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In this paper we will use classical field theory to address the interaction of an accelerated point source with a non-massive Klein-Gordon-Fock
field in Minkowski spacetime. For this, initially, we obtain the equation for the non-massive scalar field via lagrangian formalism and the
scalar potential through Green’s function formalism. Finally, we reach the expression of the power radiated by a point scalar source under
the influence of this field and its covariant generalization.
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1. Introduction 1928) with solutions of the homogeneous wave equation for
specific problems [10].

It is known from the history of science that the first essen- |5 1897 the English physicist and mathematician Sir

tially scientific investigations of the phenomenon of radiationjoseph Larmor (1857-1942) was able to demonstrate, al-
dates from the first half of the 19th century. Although the firstthough only for non-relativistic regimes, that an accelerated
studies focused on the radiation emitted by the incandescenggeactric charge emitted radiation [11]. Soon afterenard

of the bodies, in the course of the 19th century, many othefeached a generalized form for the emitted power that was
phenomena began to gain prominence, as is the case with thglid for any electronic velocity [12]. These results were de-

X-ray. cisive, for example, for the calculation of the intensity of the

The work related to electromagnetic theory, especiaIIySpeCtral lines of hydroge_n, for the evolution of the atomic
those resulting from the studies of the Scottish physicisf"odel and even as a basic aspect for the development of the
and mathematician James Clerk Maxwell (1831-1879) enMatrix Mechanics [13, 14].
abled the radiation to be treated with important mathemat- . . L
ical consistency. Under the influence of the works of the Under the light of the classical radiation theory, several

British physicist and chemist Michael Faraday (1791_1867)experimental results could be treated coherently, as is the case
and the Irish physicist and mathematician Sir William Thom-©f Thomson scattering, resonance scattering and termal radi-

son (1824-1907), Maxwell presented his contributions toation. With the advent of quantum mechanics and relativity,

electromagnetic theory through three important works [1_5]many other aspects of radiation have been better understood.
However, it is through his historical work entitlddTreatise : I )
In this paper, we will discuss a quantum scalar field de-

ent synthedis of electity, magnetism and optcs (ith thexcTbed by the Kiein-Gordon equation, proposed in 1926 by
results of his earlier article’s) unifying such domains the Swedish physicist Oskar Klein (1894-1977) and the Ger-
' ' man physicist Walter Gordon (1893-1939) to describe rela-
Also during this period, we cite the important contri- tivistic electrons [15, 16]. It should be mentioned that some-
butions of the German mathematician Bernhard Riemantimes this equation is also known as the Klein-Gordon-Fock
(1826-1866) on the retarded potentials [7], by the DanisHKGF) equation due to the Soviet physicist Vladimir Fock
physicist Ludwig Lorenz (1829-1891) with the use of Lorenz (1898-1974), who also obtained the same expression when
gauge [8,9] and French physicist Alfred-Marieébard presenting a relativistic treatment of the kleperian motion of
(1869-1958) and German geophysicist Emil Wiechert (1861bodies according to the Wave Mechanics [17].
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Despite its failure to treat electrons in relativistic condi- Indeed, using the variational principle for continuous sys-
tions, the KGF equation, based on the Feynman-Stueckelbetgms [39], that is,
interpretation, allows us to describe the behavior of particles 4
with spin 0 [18], as the mesonst, 7~ and=® ) and, con- § = /Ed x @
sequently, to approach certain bosonic fields. It is mentioned . .
that although the KGF field has no classical analogue becaud¥® obtain the Euler-Lagrange equations, namely
it is strictly quantum, it can be treated as a classical field [19].

In fact, just as the classical electromagnetic field, con- o8 — 9 {%] = 3)

’ ’ 0¢ Oz, |O(0+9)

sidered to be the high photon density limit of the quantized
field, in a wide variety of physical applications, we study the

classical scalar field as a possible approximation to a meson In focus, we can use the Euler-Lagrange equations to ob-
P PP tain the KGF equation. Thus, by calculating each of the terms

field [20, 21]. separately, we obtain:
Scalar fields and, consequently, scalar radiation are com- ' ’
mon ingredients of models in particle physics, cosmology OF
and gravitation, in particular, semiclassical gravity [22]. The 96 = J(z) (4)

semiclassical gravity also known as Quantum Field Theory

in Curved Spacetimes [23,24], is devoted to investigating the OE

consequences of defining a quantum theory of fields for mat- ——— = 0,0(x). (5)

ter and their interactions on a classical curved space-time un- 0(019)

derlying [25]. Indeed, this theory has been responsible for |y addition, by properly replacing the Eq. (4) and Eq. (5)
the prediction of important effects, such as the creation ofy the Eq. (3), we get the following expression:

particles in expanding universes, evaporation of black holes

by virtue of quantum effects [26,27] (Hawking radiation) and "0, = J(x). (6)
thermal radiation obtained by accelerated observers (Fulling-

Davies-Unruh effect) [28-30]. This last expression is known as the inhomogeneous KGF

Recently, the framework of semiclassical gravity has beenyq ation for the non-massive classical scalar field generated
used at tree level to compute the (massless) scalar radt!)‘yascalar sourcé(z)

ation of a point source in circular orbit around Reissner-

Nordstdm [31], Schwarzschild [32-34] and Kerr black

ho"las [r3]_5]- e uahout th 1 use the class %3 Solutions of field equations by the formal-
~Inthis sense, throughout the text we will use the classical ism of Green invariant functions

field theory to treat the non-massive scalar field, as well as

analyze the interaction of accelerated point (scalar) classicqlh . : -
e solution of the Eq.(6) can be obtained by employing the
currents with this field in Minkowski spacetime, thus observ- SOt a.(6) I y empioying

) . o " invariant Green function. In this case, we will use the expres-
ing relevant aspects of classical theory of radiation which, in_;
turn, serves as introductory topics in the study of Quantum : @ /
Field Theory. (0"0u)2D(w,x ) =6 (x — ) )

It is emphasized that throughout the text, we will be us-
ing the Heaviside-Lorentz system of units, assuming 1

[36,37].

where,D(z,z) is the Green function(0*d,,),, denotes the
d’Alembertian operator acting at the coordinatewhere

ot = (202!, 2% 2%), and 6W (z — l'/) is the fourth-
o ] _ dimensional Dirac delta function.
2. Obtaining the field equations through la- The Green function of the d’Alembertian operator in the
grangian formalism absence of boundary surfaces, depends solely on the differ-

) ] ] ] ] ) ence between the spacetime position vectors:” = ¢ [40],
an accelerated point sourdéz). In this case, the lagrangian |t js worth emphasizing that in this case, we must perform a

density that describes this system is given by: variable transformation for the operatd;d* to act on the
1 variable(. In this way, we will have:
£=50"0 0.0+ J(x)d(z). 1)
In this work, we assume that physical phenomena happen 0,0"], = wua”]g .
in Minkowski spacetime whose metric is [38]:
1 0 o0 o0 By doing D(z,2') = D(z —z') = D({), we can rewrite

o 4 0 0 the Eq. (7) as:

=10 0 -1 0 ,
0 0 0 -1 0,0, (D(@,a)) =5(C) - (®)
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To transform from the coordinate space to the space of the Im(f)

wave number, we will use the Fourier integral, whose trans-
formationD (k) is defined by

/ D(k)e *v¢" d*k (9)

in which the exponential argument is given by:

1

D) = {5

k¢t = kOC° — |E|R. (10)

The delta function, in turn, can be represented by:

5(¢) = — /e*“"vC”d‘*k.

~ 1674

O O P Re(K)
-k k

. . . FIGURE 1. The singularity points of the integrand of the expression
By properly replacing the expression (9) in (8) and apply-(17) arranged on the real asi.
ing the operato(&)lbau)C we get:
1 Since the integrand has singularity points (Fig. 1), we
< / D(k)(8%0a)ce”*»¢"d*k. (11)  will use the residuals and poles theory to solve the integral in
16 dk®. In this case, we consider the integrakihas a complex
variable and solve the resulting integral as a contour integral

in the complex plan&®. As shown in Fig. 1, the integrand
has two simple poles, which are:

(0%0a)cD(C) =

Analyzing the application of the operator in detail, we
obtain the expression

(0"0y)c ek = g e K e (12)

K = +(K'k)? = +|k]. (18)
that when applied in the Eq. (11), results in the following
equation: The different solutions of the Green functions can be ob-
. 42 tained by taking the closed contouranda and shifting the
D(k) = kok, (13) poles on the imaginary axis by an amouit for the contour

bstituting this | It h . ¢ ¢ or +¢ for the contoura as shown in Fig. 2 and Fig. 3.
Substituting this last result into the Fourier transform o Lastly, we take the limit — 0.

the Green function, we have: In this context, the contour is characterized by the

;2 o~k C” boundary of a half-circle of radiu® defineﬁd in the lower
D(¢) = 151 / ok d'k. (14)  half-plane and containing the polé$ = +|k| — ic should
“ be selected whe® > 0, since the terme—i*’¢" diverges
Using the following expression in the upper half-plane wheR — oo. On the other hand,
the contoum, characterized by the boundary of a semicircle
kkq = (K°)% — |K|? (15)  of radiusR traced in the upper half-plane and enclosing the

we can rewrite the invariant Green function
Im§°)

+00 0,0

L iK%

D(O) =~ / R R / a0 (16)
167 J {(kO)Q _ |k:\2}

where the integrand ik is not set tok® = +|k] .
In this context, we will consider the solution of the inte-
gral ink? , this is:

—+o0

e 17
| wr—m 4

—00

In this case, the 4-vectdr is represented in terms of its
componentsk = (w, k), wherew is the frequency and is FIGURE 2. The poles displaced on the imaginary axis of a quan-
the wave vector. tity —e.
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P Re(k?)

R

FIGURE 3. The poles displaced on the imaginary axis of a quan-
tity —e.

poleoslcoO = +k-+ie, should be selected whef < 0, because
e~ "¢ diverges in the lower half-plane whét — cc.

Using the residue and poles theory [41] in the Eq. (18)

and assuming the closed conteymwe have:

+oo

/ e—ik"¢°
(k)2 — |k[2

—0o0

Q10 = T lFICO _ —ilRIc

i } . (19)

Substituting the Eqg. (19) into Eq. (16), we reach the de-

layed or causal Green function:

0(¢%) /

83
The Heaviside functio(¢°) arises because of the fact
that we adopt the closed contauin which ¢° > 0.
Let the heaviside function be defined as

sin(|k|¢0)etF R

||

Dreil¢) = Pk (20)

on [ 1, if ¢°>o0,
9(“—{ 0, if <0
where, in spherical coordinates
&k = |k|? sin(0) d6 d¢ d|k|
so:
oy 20
D(C)—G(C) sin(|k|R) sin(|k|¢%)d|k 21
res(¢) = 557 [ sin(k|R)sin(k[¢T)d[k] . (21)
T

0

In Eq. (21), R refers to the spatial distance betweeh
andz “. Rewriting trigonometric functions in terms of com-
plex exponents, this is integrating the exponentials

+oo 0
/6ii|k\(R;<0)d|E| _ /ei\kl(C%R) dF|

0

(22)

— 00
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+oo
0(¢”) / {ez‘wc}m

_ eiIEI(C“+R)} d|k). (23)

Writing the Dirac delta in terms of the wave vector, this
is

“+o0o
5(C+R) = o / LR g, (24)
2w
the Eq. (23), becomes:
— L 0o_ .0 o_ .0 _
Diet(¢) = 47TR0 (;v x ) ] (x x R) . (25)

In fact, the Green functions can be arranged in a covariant
form from the following Dirac delta property:

df (z:)
dx

-1

(26)

) = 3 b2 |
In this case:
5 [(x# - x’ﬂﬂ =6[CrC] =0 [(40)2 - RQ} . @

Finally, by differentiatingé[(g“o)2 — R?] with respect to
2% and developing some algebraic manipulations, we reach:

5[ - B = o

x {5(;50 — 2~ R) +6(® — 20 + R)] (28)

Knowing that the theta functions select one or the other
between the two terms of the Eq. (28), then the delayed Green
function will be given by:

1

-0 (a"—a")0 {(x - x)g] .

2

Dret(o = (29)

It is emphasized that the theta function, apparently non-
invariant, when subjected to the constraints of the delta func-
tion, becomes invariant under its own Lorentz transforma-
tions [42]. A more detailed discussion of the related physical
aspects of the Eq. (29) can be seen in [43].

4. Obtaining the scalar potential through the

formalism of Green'’s functions

At once, the field equations with source are expressed by

and appropriately replacing Eq. (22) in the Eq. (21), we

reach:

(040y) ¢(x) = J(x) (30)
and the delayed Green function set to:
(0"8,), Dret(w, y) = 8 (z —y). (31)
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Thus, in terms of the Green function, we can write thewhere to ensure the causalit} — 2°(7, = 7,) > 0. Based

scalar field, solution of the Eq. (30), as: on this condition, we have:
_ 4 - a 37
2)= [ Dute,n)I W'y (32) 0 = e @D
In detail, to verify the previous statement, we simply re-  In the meantime, to simplify the equation (37) we can re-
place the Eq. (31) in the inhomogeneous KGF equation. Ifer to the property of the Dirac delta given by the Eq. (38),
this way, we have: wheref(r) = [z — r(7)]" [z — T(T)]#_

(©0,), 0(a) = [ I4) (09, D) 'y (38)

n=Seen|(E)_ |

= [a-nIwdy= @),
Differentiating the Eg. (38), we obtain the following
This development evidences that the proposed scalar fielgquation
is a solution of the inhomogeneous KGF equation. daf U (z — 1) (39)
At this time, let us consider the scalar current associated dr «
with a point source following a world line*(r), with 4- where,U,, () = +(1, 7).

velocity U (z(r)) = (dzu/dT) given by Substituting the Eq. (39) into Eg. (38) and developing
this last equation, we have:

J(y) = 0oy )53[4 Z(r)], (33)
0(r —1p) + (1 — 1)
whose termy corresponds to the scalar charge [25]. By re- S[f(N] = = AT (40)
placing the current expression in the scalar field equation and
knowing thatd*y = dy’d’y, it follows that: Considering? — #(ry) = R, we have the cone of light

1 . - thatz® —r%(m) = R (note thatr is defined by the condition
P(x) = Q/ 00(y) 6°[§ = Z(7)] Dre(w, y)dy"d’y . (38)  of the light cone as shown in Fig. 4). In addition, by defining
the relations? = RR, 5 =7ey?2=1- ﬂ we can rewrite

SinceU°(y) = dy°/dr, we get: the scalar produdt,, (z — p)* as:
o) = 0 [ 815~ ) Do) ey Ulw = 1) = nu U@ =) = 4R (1-|3]). (1)
_ q/D (7. 2 (35) It should be noted that the expression (42) is positive,
- re . =
since || < 1. In this case, we can write the Eq. (40) as
Itis a delayed Green function (analogous to the Eq. (29)follows:
represented by 515(r)] = 3(r —7,) +8(r — 1) )
Dret (7, 2(7)) = L O(x° — )6 [(m - Z(T))Q] 2Uu(@ =)
2w
is that Time
2] _ [6(r =)+ (T —7y)
[ =] = |75 Tu—ap |-
(x)
Then we can rewrit®e; (z, 2(7)) as:
_0(z% —2°) To(r — 7)) +0(7 — 7¢)
Dret (@, 2(7))=——— [ T — 27 ] . (36)
Substituting the Eq. (36) into the Eq. (35), we obtain X(X')
_a 0_ 0 O (1T —1p) +0(T—75) ey
000 = 57 [ 0160 =200 [ o
q - S
o) = 120 (2 = 2°(5)) [Up(m) (2 = ()] 7 1 < P
q 0 - FIGURE 4. The point of intersection between the source world line
+ 59 (x -2 ( )) (Uu(7s) (@ = 2(74))" ] and the cone of light past the observation point.

Rev. Mex. Fis. B5(2019) 105-113
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In fact, in possession of the relation (42), we can useitto  In addition, the energy-momentum tensor becomes:

rewrite the Eq. (37) without the absolute value operator, that

is: o) q 43) Ty = (0p9) (9, &)

xTr) = .

4 Uy(m0) (2 = 2(70))" To obtain the countervariant components of the tensor
In this last expression (43), the terrg represents the 7, initially we will raise the indices using the metric tensor,

proper time of the source at the time of emission of the radinamely:

ation, event associated with the positigt(r) of the charge

in the Minkowski spacetime. TH
In this case, the non-massive classical scalar field is rep-

resented in the covariant form. However, it is convenient to

write in the most usual form

—nuwE. (48)

= n““Taaﬂﬁ”

T = (99) (2" 6) — " E. (49)

Knowing also that the componenf& of the energy-

o(z) = q — (44)  momentum tensor represent the componghisf the Poynt-
4m {’yR (1 — ‘6 )} ing vectors, it follows that:
wherey = U° = d2°/dr andf3 = 7 = dz/dr. St =T = (8°) (0'¢) —n”'E

S' =" (909) 1" (9;0) = — (009) 67 (9;9)

5. Scalar field radiation emitted by an acceler- e
ated scalar point source ~ (00) (9i9)
Where we use)”® = +1, 7% = -1 (i = 1,2,3) en® =
=0.

In fact, we can express, ¢ in terms of velocity and ac-

Itis known that the emitted power is given by the flow of the
Poynting vectorS through the spherical surface (in the iner- "7
tial coordinate system) with the origin in the souré¢z*)

and radiusR, whose area element is denoted (M The Celeration of the moving source. Using the expression (48)
emitted power is thus equated by: we reach:
P=dbs.ai (45) 0, 00) = [ 1) 0, Do) d'y. (50)

Replacing the Eq. (49) in the Eq. (50), we have:

_ 53 [f — Z(7)] [a/:, Dret(, )]
8;#’(1’) = q/ U%(y)

To obtain the Poynting vector, in this particular case,
we will manipulate the canonical energy-momentum tensor.
This tensor for the classical scalar field is given by:

Of

dy’d3y .

T, =——7—=0,0—nuE. 46
oo 9) o (46) SinceU°(y) = dy°/dr, then:
In this case, the lagrangian is expressed by:
) Ougp(x) = q/@u Dret(x, 2(7)) dr. (51)
£= S (0" ) (0" ¢) + Jo. (47)

2
In this caseg,, Dret(x, 2(7)) it will be:

Calculating the partial derivative &fwith respect ta* ¢

O [Dr(, (7)) 2 |2 =)

o 1 0(0"9) ., 0(0"9)
() (a)\¢) = 577“” (6&;&)8 ¢+ 5 W@“d) (a)\¢> au Dret(z, 2) = { v 2} Ok
1 1
= 5w oKV + 577W6M¢ X [Dret( 2(1))] dr
d o 2
= S O 5 0 6 =]
| 0 [(@—2(r)?]
we will have w71
ok, gt
(0% ¢) A @ In this last expression,
wheren,,, = n,,. Thus, we will have: ir p [(x B 2)2} -1 )
— —[—2 (g — 2V Ul/
a(re)

Rev. Mex. Fis. 65(2019) 105-113
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and We also have:
0 [(w—z)z} . Y df (@=2)u | _ (=2)U"U,
— =0, (To— 2a) +0pa (% —2%) = 2(2) — 2)- dr |z — 2,07 ] [(xfz)l,U”]Z
Knowing thatU* = dz*/dr anddz*/dr = 0, the ex- (z—2),U0,U"
pressiord,, Dre; can be rewritten as: [(z — 2) UV]2
_ —d[Dret(@, 2(7))] (wp — 2u) (x — 2)u(x — 2),0”
aﬂDret(I7 Z) - dT (xy _ Zy) UV : (52) - [(x _HZ) Ul/]2 (58)
By adequately replacing the Eq. (52) in the Eq. (51), we
have: Using this last equation, we can rewrite the Eq. (57) as:
+oo
(z—2) {d [Dret (z, 2(7))] } —q [ (—2), (U U -5
9, d(x)= — o : dr. — v \Te "
L ole=—a. | o= - r o) = T
(53) i
Integrating in parts the second member of the expression g Jl@—2),(@—2), dUu” (59)
(53), we reach: Ar | (@ —z)uUe) dr f
(z —2) i
Ouo(z) = —q [V“Dret (x, z(T))] Itis worth noting that the first term of the second member
(z—2)" Uy —oco of the Eq. (59) decays witl®—2, while the second term de-

400 p cays withR~!. This fact indicates that for points sufficiently
+q / Dret(, 2(7))~— (Y,,) dr (54) distantfrom the/ source world line, the term proportional to
dr the 4-velocity is negligible in relation to the term proportional

- to the 4-acceleration. Under these conditions, the Eq. (59)

whereY,, = ((z — 2),/(x — 2)"U,). becomes:
Using the fact that
- — 2), dU”
_ 100 2 duila) = — | LEZ2ulz—2) 60
Drar(a, 2(7)) = 5= 0(a” = )8 [ (@ = 2(r))’] S P T I
d wherer? — 29 0, we develop the Eq. (54 i- . . : .
ggncvgdebrgfow. #(7) > 0, we develop the Eq. (54) as evi Developing this last expression, we will have:
i 0_,0 2|\ (x — 2) au’
0,0(x) = — Y0 |z° —2°(7)| & |(x — 2(7)) ~ 4 1 _ 08
F 2 { " |: } |: :| }7——>—oo aud)(x) A [(m B Z)aUa]g (x Z) dT e
+o0 i
q 0.0 - 2 q (x—2), vt
o [0l ) ) (59) A a [ e
whereA,, = (d/dr)((z — 2),./[(z — 2)"'U,)). Given the following relations
Assuming further that the radiation emitted at an infinite
instant implies an infinite distance to be traveled by the ra- (z—2)0=(x—-2)"=R,

diation, then in this case the asymptotic terms obtained for i Ao
T — oo will not contribute,i.e. §[(z — z(7))*] = 0. Using (x = 2)i = —(z —2)" = —R(R)",
these observations in the Eq. (55), we can obtain: [ — ZU(TO)]z -0

“+o0
q 9 dv®  d°dU°  dtdU® AU dy 4L
a#(b(ib'):% / 0 [xo—zo(T)] (5[(£C—Z(T)) ]Aud’r (56) ? = ?@ = EF = ’YW = ’YE =7 (’U-(l),
o . _ dUt _d(y0) _ 4dy d© . :
Substituting the expression (42) into the last result (56) ;— = 7~ =7 4, + T = [W o' (0.a) + a] .
and admitting the condition of the last light cone, we observe

that and using them in the Eqg. (61), we obtain:
o = i 1 i _ _ R 2
) S (o s, U o) 7 0= g [Ei . 3%313
(x = 2) 3 )
X {W’}L (57) x [72 (ma) (1 -0k~ @R)| (62

Rev. Mex. Fis. B5(2019) 105-113
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In a frame of reference where the accelerated sourc
moves with a smaller velocity than the speed of light, we
havey = 1 and(xz — z), U* = R. In this case, the Eq. (62)

becomes:
-9 (2a)] _

Explaining the temporal and spatial components g,
we get the relations (64) and (65), respectively

dp  q 1

q 1

0u9 = e (63)

%6 = 3 = ir g (R) _, 64)
o L@=2ipo g Rp
0 = A R? (Re@)r=r, = 4T R? (R.a)rzm (65)
Remembering that’! = — (9y¢) (0;¢), we get
. e (R.d) )
= e e ’ (66)

and knowing thatlA = dA.R = RR?sin(0)d0d¢ we will
reach the expression:

P:#ﬁ-dﬁ:

¢*a?
127

(67)

D.P. MEIRA FILHOet al,

e Indeed, a convenient form is given by

p_ —q* dU* dU,
127 dr dr

(69)

where
dU“dUﬂ_g_._.Zi 4.0 (= = 2 12
i dr ~° (U.d) [’y v (0.@) + a]

In the case of assuming an inertial frame instantaneously
at rest with the source, the Eq. (69) is reduced to Eq. (67).

Conclusion

We discuss throughout the present text the interaction of an
accelerated point source with the non-massive scalar field
making use of the formalism of the Green functions, in addi-
tion to determining the expression of the total power radiated
in the covariant form. It was verified that the power obtained
in the case of the scalar source is half the value of that refer-
ring to the electric charge, which is due to the two degrees of
freedom (of polarization) of the electromagnetic wave (pho-
ton) in contrast with a single degree of freedom of the scalar
field.

Although the approach employed essentially focused on
the study of the phenomenon of accelerated (in this case,
scalar) radiation through classical field theory, the presented

The Eq. (67) is equal to half the classical value of thedevelopment can be used as an initial step to investigate dif-

radiated power for the electromagnetic field [43] given by
Eqg. (68). In fact, this was already an expected result, sinc

ferent fields and their interactions with the subject, as well
@s a preparatory didactic text for the study of quantum field

the electromagnetic field as a non-massive vector field hagheory.
two degrees of freedom associated with the two degrees of

polarization of the same [44]. For more detailed discussion
see [43].
¢°a

61

As P = dE/d2° = ~dE' /vdz° = dE'/dz"" is a
Lorentz invariant, it is possible to propose a Lorentz invari-

2

pP= (68)
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