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A geodesic approach for the harmonic oscillator
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The harmonic oscillator (HO) is present in all contemporary physics, from elementary classical mechanics to quantum field theory. It is useful
in general to exemplify certain techniques in theoretical physics. In this work, we use a method for solving classical mechanics problems
by first transforming them into a free particle form. This technique has been used before for solving the one-dimensional hydrogen atom,
and also for solving the motion of a particle in a one-dimensional dipolar potential. Using canonical transformations, we convert the HO
Hamiltonian into a free particle form which is very easy to solve. Our approach may be helpful to exemplify how canonical transformations
may be used in mechanics and how it is possible to visualize the geometry of the new phase space. Besides, we expect it will help students
to grasp what is meant when a problem has been transformed into another completely different one. We also intend the paper to exhibit the
power granted by the Hamiltonian approach for analyzing mechanical systems.
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1. Introduction

The formalism of Hamiltonian mechanics [1–3] is frequently
not appreciated in full by most undergraduate and even by
some graduate students. Instructors usually exemplify the use
of Hamiltonian techniques by dealing with one-dimensional
problems, particles interacting through the Newtonian po-
tential or joined by springs, and the like. However, the
mentioned problems may be more readily addressed using
the Lagrangian formalism [1–4]. Therefore, an example is
needed, which may be quickly posed using the Hamilto-
nian and which could be difficult to formulate within the La-
grangian formalism. This kind of problem is seldom if ever
discussed in advanced undergraduate or beginning graduate
classical mechanics. For the lack of this kind of examples,
many students wonder if the Hamiltonian is just another tech-
nique to write down the classical equations of motion, which
just happen to be more cumbersome to employ than the La-
grangian approach.

With the aforementioned difficulty in mind, in this work
we purport to use the Hamiltonian approach to establish a
quite different property, one that should appear at first dif-
ficult to believe to a student of advanced mechanics which
is learning from standard textbooks as [3] or from more ele-
mentary books as [4], namely that motion in Kepler’s prob-

lem is equivalent to geodesic (free) motion on a hypersurface
in phase space. In this paper, we discussnot the Kepler prob-
lem but the harmonic oscillator, a simpler problem, showing
that it may be regarded as equivalent to the motion of a non-
interacting or free particle but moving on a curved space. In
posing the problem, we were partially inspired by the Boya
et al. paper [5], which establishes the equivalence between
the motion under the 1D Kepler potential [6, 7] and free mo-
tion on a circle. The Boyaet al. paper, in turn, follows in
the wake of Moser proof of the equivalence between bound
Kepler’s motions with geodesic motions on a sphere [8].

A note of caution is in order before embarking in our
analysis Moser used global techniques for giving his proof
but we are instead going to discuss the matter in the standard
local methods of Hamiltonian mechanics [1,3,4,9]. This pa-
per, we emphasize, intends to be a pedagogical introduction
to the capabilities of the Hamiltonian formulation for an au-
dience of physics and mathematics students or instructors.

2. Hamiltonian approach to the harmonic os-
cillator

The Hamiltonian of a particle of massm in a harmonic oscil-
lator potential is
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H(p, q) =
p2

2m
+

1
2
mω2q2 (1)

whereω is the natural frequency of the oscillator. As the sys-
tem is autonomous, the energy,E, is a constant of the motion.

In Lagrangian mechanics, the Euler-Lagrange equations,
the differential equations which describe the motion, are in-
variant under change of coordinates. Therefore, one is al-
lowed to perform a suitable change of coordinates,qi →
Qj(qi), without losing physical information. The same thing
does not happen in the framework of Hamiltonian mechan-
ics. Since the coordinates and the momenta are in the same
hierarchy level, we are free to carry out changes in the form

(pi, qi) →
(
Pj(pi, qi), Qj(pi, qi)

)
. (2)

However, unlike E-L equations, Hamilton equations do not
hold for any transformation of the type above, but for some
special category, namedcanonical transformations(CT). The
principal feature of a CT is that it preserves the canonical
relationship between the pairs(Pi, Qi), it is {Pi, Qi} = 1,
where

{f, g} =
∂f

∂q

∂g

∂p
− ∂g

∂q

∂f

∂p
(3)

is the Poisson bracket of the functionsf(p, q) andg(p, q).
Let us begin mentioning that, in advanced classical me-

chanics, the following canonical transformation (CT) [3, 9,
15,16],

q =

√
2P

mω
sin Q, p =

√
2mωP cos Q. (4)

is sometimes used as a way for solving the problem.
In the new coordinates,Q andP , introduced in (4), the

Hamiltonian (1) becomes independent ofQ,

H ′(P,Q) = ωP. (5)

However, it is not easy to associate any physical significance
to the new momentum,P i, besides the fact that it has di-
mensions of action. In any case, such an association is not
necessary for any way to solve the problem. In this work, we
present another canonical transformation with the same pur-
pose but offering a menu richer in physical interpretations.
But, in the end, our purpose is to find new canonical coor-
dinates able to transform (1) into a Hamiltonian with no po-
tential energy term. That is a free particle Hamiltonian, but
at the prize of converting the Euclidean space in which the
particle moves into a curved one. Earlier works in such di-
rections may be found in [12,13] but without the emphasis in
the geometry of the transformed phase-space manifold.

3. A geodesic approach in a different phase
space

The way the coordinates are used in the canonical transfor-
mations (4), and since the angular argument does not appear

explicitly in the result, suggests that to obtain an appropriate
CT, we must begin by defining,

q =
P

mω
sinΦ, p = P cosΦ, (6)

whereΦ(P, Q) is a function that needs to be chosen to make
the transformation canonical. Notice that the change (6) re-
moves the potential in the Hamiltonian, leaving only the ki-
netic energy terms in the Hamiltonian expressed in the new
(P, Q) phase space coordinates,

H̃(P,Q) =
P 2

2m
. (7)

As the solutions following from this Hamiltonian ought to be-
have as free particles in the phase space, defined by the trans-
formations (6), it is natural to call the motion of the particle
in the new coordinatesgeodesic. That is, we are substituting
dynamics by geometry. A similar but more general approach
has been previously taken in [12]. It should be noted also that
the new coordinates have the same dimensions as the original
pair (p, q).

ForP andQ to be canonical their Poisson bracket should
equal 1,

{q, p}Q,P =
∂q

∂Q

∂p

∂P
− ∂p

∂Q

∂q

∂P
= 1, (8)

this condition gives a simple differential equation for the
functionΦ(P, Q),

P

mω

∂Φ
∂Q

= 1. (9)

After integrating we have

Φ(P, Q) =
mωQ

P
, (10)

where we have chosen as zero the arbitrary function ofP re-
quired. Therefore, the complete transformation is

q =
P

mω
sin

[mωQ

P

]
, p = P cos

[mωQ

P

]
. (11)

As this transformation is canonical, Hamilton equations hold
for the new Hamiltonian,H̃. We should mention that the
above transformation is the same as the given in [13].

The time evolution of the system is

P (t) = P0, Q(t) = (P0/m) t + Q0. (12)

whereP0 andQ0 are starting conditions. Along the process
energy,E, is conservedH = H̃ = E, so we can choose

P0 = ±
√

2mE. (13)

Hence, the solutions are

q(t) =

√
2E

mω2
sin

(
ωt + φ0

)
,

p(t) =
√

2mE cos
(
ωt + φ0

)
,

(14)
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whereφ0 = mωQ0/P0 is a constant depending on the initial
conditions. On the other hand, if our purpose were simply to
find a transformation that eliminates potential-like terms in
(1), we may proceed in a more general way as follows. We
may separate the Hamiltonian as

H =
p2

2m

(
1 +

m2ω2q2

p2

)
, (15)

this separation suggests a definition for the new momentum
as

P (p, q) = p

√
1 +

m2ω2q2

p2
, (16)

where the positive sign of the square root has been taken ar-
bitrarily; also note that the dimensions of the momentum are
not altered by the last step. In order to complete the canon-
ical transformation, we use a generating functionG such
that [2,3]

p =
∂G

∂q
and Q =

∂G

∂P
. (17)

Solving forp(P, q), from definition (16) and integrating with
respect toq, we find

G(P, q) =
q

2

√
P 2 −m2ω2q2

+
P 2

2mω
arctan

[
mωq√

P 2 −m2ω2q2

]
(18)

up to an additive arbitrary function ofP , which we choose
as a vanishing one. From the second condition of (17) and
writing P in terms of the original coordinates we obtain

Q(q, p) =

√
p2 + m2ω2q2

mω
arctan

[mωq

p

]
. (19)

Equations (16) and (19) are actually the inverse transforma-
tion of Eqs. (11).

In some cases it is useful to perform a change of coordi-
nates to simplify the description of some physical problems
and find their solutionii. For example, letX = X(x, y)
andY = Y (x, y) be two independent continuous functions
of the points on the plane. If they have continuous inverse,
x = x(X, Y ) andy = y(X, Y ), we can identify any point of
the plane by using these new pair of coordinates(X, Y ). In
order to see how the new coordinates looks geometrically,
we plot the graphic of the simplest equations of the new
system,i.e. the curves generated by settingX = constant
andY = constant. Since we associate each of these simple
curves to one single coordinate, they are namedcoordinates
curves[17].

FIGURE 1.Two coordinates systems, the polar coordinate system at
the left and the elliptical coordinate system at the right, described
by the variables(r, θ) and (ξ, η) respectively. In both systems,
there are represented a pair of coordinate curves on the originalxy
plane.

Now we will plot some coordinates curvesQ = constant
andP = constant in the original phase space to give some
idea about how the transformation looks geometrically.

In the figure above the curves of constant,P coincide
with the well-know ellipses of constant energy of the prob-
lem, while the curves associated to constantQ are simply
given by (19), and do not have any special registered name.
Therefore, it is easy to see that the CT presented in this work
makes the system to move in the “natural” coordinate curves.
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FIGURE 2. Representation of the canonical transformation in the
original coordinates in arbitrary units, withm = 1 and frequency
ω = 1. It is easy to see that the CT presented in this work finds a
new coordinate system for the phase space with the special feature
that theP -curves coincide always with the energy constant curves
on which, indeed, the system moves.

4. Conclusions

In conclusion, we have found a CT:(p, q) → (P, Q) that
makes the equations of motion take the form of the simplest
physical problem, namely, the free particle. That is, the sys-
tem moves freely along the curves withP constant, which
for the HO and in the original phase space, are ellipses rep-
resenting the curves of constant energy. The way we have
obtained this transformation, by defining the new momentum
as in (15), can be extended easily to other problems of one
degree of freedom and time-independent. This exclude the
possibility of transforming in the same way, a harmonic sys-
tem with a frequency mass changing in time.

We expect the analysis of an HO given in this work would
help clarify the importance of the Hamiltonian formulation,
which allows transformations like the one discussed here: a
CT making a completely bounded system equivalent to one
without any interaction whatsoever—at the prize of deform-
ing the phase space manifold. We have shown that the classi-
cal motion under an elastic potential should be made equiv-
alent to free motion on a certain curve in phase space. Of

course, we do not intent the discussion in this work to be
interpreted as simply another way of solving the harmonic
oscillator. Our point here is only to show beginning gradu-
ate students the enormous power the Hamiltonian formula-
tion affords over the description of the motion of bodies.

Some students may still wonder whether we could extend
this method to the quantum mechanic. The answer is defini-
tivel no since the quantum transformations need unitary op-
eratorsÛ to be produced, and not all conceivable canonical
transformation may have an equivalentÛ associated. More
simply, think of our example at hand: the HO, if it could
be possible to make a quantum transformation from this sys-
tem to a free particle, then the HO energy spectrum would
be continuous in the transformed system. This is impossible
in quantum mechanics as, remember, unitary transformations
always preserve the operator eigenvalues [13]. However, the
possibility of constructing solutions of the Schrödinger equa-
tion, using canonical transformations involving non-unitary
transformations, is discussed in [14].

We have one more point to mention given the free nature
of the motion in the transformed phase space, the topology
of phase space should be special, a sort of cylinder in which
the position coordinate can grow without limit, but without
the particle which it describes going too far from the point
to which the spring is attached. This feature may also offer
the opportunity of relating the techniques of the Hamiltonian
formulation with certain aesthetic aspects of the description
of motion. Such features have always played a relatively im-
portant part in the theoretical aspects and in the development
of mechanics [15,16,18]. As we said before, if we accept the
freedom granted by the Hamiltonian formulation and adopt
a geometric standpoint, we may convince ourselves that the
notion of interaction potential is used because we insist in
describing motion using Euclidean geometry. That is, such
interaction potential partially lose their importance to be sub-
stituted by phase space geometric features, as we exhibited
in this work. From this standpoint, interactions may be con-
ceived as a warping of phase space. Dynamics can be re-
placed by geometry.
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i. The CT proposed has a clear relationship with a transformation
to action angle variables, but such matters may be distracting
when we first discuss the Hamiltonian formalism pinpointing

its advantages and discussing possible uses.

ii. This occurs not only in elementary physics such as classical
mechanics but also in advance topics like the path integral for-
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mulation in quantum mechanics [10,11].
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