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In this paper we will use classical field theory to address the interaction of an accelerated point source with a non-massive Klein-Gordon-Fock
field in Minkowski spacetime. For this, initially, we obtain the equation for the non-massive scalar field via lagrangian formalism and the
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the influence of this field and its covariant generalization.
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1. Introduction

It is known from the history of science that the first essen-
tially scientific investigations of the phenomenon of radiation
dates from the first half of the 19th century. Although the first
studies focused on the radiation emitted by the incandescence
of the bodies, in the course of the 19th century, many other
phenomena began to gain prominence, as is the case with the
X-ray.

The work related to electromagnetic theory, especially
those resulting from the studies of the Scottish physicist
and mathematician James Clerk Maxwell (1831-1879) en-
abled the radiation to be treated with important mathemat-
ical consistency. Under the influence of the works of the
British physicist and chemist Michael Faraday (1791-1867)
and the Irish physicist and mathematician Sir William Thom-
son (1824-1907), Maxwell presented his contributions to
electromagnetic theory through three important works [1–5].
However, it is through his historical work entitledA Treatise
on Eletricity and Magnetism[6] that he publishes a coher-
ent synthesis of electricity, magnetism and optics (with the
results of his earlier articles), unifying such domains.

Also during this period, we cite the important contri-
butions of the German mathematician Bernhard Riemann
(1826-1866) on the retarded potentials [7], by the Danish
physicist Ludwig Lorenz (1829-1891) with the use of Lorenz
gauge [8,9] and French physicist Alfred-Marie Liénard
(1869-1958) and German geophysicist Emil Wiechert (1861-

1928) with solutions of the homogeneous wave equation for
specific problems [10].

In 1897 the English physicist and mathematician Sir
Joseph Larmor (1857-1942) was able to demonstrate, al-
though only for non-relativistic regimes, that an accelerated
electric charge emitted radiation [11]. Soon after, Liénard
reached a generalized form for the emitted power that was
valid for any electronic velocity [12]. These results were de-
cisive, for example, for the calculation of the intensity of the
spectral lines of hydrogen, for the evolution of the atomic
model and even as a basic aspect for the development of the
Matrix Mechanics [13,14].

Under the light of the classical radiation theory, several
experimental results could be treated coherently, as is the case
of Thomson scattering, resonance scattering and termal radi-
ation. With the advent of quantum mechanics and relativity,
many other aspects of radiation have been better understood.

In this paper, we will discuss a quantum scalar field de-
scribed by the Klein-Gordon equation, proposed in 1926 by
the Swedish physicist Oskar Klein (1894-1977) and the Ger-
man physicist Walter Gordon (1893-1939) to describe rela-
tivistic electrons [15, 16]. It should be mentioned that some-
times this equation is also known as the Klein-Gordon-Fock
(KGF) equation due to the Soviet physicist Vladimir Fock
(1898-1974), who also obtained the same expression when
presenting a relativistic treatment of the kleperian motion of
bodies according to the Wave Mechanics [17].
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Despite its failure to treat electrons in relativistic condi-
tions, the KGF equation, based on the Feynman-Stueckelberg
interpretation, allows us to describe the behavior of particles
with spin 0 [18], as the mesons (π+, π− andπ0 ) and, con-
sequently, to approach certain bosonic fields. It is mentioned
that although the KGF field has no classical analogue because
it is strictly quantum, it can be treated as a classical field [19].

In fact, just as the classical electromagnetic field, con-
sidered to be the high photon density limit of the quantized
field, in a wide variety of physical applications, we study the
classical scalar field as a possible approximation to a meson
field [20,21].

Scalar fields and, consequently, scalar radiation are com-
mon ingredients of models in particle physics, cosmology
and gravitation, in particular, semiclassical gravity [22]. The
semiclassical gravity also known as Quantum Field Theory
in Curved Spacetimes [23,24], is devoted to investigating the
consequences of defining a quantum theory of fields for mat-
ter and their interactions on a classical curved space-time un-
derlying [25]. Indeed, this theory has been responsible for
the prediction of important effects, such as the creation of
particles in expanding universes, evaporation of black holes
by virtue of quantum effects [26,27] (Hawking radiation) and
thermal radiation obtained by accelerated observers (Fulling-
Davies-Unruh effect) [28–30].

Recently, the framework of semiclassical gravity has been
used at tree level to compute the (massless) scalar radi-
ation of a point source in circular orbit around Reissner-
Nordstr̈om [31], Schwarzschild [32–34] and Kerr black
holes [35].

In this sense, throughout the text we will use the classical
field theory to treat the non-massive scalar field, as well as
analyze the interaction of accelerated point (scalar) classical
currents with this field in Minkowski spacetime, thus observ-
ing relevant aspects of classical theory of radiation which, in
turn, serves as introductory topics in the study of Quantum
Field Theory.

It is emphasized that throughout the text, we will be us-
ing the Heaviside-Lorentz system of units, assumingc = 1
[36,37].

2. Obtaining the field equations through la-
grangian formalism

First, consider a massless scalar fieldφ(x) by interacting with
an accelerated point sourceJ(x). In this case, the lagrangian
density that describes this system is given by:

£ =
1
2
∂µφ∂µφ + J(x)φ(x) . (1)

In this work, we assume that physical phenomena happen
in Minkowski spacetime whose metric is [38]:

ηµν =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




Indeed, using the variational principle for continuous sys-
tems [39], that is,

S =
�

£d4x (2)

we obtain the Euler-Lagrange equations, namely

∂£
∂φ

− ∂

∂xµ

[
∂£

∂ (∂µφ)

]
= 0. (3)

In focus, we can use the Euler-Lagrange equations to ob-
tain the KGF equation. Thus, by calculating each of the terms
separately, we obtain:

∂£
∂φ

= J(x) (4)

∂£
∂ (∂µφ)

= ∂µφ(x) . (5)

In addition, by properly replacing the Eq. (4) and Eq. (5)
in the Eq. (3), we get the following expression:

∂µ∂µφ = J(x). (6)

This last expression is known as the inhomogeneous KGF
equation for the non-massive classical scalar field generated
by a scalar sourceJ(x).

3. Solutions of field equations by the formal-
ism of Green invariant functions

The solution of the Eq.(6) can be obtained by employing the
invariant Green function. In this case, we will use the expres-
sion

(∂µ∂µ)xD(x, x
′
) = δ(4)(x− x

′
) (7)

where,D(x, x
′
) is the Green function,(∂µ∂µ)x denotes the

d’Alembertian operator acting at the coordinatex where
xµ = (x0, x1, x2, x3), and δ(4)(x − x

′
) is the fourth-

dimensional Dirac delta function.
The Green function of the d’Alembertian operator in the

absence of boundary surfaces, depends solely on the differ-
ence between the spacetime position vectorsx−x

′
= ζ [40],

where we define the spatial rangeζi = xi − xi′ such asRi.
It is worth emphasizing that in this case, we must perform a
variable transformation for the operator∂µ∂µ to act on the
variableζ. In this way, we will have:

[∂µ∂µ]x = [∂µ∂µ]ζ .

By doingD(x, x
′
) = D(x−x

′
) = D(ζ), we can rewrite

the Eq. (7) as:

[∂µ∂µ]ζ
(
D(x, x

′
)
)

= δ (ζ) . (8)

Rev. Mex. Fis. E65 (2019) 105–113



SCALAR FIELD RADIATION EMITTED BY AN ACCELERATED SCALAR POINT SOURCE: A CLASSICAL FIELD THEORY APPROACH107

To transform from the coordinate space to the space of the
wave number, we will use the Fourier integral, whose trans-
formationD̃(k) is defined by

D(ζ) =
1

16π4

�
D̃(k)e−ikνζν

d4k (9)

in which the exponential argument is given by:

kµζµ = k0ζ0 − |~k|R. (10)

The delta function, in turn, can be represented by:

δ(ζ) =
1

16π4

�
e−ikνζν

d4k .

By properly replacing the expression (9) in (8) and apply-
ing the operator(∂µ∂µ)ζ we get:

(∂α∂α)ζD(ζ) =
1

16π4

�
D̃(k)(∂α∂α)ζe

−ikνζν

d4k . (11)

Analyzing the application of the operator in detail, we
obtain the expression

(∂µ∂µ)ζ e−iηανkαζν

= −kαkα e−ikαζα (12)

that when applied in the Eq. (11), results in the following
equation:

D̃(k) =
i2

kαkα
(13)

Substituting this last result into the Fourier transform of
the Green function, we have:

D(ζ) =
i2

16π4

�
e−ikνζν

kαkα
d4k . (14)

Using the following expression

kαkα = (k0)2 − |~k|2 (15)

we can rewrite the invariant Green function

D(ζ) = − 1
16π4

�
ei~k·~Rd3k

+∞�
−∞

e−ik0ζ0

[
(k0)2 − |~k|2

]dk0 (16)

where the integrand indk0 is not set tok0 = ±|~k| .
In this context, we will consider the solution of the inte-

gral ink0 , this is:

+∞�
−∞

e−ik0ζ0

[(k0)2 − kiki]
dk0 (17)

In this case, the 4-vectorkµ is represented in terms of its
components,k = (ω,~k), whereω is the frequency and~k is
the wave vector.

FIGURE 1. The singularity points of the integrand of the expression
(17) arranged on the real axisk0.

Since the integrand has singularity points (Fig. 1), we
will use the residuals and poles theory to solve the integral in
dk0. In this case, we consider the integral ink0 as a complex
variable and solve the resulting integral as a contour integral
in the complex planek0. As shown in Fig. 1, the integrand
has two simple poles, which are:

k0 = ±(kiki)
1
2 = ±|~k| . (18)

The different solutions of the Green functions can be ob-
tained by taking the closed contoursr anda and shifting the
poles on the imaginary axis by an amount−ε for the contour
r or +ε for the contoura as shown in Fig. 2 and Fig. 3.
Lastly, we take the limitε → 0.

In this context, the contourr is characterized by the
boundary of a half-circle of radiusR defined in the lower
half-plane and containing the polesk0 = ±|~k| − iε should
be selected whenζ0 > 0, since the terme−ik0ζ0

diverges
in the upper half-plane whenR → ∞. On the other hand,
the contoura, characterized by the boundary of a semicircle
of radiusR traced in the upper half-plane and enclosing the

FIGURE 2. The poles displaced on the imaginary axis of a quan-
tity −ε.
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FIGURE 3. The poles displaced on the imaginary axis of a quan-
tity −ε.

polesk0 = ±k+iε, should be selected whenζ0 < 0, because
e−ik0ζ0

diverges in the lower half-plane whenR →∞.
Using the residue and poles theory [41] in the Eq. (18)

and assuming the closed contourr, we have:

+∞�
−∞

e−ik0ζ0

(k0)2 − |~k|2
dk0 =

πi

|~k|
[
ei|~k|ζ0 − e−i|~k|ζ0

]
. (19)

Substituting the Eq. (19) into Eq. (16), we reach the de-
layed or causal Green function:

Dret(ζ) =
θ(ζ0)
8π3

�
sin(|~k|ζ0)ei~k·~R

|~k|
d3~k . (20)

The Heaviside functionθ(ζ0) arises because of the fact
that we adopt the closed contourr in which ζ0 > 0.

Let the heaviside function be defined as

θ(ζ0) =
{

1, if ζ0 > 0,
0, if ζ0 < 0

where, in spherical coordinates

d3~k = |~k|2 sin(θ) dθ dφ d|~k| ,

so:

Dres(ζ) =
θ(ζ0)
2π2R

+∞�
0

sin(|~k|R) sin(|~k|ζ0)d|~k| . (21)

In Eq. (21),R refers to the spatial distance betweenxµ

andx
′µ. Rewriting trigonometric functions in terms of com-

plex exponents, this is integrating the exponentials

+∞�
0

e±i|~k|(R∓ζ0) d|~k| =
0�

−∞
ei|~k|(ζ0∓R) d|~k| (22)

and appropriately replacing Eq. (22) in the Eq. (21), we
reach:

Dret(ζ) =
θ(ζ0)
8π2R

+∞�
−∞

[
ei|~k|(ζ0−R)

− ei|~k|(ζ0+R)

]
d|~k|. (23)

Writing the Dirac delta in terms of the wave vector, this
is

δ
(
ζ0 ±R

)
=

1
2π

+∞�
−∞

ei|~k|(ζ0±R) d|~k| , (24)

the Eq. (23), becomes:

Dret(ζ) =
1

4πR
θ
(
x0 − x

′0
)

δ
(
x0 − x

′0 −R
)

. (25)

In fact, the Green functions can be arranged in a covariant
form from the following Dirac delta property:

δ [f(x)] =
∑

i

δ(x− xi)
∣∣∣∣
df(xi)

dx

∣∣∣∣
−1

. (26)

In this case:

δ

[(
xµ − x

′µ
)2

]
= δ [ζµζµ] = δ

[(
ζ0

)2 −R2
]

. (27)

Finally, by differentiatingδ[
(
ζ0

)2 − R2] with respect to
z0 and developing some algebraic manipulations, we reach:

δ
[(

ζ0
)2 −R2

]
=

1
2R

×
[
δ(x0 − x

′0 −R) + δ(x0 − x
′0 + R)

]
(28)

Knowing that the theta functions select one or the other
between the two terms of the Eq. (28), then the delayed Green
function will be given by:

Dret(ζ) =
1
2π

θ
(
x0 − x

′0
)

δ

[(
xν − x

′ν
)2

]
. (29)

It is emphasized that the theta function, apparently non-
invariant, when subjected to the constraints of the delta func-
tion, becomes invariant under its own Lorentz transforma-
tions [42]. A more detailed discussion of the related physical
aspects of the Eq. (29) can be seen in [43].

4. Obtaining the scalar potential through the
formalism of Green’s functions

At once, the field equations with source are expressed by

(∂µ∂µ) φ(x) = J(x) (30)

and the delayed Green function set to:

(∂µ∂µ)x Dret(x, y) = δ(4)(x− y) . (31)
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Thus, in terms of the Green function, we can write the
scalar field, solution of the Eq. (30), as:

φ(x) =
�

Dret(x, y)J(y)d4y. (32)

In detail, to verify the previous statement, we simply re-
place the Eq. (31) in the inhomogeneous KGF equation. In
this way, we have:

(∂µ∂µ)x φ(x) =
�

J(y) (∂µ∂µ)x Dret(x, y) d4y

=
�

δ4(x− y) J(y) d4y = J(x) .

This development evidences that the proposed scalar field
is a solution of the inhomogeneous KGF equation.

At this time, let us consider the scalar current associated
with a point source following a world linezµ(τ), with 4-
velocityUµ (z(τ)) ≡ (dzµ/dτ) given by

J(y) =
q

U0(y)
δ3 [~y − ~z(τ)] , (33)

whose termq corresponds to the scalar charge [25]. By re-
placing the current expression in the scalar field equation and
knowing thatd4y = dy0d3y, it follows that:

φ(x) = q

�
1

U0(y)
δ3 [~y − ~z(τ)] Dret(x, y)dy0d3y . (34)

SinceU0(y) = dy0/dτ , we get:

φ(x) = q

�
δ3 [~y − ~z(τ)] Dret(x, y) dτd3y

= q

�
Dret(x, z) dτ . (35)

It is a delayed Green function (analogous to the Eq. (29))
represented by

Dret (x, z(τ)) =
1
2π

θ(x0 − z0) δ
[
(x− z(τ))2

]

is that

δ
[
(x− z(τ))2

]
=

[
δ (τ − τp) + δ (τ − τf )

2 |Uµ(x− z)µ|
]

.

Then we can rewriteDret (x, z(τ)) as:

Dret (x, z(τ))=
θ(x0 − z0)

4π

[
δ(τ − τp)+δ(τ − τf )

|Uµ(x− z)µ|
]

. (36)

Substituting the Eq. (36) into the Eq. (35), we obtain

φ(x) =
q

4π

�
θ
(
x0 − z0(τ)

) [
δ (τ − τp) + δ (τ − τf )

|Uµ(x− z)µ|
]

dτ

φ(x) =
q

4π
θ
(
x0 − z0(τp)

)
[|Uµ(τp) (x− r(τp))

µ|]−1

+
q

4π
θ
(
x0 − z0(τf )

)
[|Uµ(τf ) (x− z(τf ))µ|]−1

where to ensure the causalityx0 − z0(τ0 = τp) > 0. Based
on this condition, we have:

φ(x) =
q

4π |Uµ(τ0) (x− z(τ0))
µ| . (37)

In the meantime, to simplify the equation (37) we can re-
fer to the property of the Dirac delta given by the Eq. (38),
wheref(τ) = [x− r(τ)]µ [x− r(τ)]µ.

δ [f(τ)] =
∑

i

δ(τ − τi)

∣∣∣∣∣
(

df

dτ

)

τ=τi

∣∣∣∣∣

−1

(38)

Differentiating the Eq. (38), we obtain the following
equation

df

dτ
= −2Uα(x− r)α (39)

where,Uµ(τ) = γ(1, ~v).
Substituting the Eq. (39) into Eq. (38) and developing

this last equation, we have:

δ [f(τ)] =
δ(τ − τp) + δ(τ − τf )

2 |Uµ(x− r)µ| . (40)

Considering~x − ~r(τ0) = ~R, we have the cone of light
thatx0−r0(τ0) = R (note thatτ0 is defined by the condition
of the light cone as shown in Fig. 4). In addition, by defining
the relations~R = RR̂, ~β = ~v eγ−2 = 1− ~β, we can rewrite
the scalar productUµ(x− µ)µ as:

Uµ(x− r)µ = ηνµ Uν(x− r)µ = γR
(
1−

∣∣∣~β
∣∣∣
)

. (41)

It should be noted that the expression (42) is positive,
since

∣∣∣~β
∣∣∣ < 1. In this case, we can write the Eq. (40) as

follows:

δ [f(τ)] =
δ(τ − τp) + δ(τ − τf )

2 Uµ(x− r)µ
. (42)

FIGURE 4. The point of intersection between the source world line
and the cone of light past the observation point.
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In fact, in possession of the relation (42), we can use it to
rewrite the Eq. (37) without the absolute value operator, that
is:

φ(x) =
q

4π Uµ(τ0) (x− z(τ0))
µ . (43)

In this last expression (43), the termτ0 represents the
proper time of the source at the time of emission of the radi-
ation, event associated with the positionzµ(τ0) of the charge
in the Minkowski spacetime.

In this case, the non-massive classical scalar field is rep-
resented in the covariant form. However, it is convenient to
write in the most usual form

φ(x) =
q

4π
[
γR

(
1−

∣∣∣~β
∣∣∣
)] (44)

whereγ = U0 = dz0/dτ and~β = ~v = d~z/dτ .

5. Scalar field radiation emitted by an acceler-
ated scalar point source

It is known that the emitted power is given by the flow of the
Poynting vector~S through the spherical surface (in the iner-
tial coordinate system) with the origin in the sourceJ (xµ)
and radiusR, whose area element is denoted byd ~A. The
emitted power is thus equated by:

P =
�

~S · d ~A . (45)

To obtain the Poynting vector, in this particular case,
we will manipulate the canonical energy-momentum tensor.
This tensor for the classical scalar field is given by:

Tµν =
∂£

∂ (∂µ φ)
∂νφ− ηµν£ . (46)

In this case, the lagrangian is expressed by:

£ =
1
2
ηµν (∂µ φ) (∂ν φ) + Jφ . (47)

Calculating the partial derivative of£ with respect to∂λφ

∂£
∂ (∂λφ)

=
1
2
ηµν

∂ (∂µφ)
∂ (∂ λφ)

∂νφ +
1
2
ηµν∂µφ

∂ (∂νφ)
∂ (∂λφ)

=
1
2
ηµν δµ

λ∂νφ +
1
2
ηµν∂µφ δν

λ

=
1
2
ηλν∂ν φ +

1
2
ηµλ ∂µ φ

we will have

∂£
∂ (∂λφ)

= ∂λ φ

whereηµν = ηνµ. Thus, we will have:

∂£
∂ (∂µ φ)

= ∂µφ .

In addition, the energy-momentum tensor becomes:

Tµν = (∂µφ) (∂ν φ)− ηµν £ . (48)

To obtain the countervariant components of the tensor
Tµν , initially we will raise the indices using the metric tensor,
namely:

Tµν = ηαµTαβηβν

Tµν = (∂µφ) (∂ν φ)− ηµν £ . (49)

Knowing also that the componentsT oi of the energy-
momentum tensor represent the componentsSi of the Poynt-
ing vector~S, it follows that:

Si = T oi =
(
∂0φ

) (
∂iφ

)− ηoi£

Si = η00 (∂0φ) ηij (∂jφ) = − (∂0φ) δij (∂jφ)

Si = − (∂0φ) (∂iφ)

where we useη00 = +1, ηii = −1 (i = 1, 2, 3) e ηoi =
ηio = 0.

In fact, we can express∂µ φ in terms of velocity and ac-
celeration of the moving source. Using the expression (48)
we reach:

∂µ φ(x) =
�

J(y) [∂µDret(x, y)] d4y . (50)

Replacing the Eq. (49) in the Eq. (50), we have:

∂µφ(x) = q

�
δ3 [~y − ~z(τ)] [∂µ Dret(x, y)]

U0(y)
dy0d3y .

SinceU0(y) = dy0/dτ , then:

∂µφ(x) = q

�
∂µ Dret (x, z(τ)) dτ. (51)

In this case,∂µ Dret (x, z(τ)) it will be:

∂µ Dret(x, z) =
∂ [Dret (x, z(τ))]

∂
[
(x− z)2

]
∂

[
(x− z)2

]

∂xµ

=
d [Dret (x, z(τ))]

dτ

dτ

d
[
(x− z)2

]

×
∂

[
(x− z(τ))2

]

∂xµ
.

In this last expression,

dτ

d
[
(x− z)2

]=

{
d

[
(x− z)2

]

dτ

}−1

= [−2 (xν − zν)Uν ]−1
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and

∂
[
(x− z)2

]

∂xµ
= δα

µ (xα−zα)+δµα(xα−zα) = 2(xµ−zµ).

Knowing thatUµ = dzµ/dτ anddxµ/dτ = 0, the ex-
pression∂µDret can be rewritten as:

∂µDret(x, z) =
−d [Dret (x, z(τ))]

dτ

(xµ − zµ)
(xν − zν)Uν

. (52)

By adequately replacing the Eq. (52) in the Eq. (51), we
have:

∂µ φ(x)=− q

+∞�
−∞

(x− z)µ

(x− z)ν
Uν

{
d [Dret (x, z(τ))]

dτ

}
dτ.

(53)
Integrating in parts the second member of the expression

(53), we reach:

∂µφ(x) = −q

[ (x− z)µ

(x− z)ν
Uν

Dret (x, z(τ))
]+∞

−∞

+ q

+∞�
−∞

Dret(x, z(τ))
d

dτ
(Υµ) dτ (54)

whereΥµ = ((x− z)µ/(x− z)νUν).
Using the fact that

Dret (x, z(τ)) =
1
2π

θ(x0 − z0) δ
[
(x− z(τ))2

]

and wherex0 − z0(τ) > 0, we develop the Eq. (54) as evi-
denced below.

∂µφ(x) =
−q

2π

{
Υµθ

[
x0 − z0(τ)

]
δ
[
(x− z(τ))2

]}τ→+∞

τ→−∞

+
q

2π

+∞�
−∞

θ
[
x0−z0(τ)

]
δ[(x−z(τ))2]Λµdτ (55)

whereΛµ = (d/dτ)((x− z)µ/[(x− z)νUν ]).
Assuming further that the radiation emitted at an infinite

instant implies an infinite distance to be traveled by the ra-
diation, then in this case the asymptotic terms obtained for
τ → ±∞ will not contribute,i.e. δ[(x− z(τ))2] = 0. Using
these observations in the Eq. (55), we can obtain:

∂µφ(x)=
q

2π

+∞�
−∞

θ
[
x0−z0(τ)

]
δ[(x−z(τ))2]Λµdτ (56)

Substituting the expression (42) into the last result (56)
and admitting the condition of the last light cone, we observe
that

∂µφ(x) =
q

4π

1
[(x− z(τ0))ν Uν(τ0)]

2

d

dτ

×
[

(x− z)µ

(x− z)νUν

]

τ0

. (57)

We also have:

d

dτ

[
(x− z)µ

(x− z)νUν

]
= − (x− z)νUνUµ

[(x− z)νUν ]2

+
(x− z)µUνUν

[(x− z)νUν ]2

− (x− z)µ(x− z)νaν

[(x− z)νUν ]2
(58)

Using this last equation, we can rewrite the Eq. (57) as:

∂µφ(x) =
−q

4π

{
(x− z)ν

(
UµUν − δν

µ

)

[(x− z)αUα]3

}

τ=τ0

+

− q

4π

{
(x− z)µ (x− z)ν

[(x− z)αUα]3
dUν

dτ

}

τ=τ0

. (59)

It is worth noting that the first term of the second member
of the Eq. (59) decays withR−2, while the second term de-
cays withR−1. This fact indicates that for points sufficiently
distant from theJ source world line, the term proportional to
the 4-velocity is negligible in relation to the term proportional
to the 4-acceleration. Under these conditions, the Eq. (59)
becomes:

∂µφ(x) ∼= −
[

q

4π

(x− z)µ(x− z)ν

[(x− z)αUα]3
dUν

dτ

]

τ=τ0

. (60)

Developing this last expression, we will have:

∂µφ(x) ∼= − q

4π

(x− z)µ

[(x− z)αUα]3

[
(x− z)0

dU0

dτ

]

τ=τ0

+
q

4π

(x− z)µ

[(x− z)αUα]3

[
(x− z)i dU i

dτ

]

τ=τ0

. (61)

Given the following relations

(x− z)0 = (x− z)0 = R ,

(x− z)i = −(x− z)i = −R(R̂)i,

[xν − zν(τ0)]
2 = 0 ,

dU0

dτ
=

dz0

dτ

dU0

dz0
=

dt

dτ

dU0

dt
= γ

dU0

dt
= γ

dγ

dt
= γ4 (~v.~a) ,

dU i

dτ
=

d (γ~v)
dτ

= γ4 dγ

dτ
+ γ

d~v

dτ
=

[
γ4vi (~v.~a) + γ2ai

]
.

and using them in the Eq. (61), we obtain:

∂µφ ∼= −q

4π

(x− z)µRγ2

[(x− z)αUα]3

×
[
γ2 (~v.~a) (1− ~v.R̂)− (~a.R̂)

]
τ=τ0

(62)
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In a frame of reference where the accelerated source
moves with a smaller velocity than the speed of light, we
haveγ = 1 and(x− z)α Uα = R. In this case, the Eq. (62)
becomes:

∂µφ ∼= q

4π

1
R2

[
(x− z)µ

(
R̂.~a

)]
τ=τ0

. (63)

Explaining the temporal and spatial components of∂µφ,
we get the relations (64) and (65), respectively

∂0φ =
∂φ

∂t
=

q

4π

1
R

(
R̂.~a

)
τ=τ0

(64)

∂iφ ∼= q

4π

(x− z)i

R2
(R̂.~a)τ=τ0 =

−q

4π

Ri

R2

(
R̂.~a

)
τ=τ0

(65)

Remembering thatSi = − (∂0φ) (∂iφ), we get

~S =


 q2

16π2

(
R̂.~a

)

R2
R̂




τ=τ0

, (66)

and knowing thatd ~A = dA.R̂ = R̂R2 sin(θ)dθdφ we will
reach the expression:

P =
�

~S · d ~A =
q2a2

12π
(67)

The Eq. (67) is equal to half the classical value of the
radiated power for the electromagnetic field [43] given by
Eq. (68). In fact, this was already an expected result, since
the electromagnetic field as a non-massive vector field has
two degrees of freedom associated with the two degrees of
polarization of the same [44]. For more detailed discussions
see [43].

P =
q2a2

6π
(68)

As P = dE/dz0 = γdE
′
/γdz0′ = dE

′
/dz0′ is a

Lorentz invariant, it is possible to propose a Lorentz invari-
ant that is reduced to the expression (67) for a frame of ref-
erence where the accelerated source moves with a velocity
small compare with the speed of light [42]. In addition, based
on the expression (60), it is observed that the invariant sought
will depend only onUµ anddUµ/dτ .

Indeed, a convenient form is given by

P =
−q2

12π

dUµ

dτ

dUµ

dτ
(69)

where

dUµ

dτ

dUµ

dτ
= γ8 (~v.~a)2 − [

γ4vi (~v.~a) + γ2ai
]2

.

In the case of assuming an inertial frame instantaneously
at rest with the source, the Eq. (69) is reduced to Eq. (67).

Conclusion

We discuss throughout the present text the interaction of an
accelerated point source with the non-massive scalar field
making use of the formalism of the Green functions, in addi-
tion to determining the expression of the total power radiated
in the covariant form. It was verified that the power obtained
in the case of the scalar source is half the value of that refer-
ring to the electric charge, which is due to the two degrees of
freedom (of polarization) of the electromagnetic wave (pho-
ton) in contrast with a single degree of freedom of the scalar
field.

Although the approach employed essentially focused on
the study of the phenomenon of accelerated (in this case,
scalar) radiation through classical field theory, the presented
development can be used as an initial step to investigate dif-
ferent fields and their interactions with the subject, as well
as a preparatory didactic text for the study of quantum field
theory.
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