a1x + a2x
2 + a3x

3 + · · ·+ anxn (1)

with a0, a1, . . ., an ∈ R, is represented by the vector:

An =




a0

a1

a2

a3

...
an




(2)

Taking first derivative of the above polynomial (1) one
obtains the polynomial:

d

dx

(
a0 + a1x + a2x

2 + a3x
3 + · · ·+ anxn

)

= a1 + 2a2x + 3a3x
2 + · · ·+ nanxn−1 (3)

This may be written as:

dAn

dx
=




a1

2a2

3a3

...
nan

0




(4)

Taking the second derivative of polynomial (1) one ob-
tains:

d2

dx2

(
a0 + a1x + a2x

2 + a3x
3 + · · ·+ anxn

)
= 2a2

+ 6a3x + 12a4x
2 + · · ·+ n(n− 1)anxn−2 (5)
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or,

d2An

dx2
=




2a2

6a3

...
n(n− 1)an

0
0




(6)

Equation (4) may be written as:




0 1 0 0 · · · 0
0 0 2 0 · · · 0
0 0 0 3 · · · 0
...

...
...

...
. ..

...
0 0 0 0 · · · n
0 0 0 0 · · · 0







a0

a1

a2

a3

...
an




=




a1

2a2

3a3

...
nan

0




(7)

Therefore the first derivative operator ofAn may be writ-
ten as:

d

dx
→




0 1 0 0 · · · 0
0 0 2 0 · · · 0
0 0 0 3 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · n
0 0 0 0 · · · 0




(8)

In a similar manner, equation (6) may be written as:




0 0 2 0 · · · 0
0 0 0 6 · · · 0
...

...
...

...
. ..

...
0 0 0 0 · · · n(n− 1)
0 0 0 0 · · · 0
0 0 0 0 · · · 0







a0

a1

a2

a3

...
an




=




2a2

6a3

...
n(n− 1)an

0
0




(9)

Therefore the second derivative operator ofAn may be
written as:

d2

dx2
→




0 0 2 0 · · · 0
0 0 0 6 · · · 0
...

...
...

...
. ..

...
0 0 0 0 · · · n(n− 1)
0 0 0 0 · · · 0
0 0 0 0 · · · 0




(10)

The Tchebycheff differential operator is given by:

(1− x2)
d2

dx2
− x

d

dx
(11)

Which using Eqs. (3) and (5) may be written as:

[2a2 + 6a3x + 12a4x
2 + 20a5x

4 + · · ·
+ n(n− 1)anxn−2]− x2[2a2 + 6a3x + 12a4x

2

+ 20a5x
4 + · · ·+ n(n− 1)anxn−2]− x[a1 + 2a2x

+ 3a3x
2 + 4a4x

3 + · · ·+ nanxn−1] = [2a2 + 6a3x

+ 12a4x
2 + 20a5x

3 + · · ·+ n(n− 1)anxn−2]

− [2a2x
2 + 6a3x

3 + 12a4x
4 + · · ·+ n(n− 1)anxn]

− [a1x + 2a2x
2 + 3a3x

3 + 4a4x
4 + · · ·+ nanxn]

= 2a2 + (6a3 − a1)x + (12a4 − 4a2)x2

+ (20a5 − 9a3)x3 + (30a6 − 16a4)x4 + · · · (12)

Which may be written as:



0 0 2 0 0 · · · 0
0 −1 0 6 0 · · · 0
0 0 −4 0 12 · · · 0
0 0 0 −9 0 · · · 0
...

...
...

...
...

. . .
...

0 0 0 0 0 · · · −2n




×




a0

a1

a2

a3

...
an−1

an




=




2a2

6a3 − a1

12a4 − 4a2

20a5 − 9a3

...
−2nan




(13)

Therefore, for the sake of simplicity, as a4×4 matrix, the
Tchebycheff differential operator is represented by the fol-
lowing matrix:

(1− x2)
d2

dx2
− x

d

dx
→




0 0 2 0
0 −1 0 6
0 0 −4 0
0 0 0 −9


 (14)

The eigenvalues of a matrix M are the values that sat-
isfy the equationDet(M − λI) = 0. However, since the
matrix (14) is a triangular matrix, the eigenvaluesλi of this
matrix are the elements of the diagonal, namely:λ1 = 0,
λ2 = −1, λ3 = −4, λ4 = −9. The corresponding eigen-
vectors are the solutions of the equation(M − λiI) · v = 0,
where the eigenvectorv = [a0, a1, a2, a3, a4]T .




0− λi 0 2 0
0 −1− λi 0 6
0 0 −4− λi 0
0 0 0 −9− λi




×




a0

a1

a2

a3


 =




0
0
0
0


 (15)
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Substituting in Eq. (1) the first eigenvalueλ1 = 0, one
obtains the eigenvectorv1:

v1 =




1
0
0
0


 (16)

The elements of this eigenvector corresponds to the first
Tchebycheff polynomial,T0(x) = 1.

Substituting in Eq. (15) the second eigenvalueλ2 = −1,
one obtains the eigenvectorv2:

v2 =




0
1
0
0


 (17)

The elements of this eigenvector corresponds to the sec-
ond Tchebycheff polynomial,T1(x) = x.

Substituting in Eq. (15) the third eigenvalueλ3 = −4,
one obtains the eigenvectorv3:

v3 =




−1
0
2
0


 (18)

The elements of this eigenvector corresponds to the third
Tchebycheff polynomial,T2(x) = −1 + 2x2.

Substituting in Eq. (15) the fourth eigenvalueλ4 = −9,
one obtains the eigenvectorv4:

v4 =




0
−3
0
4


 (19)

The elements of this eigenvector corresponds to the fourth
Tchebycheff polynomial,T3(x) = −3x + 4x3.

Using a larger matrix, higher order polynomials may be
obtained.

3. Conclusion

Tchebycheff polynomials are obtained using basic linear al-
gebra concepts, such as the eigenvalue and eigenvector of a
matrix. Once the corresponding matrix of the Tchebycheff
differential operator is obtained, the eigenvalues of this ma-
trix are found and the elements of its eigenvectors correspond
to the Tchebycheff Polynomials.
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