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Electrostatic simulation of the Jackiw-Rebbi zero energy state
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We present an analogy between the one dimensional Poisson equation in inhomogeneous media, and the Dirac equation in one space dimen-
sion with a Lorentz scalar potential for zero energy. We illustrate how the zero energy state in the Jackiw-Rebbi model can be implemented
in a simple one dimensional electrostatic setting by using an inhomogeneous electric permittivity and an infinite charged sheet. Our approach
provides a novel insight into the Jackiw-Rebbi zero energy state, and provides a helpful way to visualize and teach this important quantum
field theory model using basic electrostatics.
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1. Introduction

The Dirac equation is one of the fundamental equations in
theoretical physics that accounts fully for special relativity
in the context of quantum mechanics for elementary spin-1/2
particles [1]. The Dirac equation plays a key role to many
exotic physical phenomena such as graphene, [2] topological
insulators [3] and superconductors [4]. These systems proved
to be ideal testing grounds for theories of the coexistence of
quantum and relativistic effects in condensed matter physics.

Recently, a significant number of studies have addressed
the problem of simulating relativistic quantum mechanics us-
ing different physical platforms such as optical structures,
[5, 6] metamaterials [7] and ion traps [8]. These studies are
based on the mathematical analogies found between different
physical theories, which provide a way to explore at a macro-
scopic level many quantum phenomena which are currently
inaccessible in microscopic quantum systems. Among the
wide variety of quantum-classical analogies investigated so
far it appears that the most fruitful one is given by the anal-
ogy between optics with quantum phenomena due naturally
to the duality between matter and optical waves. The study of
quantum-optical analogies is based on the formal similarity
between the paraxial optical wave equation in dielectric me-
dia and the single particle Schrödinger equation [9]. Among
the wide variety of quantum-optical analogies we can men-
tion the Bloch oscillations and Zener tunneling, dynamic lo-
calization, Anderson localization, quantum Zeno effect, Rabi
flopping and coherent population trapping. All this progress
has led to the area of research of how relativistic quantum
systems can be mimic by optical waves. More recently, opti-
cal systems governed by the relativistic Dirac equation have
been investigated experimentally such as Klein Tunneling,
Zitterbewegung and the Jackiw-Rebbi model.

The purpose of this article is to demonstrate that elec-
trostatics can provide a laboratory tool where physical phe-
nomena described by the Dirac equation can be explored.
In particular, we demonstrate that the Poisson equation in
one dimensional inhomogeneous media can be mapped into
the zero energy state of the Dirac equation in one dimension
with a Lorentz scalar potential. By tailoring the electric per-
mittivity we propose an electrostatic experiment that simu-
lates a historically important relativistic model known as the
Jackiw-Rebbi model [10]. Since the derivation of this im-
portant model many useful variations of the Jackiw-Rebbi
model have been investigated, such as the Ramajaran-Bell
model [11], the massive Jackiw-Rebbi model [12], the cou-
pled fermion-kink model [13] and the Jackiw-Rebbi model in
distinct kink like backgrounds [14].

The article is organized as follows. First, we will start
with a brief review of the Jackiw-Rebbi model and how one
can obtain the zero energy state of the JR model. Then we
will show how the Poisson equation can be mapped into a
Dirac-like equation, and illustrate how the zero energy state
in the Jackiw-Rebbi model can be implemented in a sim-
ple one dimensional electrostatic setting by using an infinite
charged sheet separating two different media. The conclu-
sions are summarized in the last section.

2. Jackiw-Rebbi model in one dimension

The Jackiw-Rebbi model describes a one dimensional Dirac
field coupled to a static background soliton field, and is
known as one of the earliest theoretical description of a topo-
logical insulator where the zero energy mode can be under-
stood as the edge state. In particular, the Jackiw-Rebbi model
has been studied by Su, Shrieffer and Heeger in the contin-
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uum limit of polyacetylene [15]. The one dimensional Dirac
equation in the presence of an external fieldϕ(x) and with
~ = c = 1 is given by

ĤDΨ(x) = [σyp̂ + σxϕ(x)]Ψ(x) = EΨ(x) (1)

where

σy =
(

0 −i
i 0

)
, σx =

(
0 1
1 0

)

and Ψ =
(

ψ1

ψ2

)
. (2)

We use the Pauli matricesσx andσy in order to have a real
two component spinorΨ(x). From Eq. (2) it follows that the
Dirac Hamiltonian possesses achiral symmetry defined by
the operatorσz, which anticommutes with the Dirac Hamil-
tonian,i.e. {ĤD, σz} = 0. Thechiral symmetry implies that
eigenstates come in pairs with positive and negative energy
±E , respectively. It is possible, however, for an eigenstate to
be its own partner forE = 0, if this is the case then the state
is topologically protected. The resulting zero energy state is
protected by the topology of the scalar field, whose existence
is guaranteed by the index theorem, which is localized around
the soliton [10].

The Jackiw-Rebbi model usesϕ(x) = m tanh (λx) for
the external scalar field, withm > 0 andλ > 0. For simplic-
ity we will consider a external scalar field given by

ϕ(x) = m
x

|x| (3)

forming a domain wall atx = 0 whereϕ(x = 0) = 0.
The scalar field given by Eq. (3) is a simplification of the
Jackiw-Rebbi model first proposed by Rajaraman-Bell [11].
The precise form of the external scalar potential is not impor-
tant as long as it asymptotically approaches an opposite sign
at x → ±∞. The wave function may change correspond-
ing to a particular form of the external scalar potential, but
the existence of the zero energy state is determined solely by
the fact that the mass is positive on one side and negative on
the other. Therefore, the solution is very robust against the
external scalar potential.

The solution of the Dirac equation at exactly zero energy
for the scalar field given by Eq. (3) is obtained by solving the
following equation

(
0 −∂x + ϕ(x)

∂x + ϕ(x) 0

)(
ψ1(x)
ψ2(x)

)
= 0 (4)

which gives

ψi = C∓ exp [∓m|x|] , for i = 1, 2. (5)

whereC∓ is a normalization constant and the double sign in
Eq. (5) is−(+) for i = 1(2). Note thatψ1,2 cannot be both
normalized. If we impose thatlimx→±∞ ψi(x) → 0 we need
to makeC+ = 0 in order to have a properly normalized state.
In Fig. (2) we show the wave function for the zero energy
state of the Jackiw-Rebbi model.

FIGURE 1. The figure shows the external scalar potentialϕ(x)

which changes sign at the interfacex = 0.

FIGURE 2. The figure shows the Jackiw-Rebbi zero energy mode
given by Eq. (5) for the external scalar field depicted in Fig. (1).
Note how the zero energy state is localized around the interface
x = 0.

3. Electrostatic analog of the Jackiw-Rebbi
model

In this section we show that the zero energy Jackiw-Rebbi
state can be generated at the interface of two dielectric ma-
terials separated by a infinite charged sheet. The use of infi-
nite charged sheets for emulating physical systems has been
used extensively in the past for a wide range of applications
such as a simple parallel plate capacitor [16] or the study of
the one dimensional Coulomb gas [17–19]. Since we will be
working with a planar charge distribution we will consider
only the one dimensional Poisson equation with an inhomo-
geneous electric permittivity,i.e. ε(x), which is given by

d

dx

(
ε(x)

dV

dx

)
= −ρ(x), (6)

whereV (x) is the electrostatic potential andρ(x) is the vol-
ume charge distribution. Expanding the left hand side of
Eq. (6) and multiplying by1/ε we have

d2V

dx2
+

ε′

ε

dV

dx
= −ρ

ε
, (7)
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whereε′ represents the total derivative with respect to the
space coordinatex. Let us now make the following transfor-
mation

V (x) = V0 ln (ψ1(x)/A) , (8)

whereV0 andA are constants to ensure dimensional consis-
tensy, andψ1(x) is an arbitrary function. Substituting Eq. (8)
into Eq. (7) we have

V0
ψ′′1
ψ1

− ε′

ε
Ex − 1

V0
E2

x = −ρ

ε
(9)

where we have used the identityEx = −dV/dx. If we use
Eq. (6) in the right hand side of Eq. (9) we end up with the
following equation

V0
ψ′′1
ψ1

− dEx

dx
− 1

V0
E2

x = 0, (10)

note that Eq. (10) does not depend on the electric permittiv-
ity anymore. Multiplying Eq. (10) byψ1/V0 and adding and
subtracting the termExψ′1/V0 to the left hand side of Eq. (10)
we have

lim
E→0

{ [
ψ′1+

Ex

V0
ψ1

]′
−E2

x

V 2
0

ψ1−Ex

V0
ψ′1 + E2ψ1

}
= 0 (11)

whereE is an auxiliary constant that we will set to zero at
the end of our calculations. If we make the following sub-
stitution ψ′1 + Exψ1/V0 = Eψ2 into Eq. (11), we end up
with the following equation−ψ′2 + Exψ2/V0 = Eψ1. These
two coupled differential equations can be written in the same
mathematical form as the Dirac equation withc = ~ = 1, i.e.

ĤDΨ =
[
σyp̂ + σx

(
Ex

V0

)]
Ψ = EΨ. (12)

Equations (12) can be reduced to two uncoupled
Schr̈odinger equationŝHiψi = 0, for i = 1, 2, given by

Ĥiψi =
(

∂2

∂x2
+ Ui(x)

)
ψi(x) = 0 (13)

where

U1,2(x) =

[
−

(
Ex

V0

)2

+ E2 ± 1
V0

dEx

dx

]
. (14)

Clearly, Ĥ1,2 are supersymmetric partner Hamiltonians
which can be factorized aŝH1 = Â†Â−E2 andĤ2 = ÂÂ†−
E2 whereÂ = (∂x+Ex/V0) andÂ† = (−∂x+Ex/V0). The
relation between Poisson’s equation and Schrödinger equa-
tion in one dimension has been pointed out before by one of
the authors (GG) [20,21].

We can easily construct the zero energy mode by setting
E = 0 in Eq. (12) and solving for the uncoupled first order
differential equations forψ1,2, i.e.

ψi = C∓ exp
[
∓

∫ (
Ex

V0

)
dx

]
(15)

whereC∓ is a normalization constant and the double sign in
Eq. (15) is−(+) for i = 1(2). The existence of a zero energy
state then depends on the asymptotic behavior ofEx.

We know from basic electrostatics that the electric field
due to an infinite charged sheet with volume charge density
ρ(x) = σδ(x) with σ > 0 separating two dielectric materials
with electric permittivityε1 andε2 is given by

Ex(x) =





σ

2ε1
, for x > 0

− σ

2ε2
, for x < 0.

(16)

Interestingly, the electrostatic field given by Eq. (16) has the
same form as the external scalar field given by Eq. (3) that
allows the existence of the zero energy state in the JR model.

The electrostatic potential for the electric field given by
Eq. (16) is

V (x)=−
x∫

0

Ex(x)dx=





− σ

2ε1
x, for x > 0

σ

2ε2
x, for x < 0.

(17)

Using Eq. (15) we see that we need to setC+ = 0 in order
to make the two-component spinor normalizable. Therefore,
the normalized wave function for the zero mode is given by

Ψ(x) =
√

σ

V0(ε1 + ε2)

(
eV (x)/V0

0

)
. (18)

In Fig. (3) we show the electrostatic zero energy wave
function for the Jackiw-Rebbi model, the wave function dom-
inantly distributes near the interfacex = 0 and decays expo-
nentially away. The solution given in Eq. (18) forε1 = ε2 is
the same as the Jackiw-Rebbi zero energy state.

Having found the Jackiw-Rebbi zero energy state through
electrostatic methods it is interesting to note that we can
rewrite the Dirac Hamiltonian given in Eq. (12) as

FIGURE 3. The figure shows the electrostatic Jackiw-Rebbi zero
energy mode given by Eq. (18) for the following valuesσ = V0 =
1, ε1 = 1 andε2 = 2.
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ĤD = σy

(
p̂ + iσz

Ex

V0

)
, (19)

where we have used the fact thatσx = −iσyσz. The Dirac
Hamiltonian given in Eq. (19) is obtained by performing the
non-minimal substitution̂p → p̂+ iσzEx/V0 in the massless
free particle Dirac Hamiltonian. The prescription of non-
minimal substitution in the free particle Dirac Hamiltonian
was used by Moshinsky and Szczepaniac for the so called
Dirac Oscillator [22, 23]. For the special case of a uniform
charge distribution,i.e. ρ = ρ0 = constant, we would
haveEx = (ρ0/ε)x which gives rise to the one dimensional
Moshinsky Dirac Oscillator [24,25].

4. Conclusions

In conclusion, we have shown that the Poisson equation in
one dimensional inhomogeneous media can be used to simu-
late the Jackiw-Rebbi model in one space dimension for the

zero energy state. In particular, we demonstrate how the zero
energy state of the Jackiw-Rebbi model can be implemented
in an electrostatic set up with an infinite charged sheet that
separates two different media. We have also pointed out the
similarities of this system with the one dimensional Dirac Os-
cillator. Based on these findings, we have introduced an elec-
trostatic platform for realizing the zero energy state of the
Jackiw-Rebbi model which allows one to probe in the labo-
ratory.
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