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Mathematical physics of propagating modes in planar waveguides
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In this paper, we present a detailed physical analysis of the formation of the propagation transverse modes in planar dielectric waveguides
using a mathematical-physics approach. We demonstrate physically that, at the wavelength scale, the pure stationary mode inside planar
waveguide is described by the cosine function. Meanwhile, the sine function arises from the interference of waves that superpose with a

relative phase shit~*", yielding a quasi-stationary periodic mode.
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1. Introduction agating transverse modes focusing attention on the physics
and using mathematics as a tool [1].

Recently, it has been brought to attention the difference be- In this paper, a _deta||ed physical analy3|s of the_forma_—
on of the propagation transverse modes in planar dielectric

tween a mathematical-physics and physical-mathematics aé'\; . . . . .
proach when dealing with the modeling and finding the math- aveguides using the mathematical-physics approach is pre-
ented. Typically, the physical phenomena involved in the de-

ematical solution of a physical system [1]. The relevance o

that difference resides on the fact that the physical propergcrlpttﬁlor;gn;)o?es in Elalcvar wexegwdterz]s, ar?_ trelatectihmdsuch ad
ties of the system can be lost or misunderstood if only a pur(\-fvay atthe baiance between the mathematical methods use

physical-mathematics approach is used. In general, physi d the physical constraints of the problem is tipped towards

textbooks are based on solving the model of a physical pro 5 elfo.rmer, leading to a_somewhat unsaﬂ;factory physmal Qe—
cription of the formation of the modes in planar dielectric

lem by using mathematical methods. Once the solution i%v vequid Their phvsical interpretation has been mostl
obtained, an attempt to provide a physical interpretation ma a egL:j es.th eirp ys((j:a eh'phe a Oth as Iee ; ?Sthy
be performed. Unfortunately, in many instances it is a purel ocused on the even modes, which are the real part of the

mathematical interpretation what is given so that the studenﬁ?luuoﬂ’ IeaIV|gg OL::] Its mr:aglnary pg r(1s, 14]t.t To tthefbe_st
obtains the solution in a straightforward way. This form ©' Our knowledge, there has never been an attempt of using

of solving a physical problem is what was referred as thethe mathematical-physics approach for the physical interpre-

: ; tation of the odd modes.
physical-mathematics approach 1, 2] By doing so, we demonstrate physically that, at wave-

~ Atypical situation of this approach can be found in Op-jength scale, the pure stationary mode in the planar dielectric
tics when studying the modes in planar wave guides and iyaveguide is described by the cosine function while the sine

Quantum Mechanics when analyzing square potential wellfunction yields a quasi-stationary periodic mode.
[3-12].

On the other side, within mathematical-physics approaclp  Mathematical-Physics Picture
it has been demonstrated the importance of the inclusion

of the Neumann function in the solution of the transverseThe vectorial analysis of propagating modes in waveguides
modes in a cylindrical waveguide even not satisfying the im4s, in general, very complicated so that a simpler approach is
posed boundary conditions. The latter function is necessargften desirable. In this context, even the fairly simple case of
to physically and fully describe the formation of the prop- the two-dimensional refractive index distributions that occur
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g with one of its orthogonal components traveling in the upper
direction (as depicted in Fig. 1). Similarly the expression

Er(l', Z) — A2ei(1€,,.$a:fk7vzz)7 (4)

corresponds to the reflected plane wave with wavevdztpr
whose transverse component travels in the downward direc-
tion, as shown in Fig. 1. Since we know that = 6;, then

we conclude that,, = —k;, andk,, = k;, = k.

Let us recall that we are assuming that> n; and thus,
from the direct application of Snell's law, we have that ex-
ists an angld, at which there will be total internal reflection,
i.e., the incident field will be totally reflected. This angle is
determined by

FIGURE 1. Planar waveguide: incident, reflected, and transmitted

waves.
n

0; = 0. = arcsin <2> . (5)

in channel guides requires elaborated numerical simulations. ny
Nevertheless, if the ind_ex d_ifferenz‘bn forming the guide is At this incident angle, the transmitted angle becorfies-
fsmalkll,_ a_scalgrdapfproxmanon can b_efl used _Qsteadl [4]. Beag;/Q and the transmitted wave transforms into an evanescent
Ing this In mind, from now on we will consider only trans- ,.,ve in the transverse direction but with a propagating com-
verse electric (TE) polarization for ease of treatment. Thig, nent along the interface. This is known as an electromag-
plane wave IS propagatlng n a_medlgm \_N'th a refractive N"netic surface or inhomogeneous wave [16]. The incident an-
dexn, and Impinges on a medpm V,V'th mde»g such that gle at which this happens is called the critical angle, and it is
ny < na. Its direction of propagation is defined by the vectorgiven by Eq. (5). Whenever the incident wave impinges on
ki, as shown in Fig. 1. interface, this incident wave generyng inerface at angles > 6., total internal reflection will
ates a Leflected wave that propagates in the direction of thg,, o place.
vectork,. At the same time, in the medium of index, a Let us now analyze the behavior of the transmitted wave:
transmitted wave is generated, traveling in the direction of i(hrae—Ernz)
the propagation vectok; . Ey(x,z) = A"t (6)

The propagation characteristics can be determined frorihere 4, is a constant. From the geometry of the transmit-
the geometry shown in Fig. 1. It is straightforward to noteted wave vector we get, by Snell’s law, that = + /K2 — k2,
that the following 'relationships hold for the incident, re- with &, = kyn;, where we have used the simplified notation:
flected and transmitted waves: k.. = k.. Concentrating on the case when the incident angle

B ) B . is greater than the critical angle, > 6., after using Eq. (1)
Kia = kona cos 6, kiz = kona sin6;, the expression fok,, can be written as
kpo = —konocosB,., k., = konosinf,, (1)

kiz = kon1 cos 9157 ki. = kon sin 015, kiz = ikoy/ n% sin2 0; — n% = 1Ktz (7)

wherekq = 27/ is the wavenumber in vacuum, withbe- ~ We would like to point out that the complex exponential be-
ing the wavelength of the electromagnetic wave considered:omes a decaying exponential in the transverse direction and
From Eq. (1), in particular from the expressions on the rightthe transmitted wave is described by
imposing conservation of tangential momentum, we obtain E(z,2) = Aje et ik, @8)
Snell’s law [15]. Those components are fundamental for get-
ting the explicit expressions of the traveling wave modes inAt this point we want to highlight the result given by Eq. (7):
the waveguide as we will see next. at the interface the wave number becomes imaginary so that
The electromagnetic wave propagation inside the slatputside the waveguide the “transmitted” field is an evanescent
with refractive indexn, is described by the Helmholtz’'s Wave [16]; refer to points A, D, C and E in Fig. 2. In what
equation follows, we simplify the notation such that, is denoted by
V2E + k‘%E —-0. (2) jUStkI andsk, by K- - - -
As the transverse electric wave field is reflected from the
with wavenumbek, = kgno. The corresponding plane wave slab’s surface, we will obtain transverse electric waves [17].
solutions associated to the wavevectors shown in Fig. 1 caBue to this fact, there is a phase shiftofin the reflected
be written as waves with respect to the incident wave. This gives rise to
up-going and down-going plane waves as shown in Fig. 2,
Ei(z,2) = AgeilFizrhiz2) (3) in which the lines within the waveguide represent the wave-
fronts of the guided plane waves. The modes of the waveg-
where A, is a constant. The expression given bl) Eqg. (3)uide will be formed once the appropriate conditions are met
represents the incident plane wave, with wavevegétoand in order to have a sinusoidal stationary wave [16].
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3. Modes created by Propagating waves

Let us now address the problem from the mathematical-
physics (m-physics) point of view at the wavelength scale.
Suppose that we have a slab of widthand infinite longi-
tude, as shown in Fig. 1. Its physical-mathematics solutions
are then given in the core by Eq. (9) and in the cladding by
Eq. (8).

By solving the Helmholtz equation (Eq. (2)) with the
separation of variables method in Cartesian coordinates we
obtain Egs. (9), which correspond to a purely mathematical
solution. However, if we solve the problem bearing in mind
its underlying physics (m-physics), we end up with the solu-
tion given by Eqgs. (10), which represent counter-propagating

e traveling waves reflecting at both interfaces. It should be
C E clear by now that understanding the true behavior of the prop-
agation of plane waves inside a planar waveguide can give us
a better physical interpretation of the problem.

Let us then consider a plane wave that makes an angle
with respect to ther-axis, and propagates along thexis.
Now, the question is, how does this plane wave gets reflected
by an interface? The most common approach to answer this

008 (ky) e—k=2 question is through a ray analysis. Following the reasoning
E(z,z) = { sin (kaL‘) ik (9) stressed out in this paper, we rather study the propagation of
r ’ the wavefronts of the counter-propagating plane waves that
constitute in superposition the guided modes.

In order to answer this question, and to provide further

FIGURE 2. Representation of plane counter-propagating waves
which are solutions to the Helmholtz equation in a slab. They gen-
erate a cosine type solution.

Such sinusoidal modes are represented by

We would like to highlight an important mathematical re-

mark usually ignored within this context: from Eulers re- clarification to the points made above, we have carried out

lation exp(£if)) = cos & isinf), we notice that the cosine " 1ation of the propagation of the wavefronts of the
function is easily obtained from the sum of a complex expo- . -
) . . .~ counter-propagating plane waves within the planar waveg-
nential and its conjugate. However, for the case of the sine. S o o
. o uide, as shown in Fig. 3. For clarity’s sake we will divide the
function, we must subtract the complex exponential with neg- : : .
ative araument from the one with positive arqument. In term wavefronts into a representative number of sections denoted
g b 9 ' SDy dots, where the red and green ones represent a section

qf our p_hysu?,a_\l system, within the slab there is a SUPEIPOSILe he wavefront of the incident and reflected waves respec-
tion of fields; in other words, the sum of plane waves. This

implies that we have to rewrite Eq. (9) to reflect this fact, andtlvely' In Fig. 3 it 1S ;hown the propagatlon of.a part of the
) wavefront of the incident wave. In Fig. 3a) it can be ob-
thus we obtain that

served the incident wavefront whose wave vector lies in the

L(gikat 4 omiken)o—ik=z first quadrant of the cartesian plane, that is, propagates to the
E(z,z) = 2 o . . (10) right and encounters the upper interface. As it propagates part
1% (eiher 4 emilmthonl) gmiksz, of it becomes the wavefront of the reflected wave, so that the

The second expression implies that in order to have a trans))
verse stationary mode described by the sine function, the
down-going wave must be delayed (or advanced) with re-
spect to the up-going wave by a phase shiftrofThis is a

remarkable result that is not usually discussed in the genera
literature on the subject and one that has a profound effect i
the understanding of the modes of a planar waveguide as will
shall see in Sec. 4.

The solutions in Eg. (10) tell us that, physically, the co-
sine and sine transverse stationary wave modes inside thg
waveguide are the result of the sum of counter-propagat_lngzleURE 3. The propagation of a wavefront within the slab waveg-
components of the transverse traveling plane waves. Itis iMgjge. As it propagates part of the wavefront of the incident wave
portant to remark that the incoming waves are continuouslyyets reflected several times. The red dots represent sections of the
entering and propagating inside the waveguide instead of justavefront of the incident wave while the green ones represent the
one single wave, as shown in Fig. 2 wave front of the reflected wave.
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initial red points become green as shown in Fig. 3b). Further Gl E—— _
propagation results in the configuration shown in Fig. 3c), A
where the wavefront is totally reflected just to encounter the
interface and be reflected once more, as illustrated in Fig. 3d)
In the above discussion, we analyzed the propagation of _—
a section of the wavefront of the incident wave. Now we At Pl
consider a wave packet that enters the slab waveguide an
let us assume that it forms an even guided mode so it is de-
scribed by the upper solution in Eq. (10): at any given time,FIGURE 5. The periodic evolution of the wave front pattern of odd
the incident and reflected waves are in phase and thus cr&l0des.
ate a stationary wave. As expected, the wavefronts of both
counter-propagating plane waves create a pattern that do
not changes along the waveguide, as shown in Fig. 4 inside
the blue rectangle. As the plane waves propagates withif]
the waveguide, the pattern of wavefronts translates without
changes. This might seem that the wave fronts propagatfze'
from point A to point D of Fig. 2, instead of moving from o
point A to point D as it actually happens. This confusion ' ¢)-0)-a)-b)-c).

could arise due to the fact that the wave front pattern does The plang waves conformmg guided mpdes ina plaqar
not show any apparent changes as shown in Fig. 4 slab waveguide generate stationary modes in terms of cosines

From the dispersion relations/k, — v, andw/k — ¢, it and periodic quasi-stationary modes in terms of sines. It is
can be noted that. < k. and there;ore; Z> o that is /’the worthy to note that the m-physics approach does not alter the

phase velocity (velocity of the pattern) is superluminal. Bymathemz_atical result, but “”?th_er gives a better des_cription of
confusing the propagation of the light with the propagationthe physical phe.nomena within the !olanar wavengjl|de.
of the pattern, we might conclude that there is a superluminal . In our analys_ls we.have nqt c.onS|dered the Goasi¢hen .
propagation in a metallic waveguide filled with air. However, Sh'ft'. However, if we include it, it does not change the main
this is not the case since the group velocity of the waves inphy3|cal aspect of our approach [18].
side the waveguide is subluminal.

Now assume that the wave packet that enters the wavegt, Physical-Mathematics Picture
uide forms an odd mode so that it is described by the lower
solution in Eq. (10). Two cases arise#: the incident plane In textbook literature it is common to introduce the solutions
wave is out of phase with respect to the reflected plane wavigside and outside planar waveguides by a purely mathemat-
by a phase shift of-7, while in the other caseij by +=. In ical approach. These solutions depend on the width and the
any of those cases a periodic wave front pattern during propefractive indices of the waveguide, and are given by
agation is created along of the z-axis as shown in Fig. 5. We

gt translates along the-axis without change as shown in
ig. 5. Therefore we claim that the odd modes are periodic
uasi-stationary modes because their wave front pattern re-
overs its initial shape only after a phase shifeofalong the

axis as shown in Fig. 5. For casg the wave front pattern
llows the order a)-b)-c)-d)-a), while for casé) the order

think that it cannot be considered as stationary since it does Agem=? x > d/2
Bz 2)= cos (ko) |\ —inez 10 < g2 (11
@ 0= 4| ol | et < a2 a

LA R x < —d/2.

Itis very important to say that these solutions can be obtained
by simply solving the Helmholtz’s equation with separation
of variables and imposing continuity conditions, that is, by
means of purely mathematical instead of physical considera-
tions.

In some textbooks attempts have been made to explain
the physics of plate-parallel (or planar-mirror) waveguides.
However in some cases this has not been done in the best way.
For example in Hayt's textbook we find the following discus-
sion for the explanation of the sine modes [19]: “The minus
sign in front of the second term arises from thehase shift
on reflection”, in regards to the lower solution in Eq. (10)
for a parallel-plate waveguide. A reasonable question that
FIGURE 4. Propagation of three plane waves in phase with the re-Can be posed is, why is the minus sign not present in the co-
flected waves. This pattern represents the standing wave solutiogine solution, given that there is also a reflected wave?. In
of even modes. other words, even modes cannot be explained in these terms

Rev. Mex. 5. E65(2019) 218-222
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since ther phase shift is not present in this case as can b&. Conclusions
observed in the upper solution in Eq. (9) and therefore one . ) )
of the counter-propagating plane waves conforming the evelVe demonstrate that, when using the mathematical-physics
modes cannot be considered to be the reflected wave of tigPProach is possible to easily visualize the transverse so-
other one. lutions inside a slab waveguide as the sum of counter-
This argument holds for both parallel-plate and dielectricPfopagating traveling plane waves,, their modes are com-
slab waveguides. We chose this example since, to the best BPSed transversely by standing waves. We have demonstrated
our knowledge, there has not been a physical explanation ¢hat these waves, physically, can only generate stationary
odd guided modes in dielectric slab waveguides. A simplnodes in terms of cosines and periodic quasi-stationary
but important question like this enables us to put into questhodes in terms of sines. For the cosine profiles, the inci-
tion the physical arguments presented in those textbooks. dent and reflected plane waves are in phase, and it is clearly
Another problem we have noticed bears with the fact thaPossible to see that the standing wave is formed. Inside the
the analysis of guided modes is mainly done for the even onddlanar waveguide, the sine profiles have a phase shift between
rather than for both of theni,e., the even and odd modes. the reflected and the incident waves. This phase shift gener-
The easy, but dangerous explanation, is that the physical anaii€s & quasi—stationary periodic mode propagating inside the
ysis of odd modes is skipped because the authors probably agaveguide.
sume wrongly that the odd solutions have a similar behavior
to that of the even ones. Acknowledgments
In contrast to the remarks above, in Secs. 2. and 3. we
have given a complete physical explanation of these soluconsejo Nacional de Ciencia y Tecnolag(CONACYT)
tions. (235164).
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