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A method based on a generalized function in Fourier space gives analytical solutions to homogeneous partial differential equations with
constant coefficients of any order and number of dimensions. The method exploits well-known properties of the Dirac delta, reducing
the differential mathematical problem into the factorization of an algebraic expression that is finally integrated. In particular, the method
was utilized to solve the most general homogeneous second-order partial differential equation in Cartesian coordinates, finding a general
solution for non-parabolic partial differential equations, which can be observed as a generalization of d’Alambert solution. We found that
the traditional classification,i.e., parabolic, hyperbolic and elliptic, is not necessary, reducing the classification to only parabolic and non-
parabolic cases. We paid special attention for parabolic partial differential equations, analyzing the general 1D homogeneous solution of
the photoacoustic and photothermal equations in the frequency and time domain. Finally, we also used the method to solve the Helmholtz
equation in cylindrical coordinates, showing that it can be used in other coordinates systems.
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1. Introduction

In 1992 Donnelly and Ziolkowski [1] reported a powerful
method for constructing solutions of partial differential equa-
tions, based on the use of the Dirac delta distribution. This
method allows constructing analytical solutions to partial dif-
ferential equations by Fourier transforming the partial differ-
ential equation. At first thought, this method seems to be
similar to techniques found in the classical literature [2–5]
however after a deeper revision, the referred technique turns
out to be especially powerful as it allows constructing new
solutions as shown in the referred manuscript.

In this report, we extend the method reported by Don-
nelly and Ziolkowski in two ways. First, we introduce spec-
tral generalized functions (SGFs) in Fourier space and then,
taking advantage of some properties of the Dirac delta, we
transform the differential mathematical problem into the fac-
torization of an algebraic expression. By doing so, we make
the method more powerful allowing us to find the general
solutions of partial differential equations (PDEs). The SGF
method allowed to find the solution to the most general ho-
mogeneous second order PDE in Cartesian coordinates, read-
ily,

(A∂xx + B∂xy + C∂yy

+ D∂x + E∂y + F )f(x, y) = 0, (1)

whereA, B, C, D, E, andF are constants. To the best of
our knowledge, there is no report on a solution to Eq. (1)
for coefficients (A, B, C, D, E, andF ) non zero, which may
find several applications in physics and engineering. Interest-
ingly, the method also allowed to redefine the classification of
this PDE in only parabolic and non-parabolic.

In the next section, to elucidate the method, we solve two
simple ordinary differential equations. Next, the method is
used to find the most general solution to Eq. (1) for the case
D = E = F = 0. To verify the solution, well-known exam-
ples, are given. Then, by performing a change of variables,
we transform Eq. (1) into a new 2D-homogeneous PDE,
which is easily solved to obtain solutions to Eq. (1). Finally,
the SGFs method is utilized to solve the 2D Helmholtz equa-
tion in cylindrical coordinates, showing that it can be used in
other coordinate systems.
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2. Description of the spectral generalized
function method

To describe our method, let us begin the description by con-
sidering the following simple, but yet, illustrative example of
solving,

f ′(x) = 0, (2)

whose solution is a constant and wheref ′ ≡ df/dx through-
out the manuscript. Instead of proposing the obvious solu-
tion, let us consider the one-dimensional Fourier transform
pair

f̂(u) =

∞∫

−∞
f(x) exp (−i2πux) dx, (3)

f(x) =

∞∫

−∞
f̂(u) exp (+i2πux) du. (4)

By Fourier transforming equation (2) through Eq. (4),

f ′(x) =

∞∫

−∞
f̂(u)i2πu exp (i2πux) du = 0, (5)

by the linear independence of the functionsexp (i2πux), one
obtains

uf̂ = 0. (6)

To solve Eq. (6), let us recall some well-known properties of
the one-dimensional Dirac delta distributionδ(u)

∞∫

−∞
u1δ(u)du = u1|u=0 = 0,

∞∫

−∞
u2δ(u)du = u2|u=0 = 0,

... (7)

∞∫

−∞
un−1δ(u)du = un−1|u=0 = 0,

∞∫

−∞
unδ(u)du = un|u=0 = 0,

or

u1δ(u) = 0,

u2δ(u) = 0,

... (8)

un−1δ(u) = 0,

unδ(u) = 0,

n being a positive integer. We have additionally that,

u2 d1δ(u)
du1

= 0,

u3 d2δ(u)
du2

= 0,

... (9)

un−1 dn−2δ(u)
dun−2

= 0,

un dn−1δ(u)
dun−1

= 0,

for integersn > 1.
Before proceeding further, it is worth outlining that the

Dirac delta is not strictly a function. The Dirac delta is a
singular distribution that assigns to each test functionϕ the
valueϕ(0). This distribution is commonly denoted as aδ dis-
tribution. As it is widely referred to as a function in electrical
engineering, optical and physical sciences [6–8], in the herein
report we will use this notation being aware of the limits of
its use.

Applying the Dirac delta Eqs. (7) and (8), for our ex-
ample given in Eq. (6), one could simple propose as a first
possible solution,

f̂(u) = δ(u). (10)

As uδ(u) = 0, Eq. (8), one can propose a more general solu-
tion for Eq. (6) as,

f̂(u) = δ(u)ĝ(u), (11)

being ĝ(u) an arbitrary well-behaved function in the fre-
quency domain. Because this function is in Fourier, space we
will refer to it as ourspectral generating function(SGF).

By using Eq. (3) to inverse transform Eq. (11), we can
now see that the inclusion of the SGF allows us to obtain the
general solution of Eq. (2) as,

f(x) =

∞∫

−∞
δ(u)ĝ(u) exp (i2πux) du = ĝ(0). (12)

In Eq. (12),ĝ(0) is an arbitrary constant that should be deter-
mined by the boundary conditions.

Now that a preliminary idea of our method has been de-
scribed, we will proceed with our description by considering
a second simple example,

f ′′(x) = 0. (13)

The Fourier transform of Eq. (13) reads,

−4π2u2f̂(u) = 0. (14)
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Again, based on the properties given in Eqs. (8) and (9), one
can propose the general form off̂ in Eq. (14) as,

f̂(u) = ĝ1(u)δ(u) + ĝ2(u)δ′(u). (15)

It should be noticed that now there are two SGF’s in Eq. (15).
By inverse transforming Eq. (15) one obtains,

f(x) =

∞∫

−∞
[ĝ1(u)δ(u) + ĝ2(u)δ′(u)] exp(i2πux)du

= [ĝ1(u)− ĝ′2(u)]u=0 + [−i2πĝ2(0)] x, (16)

since [ĝ1(u)− ĝ′2(u)]u=0 and −i2πĝ2(0) are constants,
Eq. (16) is the expected solution.

With the simple above examples, the usefulness of the in-
clusion of the SGFs has been shown. In the following, we
apply our method for more general examples.

3. A solution to the homogeneous second or-
der PDE with constant coefficients andD =
E = F = 0

First, I consider Eq. (1) withD = E = F = 0

(A∂xx + B∂xy + C∂yy) f(x, y) = 0. (17)

The two-dimensional Fourier transform of Eq. (17) can be
written as,

f̂(u, v) =

∞∫

−∞

∞∫

−∞
f(x, y)

× exp [−i2π(ux + vy)] dxdy, (18)

f(x, y) =

∞∫

−∞

∞∫

−∞
f̂(u, v)

× exp [+i2π(ux + vy)] dudv. (19)

By using Eq. (19) it follows,
∞∫

−∞

∞∫

−∞
f̂(u, v)

[−4π2
(
Au2 + Buv + Cv2

)]

× exp [i2π(ux + vy)] dudv = 0. (20)

Again, from the linear independence ofexp [i2π(ux + vy)]
functions, we have

−4π2A

(
u2 +

B

A
uv +

C

A
v2

)
f̂(u, v) = 0. (21)

To apply our method, one has to look for factorization in Eq.
(21) of the form,

(
u2 +

B

A
uv +

C

A
v2

)
f̂(u, v)

= (u− αv)(u− βv)f̂(u, v) = 0. (22)

In Eq. (22)

α = −B −√B2 − 4AC

2A
and

β = −B +
√

B2 − 4AC

2A
. (23)

By using properties from Eq. (7) and (8) to fulfill Eq. (21),
the solution in the frequency domain can be written as,

f̂(u, v) = ĝ1(u, v)δ(u− αv) + ĝ2(u, v)δ(u− βv). (24)

By inverse Fourier transforming Eq. (24) one obtains,

f(x, y) = g1(αx + y) + g2(βx + y). (25)

In Eq. (25)g1 andg2 represent arbitrary functions that
correspond to the inverse Fourier transform ofĝ1 andĝ2, re-
spectively. By direct substitution in the differential Eq. (17)
one can verify that Eq. (25) is a correct general solution.

3.1. Non-parabolic PDE

We first want to note that Eq. (25) is the most general solu-
tion of Eq. (1) withD = E = F = 0 for the non-parabolic
PDE (hyperbolic or elliptic), which is shown in the next two
examples.

3.1.1. 1D-wave equation (Hyperbolic partial differential
equation)

If in Eq. (17)A = c2, B = 0, C = −1 andy = t we obtain
the 1−D wave equation

(
c2∂xx − ∂tt

)
f(x, t) = 0. (26)

ThusB2−4AC = 4c2 > 0; in Eq. (22),α = −β = 1/c and
the solution (25) can be written as

f(x, t) = g1

(
t +

x

c

)
+ g2

(
t− x

c

)
, (27)

this is the d’Alambert solution of the 1D−wave equation.
Since Eq. (25) includes the solution forB 6= 0, this result
shows that Eq. (25) can be considered a generalization of the
d’Alambert solution.

3.1.2. 2D-Laplace equation (Elliptic partial differential
equation)

Here we consider Eq. 17A = C = 1 andB = 0

(∂xx + ∂yy) f(x, t) = 0, (28)

consequentlyB2−4AC = −4 < 0; in Eq. (23)α = −β = i,
and the solution (25) becomes

f(x, y) = g1(ix + y) + g2(−ix + y). (29)

Rev. Mex. F́ıs. E 17 (1) 11–18
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To show that Eq. (29) is indeed a correct solution, let us
consider the 2D−Laplace equation subject to the boundary
conditions, (i)f(x, 0) = 0, (ii) f(x, a) = 0, (iii) f(0, y) =
f0(y) and (iv)f(x, y) = 0 whenx → ∞. Sinceg1(ix + y)
andg2(−ix + y) are both arbitrary functions, and because
there are two homogeneous boundary conditions inx, har-
monic solutionsg1(x, y) = Γ1e+ik(ix+y) + Γ2e−ik(ix+y)

andg2(x, y) = Γ3e−ik(ix+y) + Γ4e−ik(−ix+y) are proposed;
wherek andΓj , are complex constants. Thus,

f(x, y) =
(
Γ1eiky + Γ4e−iky

)
e−kx

+
(
Γ3eiky + Γ2e−iky

)
ekx. (30)

Boundary condition (iv) implies thatk must be a posi-
tive or negative real number, but not both. Takingk ∈
R+, Γ2 and Γ3 must be equal to zero, thusf(x, y) =(
Γ1eiky + Γ4e−iky

)
e−kx. Applying boundary condition (i),

Γ1 = −Γ4, and from boundary condition (ii), it is obtained
that k = nπ/a, n ∈ N ∪ {0}. With these restrictions, the
following family of solutions is obtained,

fn(x, y) = Γn sin
(
nπ

y

a

)
exp

(
−nπ

x

a

)
. (31)

And the general solution

f(x, y) =
∞∑

n=0

Γn sin
(
nπ

y

a

)
exp

(
−nπ

x

a

)
. (32)

To obtainΓn we apply the boundary condition (iii),

f(0, y) =
∞∑

n=0

Γn sin
(
nπ

y

a

)
= f0(y). (33)

Multiplying this equation bysin(mπy/a), wherem ∈ N ∪
{0} and integrating from0 to a one obtains:

Γn =
2
a

a∫

0

f0(η) sin
(
nπ

η

a

)
dη. (34)

Solution (32) withΓn given by Eq. (34), for the proposed
boundary value problem can be corroborated by the separa-
tion of variables method [9].

3.2. Parabolic PDE

A special study is necessary when in Eq. (17)B2−4AC = 0
(i.e., parabolic PDE), in this caseα = β = −B/2A and so-
lutions (25) are degenerated. To find the second solution, we
write

(∂x + a∂x) (∂x + a∂x) f(x, y) = 0, (35)

the Fourier transform of the differential equation (35) implies
that,

(u + av)2 f̂(u, v) = 0, (36)

with a ≡ B/2A. For Eq. (36) the general form of the SGF
can be written as,

f̂(u, v) = δ (u + av) ĝ1(u, v)

+
dδ (u + av)
d (u + av)

ĝ2(u, v). (37)

Thus, by inverse transforming Eq. (37) one obtainsf(x, y) =
f1(x, y) + f2(x, y), where

f1(x, y) =

∞∫

−∞

∞∫

−∞
δ (u + av) ĝ1(u, v)

× exp [i2π(ux + vy)] dudv = g1 (−ax + y) , (38)

and

f2(x, y) =

∞∫

−∞

∞∫

−∞

dδ (u + av)
d (u + av)

ĝ2(u, v)

× exp [i2π(ux + vy)] dudv. (39)

Making the change of variables = u + av, one obtains,

f2(x, y) =

∞∫

−∞

{ ∞∫

−∞

dδ(s)
ds

ĝ2 (s− av, v)

× exp [i2π [(s− av)x + vy]] ds

}
dv

=

∞∫

−∞
[xĝ2(v) + ĝ3(v)] exp [i2π (ax + y) v] dv

= xg2 (−ax + y) + g3 (−ax + y) . (40)

By switching the integration order and following a similar
procedure as above one obtains

f2(x, y) =
1
a

[yg2 (x− ay) + g3 (x− ay)] . (41)

Thus, the general solution is,

f(x, y) = g1 (ax− y) + (ax− y) g2 (ax− y) . (42)

Beinggi, i =1, 2, arbitrary functions. By direct substitution
of Eq. (42) into Eq. (17) one can confirm that the solution is
correct.

4. Solutions of 2D-homogeneous PDE

The SGFs method also allows finding solutions to the gen-
eral Eq. (1). By making the following change of variables in
Eq. (1),

γ(x, y) = αx + y and η(x, y) = βx + y, (43)

Rev. Mex. F́ıs. E 17 (1) 11–18
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one gets,

[− (
B2 − 4AC

)
∂γη + A (Dα + E) ∂γ

+ A (Dβ + E) ∂η + AF ]f(γ, η) = 0. (44)

Here,α andβ are given by Eq. (23).

4.1. Non-parabolics PDEs

ForB2 − 4AC 6= 0, Eq. (44) can be written as

(∂γη −G∂γ −H∂η − I) f(γ, η) = 0, (45)

where

G ≡ A
Dα + E

B2 − 4AC
, H ≡ A

Dβ + E

B2 − 4AC
, and

I ≡ A
F

B2 − 4AC
. (46)

Before finding a complete solution to Eq. (45), two ex-
amples we will analyze.

4.1.1. D = E = F = 0

If D = E = F = 0 thenG = H = I = 0 and Eq. (45)
becomes,

∂γηf(γ, η) = 0, (47)

whose solutions are:

f(γ, η) = g1f(γ) + g2(η), (48)

obtained by following Eq. (24).

4.1.2. F=0

If F = 0, then

(∂γη −G∂γ −H∂η) f(γ, η) = 0. (49)

Equation (49) can be rewritten as,

∂γ [(∂η −G) f(γ, η)] = ∂η [Hf(γ, η)] or

∂η [(∂γ −H) f(γ, η)] = ∂γ [Gf(γ, η)] . (50)

Equations (50) suggest that a family of solutions can be ob-
tained if one chooses,

f(γ, η) = g(Kγ + Jη), (51)

hereJ andK are non-zero complex constants. By defining
ϕ(γ, η) ≡ Kγ + Jη an ordinary differential equation is ob-
tained, namely,

g′′(ϕ)−
(

GK + HJ

KJ

)
g′(ϕ) = 0, (52)

and their solution are given by

f(γ, η) = Γ1 exp

[
+

√
GK + HJ

KJ
(Kγ + Jη)

]

+ Γ2 exp

[
−

√
GK + HJ

KJ
(Kγ + Jη)

]
. (53)

WhereΓ1 andΓ2 are constants that must be determined by
the particular boundary conditions.

SinceKγ+Jη = (αK+βJ)x+(K+J)y, the solutions
in the(x, y) variables are,

f(x, y) = Γ1 exp [+(Lx + My)]

+ Γ2 exp [−(Lx + My)], (54)

where L ≡ (αK + βJ)
√

(GK + HJ)/KJ and M ≡
(K + J)

√
(GK + HJ)/KJ .

By direct substitution into differential Eqs. (1) or (49)
one can verify that Eq. (54) or (53), respectively, are correct
solutions.

4.1.3. All coefficients non-zero

Equation (52) suggests the same form of solutions for
Eq. (45), thus,

g′′(ϕ)−
(

GK + HJ

KJ

)
g′(ϕ)− I

KJ
g(ϕ) = 0, (55)

By proposing exponential solutions,g(ϕ) = exp (Nϕ), in
Eq. (55) ones gets

[
N2 −

(
GK + HJ

KJ

)
N − I

KJ

]
g(ϕ) = 0, (56)

hereN is a constant. From (56) the non-trivial solution is
obtained when,

N2 −
(

GK + HJ

KJ

)
N − I

KJ
= 0, (57)

whose roots are

N1 =
GK + HJ

2KJ

[
1 +

√
1− 4IKJ

(GK + HJ)2

]
,

and

N2 =
GK + HJ

2KJ

[
1−

√
1− 4IKJ

(GK + HJ)2

]
.

Thus, solutions to Eq. (55) are,

f(γ, η) = Γ1 exp [N1(Kγ + Jη)]

+ Γ2 exp [N2(Kγ + Jη)], (58)

and in the(x, y) variables,

f(x, y) = Γ1 exp (Ox + Py) + Γ2 exp (Qx + Ry). (59)

Rev. Mex. F́ıs. E 17 (1) 11–18
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Where O ≡ (αK + βJ)N1, P ≡ (K + J)N1 Q ≡
(αK + βJ)N2 andR ≡ (K + J)N2.

Again, by direct substitution in the differential equations
(1) or (45) one can verify that Eq. (58) or (59), respectively,
are correct solutions.

4.2. Parabolic 2D-PDE

If B2 − 4AC = 0 or C = B2/4A, (1) becomes

(
A∂xx + B∂xy +

B2

4A
∂yy

+ D∂x + E∂y + F

)
f(x, y) = 0, (60)

and the solutions are degenerated, as shown in Sec. 2.3. Also,
above it was found that solutions for the 2D-parabolic PDEs
in the(x, y) variables are of the form,

f(x, y) = g (γ(x, y)) with

γ(x, y) = − B

2A
x + y. (61)

Substituting Eq. (61) into Eq. (60),

2AE −BD

2A
g′(γ) + Fg(γ) = 0. (62)

Non-trivial solution occurs whenBD − 2AE 6= 0, thus

g′(γ) = −
(

2AF

2AE −BD

)
g(γ). (63)

Whose solutions are:

g(γ) = exp
(
− 2AF

2AE −BD
γ

)
. (64)

Then

f(x, y) = exp
[

2AF

2AE −BD

(
B

2A
x− y

)]
. (65)

Similar to the case in section 3, the second solution can
be found,

f(x, y) =
(

x− D

E
y

)

× exp
[

2AF

2AE −BD

(
B

2A
x− y

)]
, (66)

which can be verified by direct derivation.
Since Eq. (65) becomes either one-variable function for

B = 0 or a constant forF = 0, general solutions are not pos-
sible until one proposes specific expressions for the SGFs.

4.2.1. 1D-diffusion-like differential equation

As an illustrative example, let us consider a 1D-diffusion-like
differential equation. In this caseB = C = D = F = 0, and
Eq. (1) becomes

(A∂xx + E∂y) f(x, y) = 0. (67)

The Fourier transform of Eq. (67) reads,
(
−4π2u2 + i2π

E

A
v

)
f̂(u, v) = 0. (68)

Following the above description, it is possible to factorize Eq.
(68) as,

(
u−

√
iE

2πA
v

)(
u +

√
iE

2πA
v

)
f̂(u, v) = 0. (69)

Following now the method as described in the above exam-
ples we have the two solutions,

f̂(u, v) = δ

(
u−

√
iE

2πA
v

)
ĝ1(u, v)

+ δ

(
u +

√
iE

2πA
v

)
ĝ2(u, v). (70)

By inverse Fourier transforming Eq. (70) in one spectral vari-
able one obtains,

f̂v(x, y) =

[
ĝ1(v) exp

(
+i2π

√
iE

2πA
vx

)

+ ĝ2(v) exp

(
−i2π

√
iE

2πA
vx

)]

× exp (i2πvy). (71)

An application of Eq. (71) is obtained by takingy = t
(time), v = f (frequency),E/A = −1/D (D thermal dif-
fusivity) andf̂v = T̂ (Fourier transform of temperature). In
this case, Eq. (71) becomes the general homogeneous solu-
tion of the Photoacoustic and Photothermal boundary value
problem [10],

T̂ω(x, t) =
{
Γ1(ω) exp [−iσ(ω)x]

+ Γ2(ω) exp [+iσ(ω)x]
}

exp (iωt). (72)

Whereω = 2πf andσ(ω) = (1 + i)
√

ω/2D. Γ1(ω) and
Γ2(ω) are functions that should be determined by the bound-
ary conditions in the frequency domain. The inverse Fourier
transform of Eq. (72) reads,

T (x, t) =
1
2π

∞∫

−∞
Γ1(ω) exp {−i[σ(ω)x + ωt]}dω

+
1
2π

∞∫

−∞
Γ2(ω) exp {+i[σ(ω)x + ωt]}dω. (73)
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Since photothermal measurements are performed utiliz-
ing a monochromatic source, with a blocking sinusoidal
chopper operating at a frequencyω0, [10] I(ω0) = I0[1 +
cos(ω0t)]/2 and the Fourier transform ofcos(ω0t) is propor-
tional toδ(ω±ω0), a direct proposal isΓ1 = 2πS1(ω)δ(ω +
ω0) andΓ2 = 2πS2(ω)δ(ω − ω0), which gives the solution,

T (x, t) = S1(ω0) exp {−i[σ(ω0)x + ω0t]}
+ S2(ω0) exp {+i[σ(ω0)x + ω0t]}. (74)

The above approach shows how the SGFs method can be cho-
sen for constructing different solutions.

5. SGF method in other coordinate systems:
The Helmholtz differential equation in
Cylindrical coordinates

Helmholtz equation with axial symmetry occurs whenA =
C = 1, B = D = E = 0, andF = 0 in Eq. (1)

(∂xx + ∂yy + F ) f(x, y) = 0. (75)

To obtain a solution to Eq. (75) in cylindrical coordinates,
first we Fourier transform the functionf from the(x, y) space
to the frequency domain,

[−4π2
(
u2 + v2

)
+ F

]
f̂(u, v) = 0, (76)

being(u, v) the corresponding spectral variables.
It is straightforward to obtain solutions for this equation

in Cartesian coordinates with one of the approaches described
above. Instead, let,

2πu = kx = k cos(α) and 2πv = ky = k sin(α), (77)

and additionally

x = ρ cos(ϕ) and x = ρ sin(ϕ). (78)

Substituting (77) in (76) one obtains,
(
k2 − F

)
f̂ (kx, ky); or

(
k −

√
F

)(
k +

√
F

)
f̂(kx, ky) = 0, (79)

applying our method to Eq. (79) implies that,

f̂(kx, ky) = δ
(
k −

√
F

)
ĝ1 (kx, ky)

+ δ
(
k +

√
F

)
ĝ2 (kx, ky) . (80)

The inverse transform of Eq. (80) now reads,

f(x, y) =
1

(2π)2

∞∫

−∞

∞∫

−∞
f̂ (kx, ky)

× exp [i(kxx + kyy)]dkxdky. (81)

By substituting (79) and (80) in (81) one obtains,

f(ρ, ϕ) =
1

(2π)2

∞∫

0

2π∫

0

[
δ
(
k −

√
F

)
ĝ1(k, α)

+ δ
(
k +

√
F

)
ĝ2(k, α)

]

× exp [ikρ cos(α− ϕ)]kdkdα. (82)

After performing the integrals involving the Dirac func-
tion, one obtains,

f(ρ, ϕ) =
1

(2π)2

2π∫

0

ĝ1

(√
F , α

)
exp

[
i
√

Fρ cos(α− ϕ)
]

×
√

Fdα− 1
(2π)2

2π∫

0

ĝ2

(
−
√

F, α
)

× exp
[
−i
√

Fρ cos(α− ϕ)
]√

Fdα.

At this point, the generalized functionŝg1,2(±
√

F , α) =
ĝ1,2(α) can be used to obtain different solutions. A nat-
ural choice can bêg1(α) = A exp (+inα) and ĝ2(α) =
B exp (−inα), beingA andB arbitrary constants, andn an
integer. With this choice, one obtains,

f(ρ,ϕ) =
A
√

F

(2π)2

2π∫

0

exp (−inα)

× exp
[
i
√

Fρ cos(α− ϕ)
]
dα− A

√
F

(2π)2

×
2π∫

0

exp (+inα) exp
[
−i
√

Fρ cos(α− ϕ)
]
dα. (83)

Making the variable changeΨ = α − ϕ, in the integrals
of Eq. (83), we have

f(ρ, ϕ) = A′
√

F exp (+inϕ)
1
2π

2π−ϕ∫

−ϕ

exp (+inΨ)

× exp
[
+i
√

Fρ cos(Ψ)
]
dΨ−B′√F exp (−inϕ)

× 1
2π

2π−ϕ∫

−ϕ

exp (−inΨ) exp
[
−i
√

Fρ cos(Ψ)
]
dΨ, (84)

whereA′ = A/2π andB′ = B/2π. Since the functions in
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arguments are2π−periodic, we can write

f(ρ, ϕ) = A′
√

F exp (+inϕ)
1
2π

2π∫

0

exp (+inΨ)

× exp
[
+i
√

Fρ cos(Ψ)
]
dΨ−B′√F exp (−inϕ)

× 1
2π

2π∫

0

exp (−inΨ) exp
[
−i
√

Fρ cos(Ψ)
]
dΨ.

By using the next integral form of the Bessel functions of the
first kind ordern,

Jn

(√
Fρ

)
= exp

(
−i

nπ

2

) 1
2π

2π∫

0

exp (inΨ)

× exp
[
i
√

Fρ cos(Ψ)
]
dΨ

and the fact that

Jn(−
√

Fρ) = (−1)nJn(
√

Fρ) = exp (−inπ)Jn(
√

Fρ),

we have

exp (−inπ)Jn

(√
Fρ

)
= exp

(
−i

nπ

2

) 1
2π

2π∫

0

exp (−inΨ)

× exp
[
−i
√

Fρ cos(Ψ)
]
dΨ,

then

1
2π

2π∫

0

exp (+inΨ) exp
[
+i
√

Fρ cos(Ψ)
]
dΨ

= exp
(
+i

nπ

2

)
Jn

(√
Fρ

)
,

1
2π

2π∫

0

exp (−inΨ) exp
[
−i
√

Fρ cos(Ψ)
]
dΨ

= exp
(
−i

nπ

2

)
Jn

(√
Fρ

)
.

by substituting these functions into Eq. (84), ones obtain the
family of solutions,

fn(ρ, ϕ) =
√

F

{
An exp

[
+in

(
ϕ +

nπ

2

)]

+ Bn exp
[
−in

(
ϕ +

nπ

2

)]}
Jn

(√
Fρ

)
. (85)

If in Eq. (83) we set̂g2(α) = 0, we obtain the well know
solution to the Helmholtz differential equation in cylindrical
coordinates

fn(ρ, ϕ) = A′n exp
[
+in

(
ϕ +

nπ

2

)]
Jn

(√
Fρ

)

whereA′n = An

√
F . Finally, the obtained general solution

of Helmholtz differential equation in cylindrical coordinates
with axial symmetry is,

f(ρ, ϕ) =
√

F

∞∑
n=0

{
An exp

[
+in

(
ϕ +

nπ

2

)]

+ Bn exp
[
−in

(
ϕ +

nπ

2

)]}
Jn

(√
Fρ

)
. (86)

Before finishing the report, we summarize the proposed
method for solving homogeneous partial differential equa-
tions with constant coefficients. First, factorization of the
resulting transformed equation (when possible) is performed,
and then, the properties of the Dirac delta function listed in
Eq. (7)-(9) are used. When the method of factorization does
not allow obtaining solutions, there is still the possibility of
constructing solutions. It could be done particular SGFs or
by using the properties of the product of two or more Dirac
deltas.
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