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Electrostatic simulation of the Jackiw-Rebbi zero energy state
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We present an analogy between the one dimensional Poisson equation in inhomogeneous media, and the Dirac equation in one space dimen-
sion with a Lorentz scalar potential for zero energy. We illustrate how the zero energy state in the Jackiw-Rebbi model can be implemented

in a simple one dimensional electrostatic setting by using an inhomogeneous electric permittivity and an infinite charged sheet. Our approach
provides a novel insight into the Jackiw-Rebbi zero energy state, and provides a helpful way to visualize and teach this important quantum
field theory model using basic electrostatics.
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1. Introduction The purpose of this article is to demonstrate that elec-
trostatics can provide a laboratory tool where physical phe-
The Dirac equation is one of the fundamental equations imomena described by the Dirac equation can be explored.
theoretical physics that accounts fully for special relativity In particular, we demonstrate that the Poisson equation in
in the context of quantum mechanics for elementary spin-1/2ne dimensional inhomogeneous media can be mapped into
particles [1]. The Dirac equation plays a key role to manythe zero energy state of the Dirac equation in one dimension
exotic physical phenomena such as graphene, [2] topologicalith a Lorentz scalar potential. By tailoring the electric per-
insulators [3] and superconductors [4]. These systems proveglittivity we propose an electrostatic experiment that simu-
to be ideal testing grounds for theories of the coexistence aftes a historically important relativistic model known as the
quantum and relativistic effects in condensed matter physicslackiw-Rebbi model [10]. Since the derivation of this im-
Recently, a significant number of studies have addressegortant model many useful variations of the Jackiw-Rebbi
the problem of simulating relativistic quantum mechanics usimodel have been investigated, such as the Ramajaran-Bell
ing different physical platforms such as optical structuresmodel [11], the massive Jackiw-Rebbi model [12], the cou-
[5, 6] metamaterials [7] and ion traps [8]. These studies argled fermion-kink model [13] and the Jackiw-Rebbi model in
based on the mathematical analogies found between differedistinct kink like backgrounds [14].
physical theories, which provide a way to explore atamacro-  The article is organized as follows. First, we will start
scopic level many quantum phenomena which are currentlyith a brief review of the Jackiw-Rebbi model and how one
inaccessible in microscopic quantum systems. Among thean obtain the zero energy state of the JR model. Then we
wide variety of quantum-classical analogies investigated s@vill show how the Poisson equation can be mapped into a
far it appears that the most fruitful one is given by the anal-Dirac-like equation, and illustrate how the zero energy state
ogy between optics with quantum phenomena due naturallih the Jackiw-Rebbi model can be implemented in a sim-
to the duality between matter and optical waves. The study ofile one dimensional electrostatic setting by using an infinite
quantum-optical analogies is based on the formal similaritycharged sheet separating two different media. The conclu-
between the paraxial optical wave equation in dielectric mesjons are summarized in the last section.
dia and the single particle S@idinger equation [9]. Among
the wide variety of quantum-optical analogies we can men-
tion the Bloch oscillations and Zener tunneling, dynamic lo-2.  Jackiw-Rebbi model in one dimension
calization, Anderson localization, quantum Zeno effect, Rabi
flopping and coherent population trapping. All this progressThe Jackiw-Rebbi model describes a one dimensional Dirac
has led to the area of research of how relativistic quantunfield coupled to a static background soliton field, and is
systems can be mimic by optical waves. More recently, optiknown as one of the earliest theoretical description of a topo-
cal systems governed by the relativistic Dirac equation havéogical insulator where the zero energy mode can be under-
been investigated experimentally such as Klein Tunnelingstood as the edge state. In particular, the Jackiw-Rebbi model
Zitterbewegung and the Jackiw-Rebbi model. has been studied by Su, Shrieffer and Heeger in the contin-
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uum limit of polyacetylene [15]. The one dimensional Dirac 700
equation in the presence of an external figld:) and with I
h =c=1isgiven by 0.4
Hp¥(z) = [0yp + oup(a)] U(z) = E¥(z) (1) 02
where [
( 0 —q ) < 0 1 > -“10 ‘ -‘5 5 10 N
Oy = . y Oz =
Y i 0 10 -
and W = ( z; ) @) W

We use the Pauli matrices, ando, in order to have a real
two component spino¥ (x). From Eq. (2) it follows that the FIGURE 1. The figure shows the external scalar potentiék)
Dirac Hamiltonian possesseschiral symmetry defined by Which changes sign at the interface= 0.
the operator ., which anticommutes with the Dirac Hamil-
tonian,i.e. {Hp, 0.} = 0. Thechiral symmetry implies that ¢
eigenstates come in pairs with positive and negative energy 1
+&, respectively. It is possible, however, for an eigenstate to
be its own partner fof = 0, if this is the case then the state
is topologically protected. The resulting zero energy state is
protected by the topology of the scalar field, whose existence
is guaranteed by the index theorem, which is localized around
the soliton [10].

The Jackiw-Rebbi model usegz) = m tanh (Ax) for
the external scalar field, withh > 0 andX > 0. For simplic-
ity we will consider a external scalar field given by

gp(gj) = m% 3) -10 s 5 10

FIGURE 2. The figure shows the Jackiw-Rebbi zero energy mode

forming a domain wall att = 0 wherep(z = 0) = 0. given by Eq. (5) for the external scalar field depicted in Fig. (1).
The scalar field given by Eq. (3) is a simplification of the Note how the zero energy state is localized around the interface
Jackiw-Rebbi model first proposed by Rajaraman-Bell [11].7 = 0-
The precise form of the external scalar potential is not impor-
tant as long as it asymptotically approaches an opposite sign
atz — 4oco. The wave function may change correspond-3. Electrostatic analog of the Jackiw-Rebbi
ing to a particular form of the external scalar potential, but model
the existence of the zero energy state is determined solely by
the fact that the mass is positive on one side and negative dn this section we show that the zero energy Jackiw-Rebbi
the other. Therefore, the solution is very robust against thetate can be generated at the interface of two dielectric ma-
external scalar potential. terials separated by a infinite charged sheet. The use of infi-

The solution of the Dirac equation at exactly zero energynite charged sheets for emulating physical systems has been
for the scalar field given by Eq. (3) is obtained by solving theused extensively in the past for a wide range of applications

X

following equation such as a simple parallel plate capacitor [16] or the study of
the one dimensional Coulomb gas [17-19]. Since we will be
< 0 —0s + p(2) > < 1(2) > =0 (4 working with a planar charge distribution we will consider
0 + ¢(2) 0 W2(2) only the one dimensional Poisson equation with an inhomo-
which gives geneous electric permittivity,e. e(x), which is given by
; = Crexp [Fmlz|], fori=1,2. (5) % <E(I)‘§;) = —p(a), (6)

whereC+< is a normalization constant and the double sign in ) i ) )

Eq. (5)is—(+) for i = 1(2). Note that); » cannot be both WhereV (z) is the electrostatic potential apdz) is the vol-
normalized. If we impose théitn, .. 1/11'7(55) . Oweneed Ume charge distribution. Expanding the left hand side of
to makeC',. = 0 in order to have a properly normalized state. E9- (6) and multiplying byl /e we have

In Fig. (2) we show the wave function for the zero energy 2V €dV )

state of the Jackiw-Rebbi model. —— ==, (7)
dx € dx €
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where¢’ represents the total derivative with respect to thewhereC. is a normalization constant and the double sign in
space coordinate. Let us now make the following transfor- Eg. (15) is—(+) for i = 1(2). The existence of a zero energy
mation state then depends on the asymptotic behavidf,of

V(z) =Voln(¢1(z)/A), (8) We know from basic electrostatics that the electric field
whereV;, and A are constants to ensure dimensional consisdu€ t0 an infinite charged sheet with volume charge density

tensy, andp, («) is an arbitrary function. Substituting Eq. (8) (%) = 0d(z) with o > 0 separating two dielectric materials
into Eq. (7) we have with electric permittivitye; ande, is given by

A 1,  p 2. for >0
i A ®) EBoa)={ (16)
where we have used the identiy, = —dV/dx. If we use 2] for & <0.
Eq. (6) in the right hand side of Eq. (9) we end up with the
following equation Interestingly, the electrostatic field given by Eq. (16) has the
; same form as the external scalar field given by Eq. (3) that
VoL dﬂ _ iEz -0, (10) allows the existence of the zero energy state in the JR model.
Y1 de Vo f The electrostatic potential for the electric field given by
note that Eq. (10) does not depend on the electric permittivEd- (16) is
ity anymore. Multiplying Eq. (10) by); /V, and adding and o
subtracting the terri,.4)1 /V; to the left hand side of Eq. (10) z 5 T for >0
we have V(z)=— [ Ey(x)da=q 17)
A 2—30, for x <0.
€2

E, 1 E2 E
gim { [1/)3+V£77/11} —73¢1—7x¢1 +52¢1} =0 (11)
-0 0 0 0 Using Eq. (15) we see that we need to €gt = 0 in order
to make the two-component spinor normalizable. Therefore,

where& is an auxiliary constant that we will set to zero at ) . C
the normalized wave function for the zero mode is given by

the end of our calculations. If we make the following sub-
stitution ] + E,11/Vo = £y into Eq. (11), we end up — V) Ve
with the following equation-v} + E 15 /Vy = Evy. These U(z)=,/—— ( € ) . (18)
two coupled differential equations can be written in the same Voler + e2) 0

mathematical form as the Dirac equation witk: i = 1, i.e. ) ]
In Fig. (3) we show the electrostatic zero energy wave

function for the Jackiw-Rebbi model, the wave function dom-
inantly distributes near the interfage= 0 and decays expo-
nentially away. The solution given in Eq. (18) far = ¢; is
OEhe same as the Jackiw-Rebbi zero energy state.
Having found the Jackiw-Rebbi zero energy state through

HpU = [Uyﬁ + 0, (EJ”)] U =E0U. (12)
Vo

Equations (12) can be reduced to two uncouple
Schiddinger equationsf;y; = 0, fori = 1, 2, given by

N o2 electrostatic methods it is interesting to note that we can
Hithi = (axQ + Ui(x)) Yi(z) =0 (13)  rewrite the Dirac Hamiltonian given in Eq. (12) as
where
wlx)
U (33) _ | & 2+g2 + idEm (14) "
LR Vo Vo da

Clearly, I:Im are supersymmetric partner Hamiltonians
which can be factorized @, = ATA— &2 andH, = AAT—
£2whereA = (9, +E,/Vy) andA = (-8, +E,/V;). The
relation between Poisson’s equation and 8dmger equa-
tion in one dimension has been pointed out before by one of
the authors (GG) [20, 21].

We can easily construct the zero energy mode by setting
£ = 0in Eqg. (12) and solving for the uncoupled first order
differential equations fop, », i.e.

' . . . . . . . : X
-20 -15 -10 -5 5 10

FIGURE 3. The figure shows the electrostatic Jackiw-Rebbi zero
energy mode given by Eq. (18) for the following values= V5 =

E,
Y; = Cx exp [HF/ <V0> d:v] (%) & = 1ande =2
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zero energy state. In particular, we demonstrate how the zero
Vo energy state of the Jackiw-Rebbi model can be implemented
where we have used the fact thgt = —io,0.. The Dirac  in an electrostatic set up with an infinite charged sheet that
Hamiltonian given in Eq. (19) is obtained by performing the separates two different media. We have also pointed out the
non-minimal substitutiop — p+io, £, /V, in the massless  similarities of this system with the one dimensional Dirac Os-
free particle Dirac Hamiltonian. The prescription of non- cillator. Based on these findings, we have introduced an elec-
minimal substitution in the free particle Dirac Hamiltonian trostatic platform for realizing the zero energy state of the
was used by Moshinsky and Szczepaniac for the so calledackiw-Rebbi model which allows one to probe in the labo-
Dirac Oscillator [22, 23]. For the special case of a uniformratory.
charge distributionj.e. p = py = constant, we would
haveE,, = (po/€)x which gives rise to the one dimensional
Moshinsky Dirac Oscillator [24, 25].

f{D =0y <ZA7+ Z‘O—z‘Em) ) (19)
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