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Mechanical energy analysis of a boomerang mechanism
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In this paper, we present a comparison of classical theory with video analysis techniques to teach kinetic and potential energy of a device
with a boomerang effect as an observable and measurable concept. The device can store energy through an elastic band when it rolls down an
inclined plane, and can release the energy when it rolls on a horizontal surface; hence, it receives the name boomerang. In theoretical terms,
the details of energy charge and discharge processes are analyzed with Newton’s laws and Lagrangian method. The experimental results
were recorded with cell phone cameras and processed with an open-source video analysis software, called “Tracker”. The comparison shows
relevant concepts about kinetic and potential energy, which can help the student to overcome some of the typical student misconceptions.
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En este artı́culo, presentamos una comparación de la teoŕıa cĺasica con t́ecnicas de ańalisis de video para enseñar la enerǵıa cińetica y
potencial de un dispositivo con un efecto búmeran, como un concepto observable y medible. El dispositivo puede almacenar energı́a a trav́es
de una banda elástica cuando rueda hacia abajo en un plano inclinado y puede liberar la energı́a cuando rueda sobre una superficie horizontal;
de ah́ı el nombre de b́umeran. En t́erminos téoricos, los detalles de los procesos de carga y descarga de energı́a se analizan con las leyes de
Newton y el ḿetodo de Lagrangian. Los resultados experimentales se registraron con cámaras de teléfonos celulares y se procesaron con un
software de ańalisis de video de ćodigo abierto, llamado “Tracker”. La comparación muestra conceptos relevantes sobre la energı́a cińetica
y potencial, que pueden ayudar al estudiante a superar algunos de los conceptos erróneos t́ıpicos de los estudiantes.
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1. Introduction

The mechanical energy conservation has gained so much at-
tention due to this issue occupies a central place in physics
instruction at all levels. This concept is traditionally associ-
ated with different subjects with several engineering activi-
ties. Although energy conservation is a classical problem in
physics, the understanding students in this topic is unsatisfac-
tory and limited. It is often because when the student exam-
ines the literature, different misconceptions about the concept
of energy emerges.

Various research in science education studied and pro-
posed solution about the difficulties of students in under-
standing the concept of energy and in using its conservation
principle in practical examples. For example, Takaoglu [1]
determined how high school students at different levels per-
ceive the energy and related concepts. The results showed
that energy and associated concepts are disconnected in dif-
ferent lessons of different disciplines, so that, the students do
not relate concepts.

İY İBİL [2] determined the effectiveness of the teaching
“energy” concept based on the Common Knowledge Con-
struction Model. The result of this study shows that the
lessons’ time in the science curriculum is not enough, es-
pecially, if students have learning difficulties. They con-
cluded that it is more successful to teach a concept or a sub-

ject in controlled groups than individually. Tatar [3] studied
published manuscripts on students’ misunderstandings about
the energy conservation principle with the purpose to pre-
vent these misunderstandings. The authors gave some cru-
cial strategies to reduce or eliminate misunderstandings on
the energy conservation principle.

Heuvelen and Zou [4] described a multiple-representation
strategy for helping students to analyze work-energy pro-
cesses along with several examples. The results showed that
the qualitative work-energy bar charts served as a useful vi-
sual tool to help students understand work-energy concepts
and to solve related problems.

Tiberghien [5] presented the methodology to teach the en-
ergy concepts at the high school level. The method is based
on relating the theory and the model (in a written form) with
the experimental field (in the way of a real experiment). Ac-
cording to results, the combination permits the construction
of coherent relations between these two worlds.

Liu et al. [6] examined the structural characteristics of
university engineering students’ conceptions of energy con-
servation. It was found that students failed to apply the con-
cepts of energy conservation in practical examples. There-
fore, it has serious implications for science curriculum devel-
opment and instruction.
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For this perspective, the primary challenge is to introduce
new practical examples, where the student incorporates clas-
sical theory with software analysis techniques. Therefore, in
this paper, a comparison of classical theory with a video anal-
ysis technique is used to teach kinetic and potential energy of
a device with a boomerang effect. The mathematical model
is based on Lagrange’s equations and Newton’s laws. The
experimental results were recorded with cell phone cameras
and processed with an open-source video analysis software,
called ’Tracker’.

Our efforts aimed to show the student the relationship be-
tween the kinetic and potential energy of a mechanical device
with a boomerang effect, the influence of the elastic band
when the mechanic is rolling on an inclined plane without
slipping, and total mechanical energy of the studied object.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the methodology. Section 3 describes back-
ground information from the literature about relevant fac-
tors. Section 4 describes in detail the operational principle
of the mechanical device with a boomerang effect. Section 5
presents the dynamic equations using the Lagrangian method
and Newton’s laws. Section 6, discusses the experimental and
mathematical results. Finally, in Sec. 6, we give concluding
remarks.

2. Methodology

The analytical and experimental comparison follows the next
procedure: i) introduction to related literature, ii) description
of mechanical device, iii) construction of the mathematical
model, iv) obtaining and comparing the experimental and the-
oretical data; and v) check that the correlation of the data is
correct.

3. Related literature

The boomerang effect is a particularly important, intriguing
and widely known case of bodies in rotation. Its peculiar
characteristic is to rotate throughout a trajectory and return
to their point of origin, due to the rotational inertia of the
body [7]. The boomerang effect has been studied from the
aerodynamic point of view by [8–10]. In change, the me-
chanical devices subject to rolling on a horizontal plane is
one of the most studied problems in physics, due to its appli-
cability in ball bearing, moving vehicles and tribology [11].

Many research works have examined the rolling from
several points of view. For example, Yavin and Frangos [12]
introduced the concept of available command strategies and
their applicability onto a disk rolling on a moving horizontal
plane. The significant findings of their work are; i) to find the
equations of motion of the disk using the Lagrangian method
during a time interval[0, tf ], and ii) using open-loop strate-
gies to compute the results. In other work [13], the authors
analyzed a disk rolling on a vibrating plane. There, they in-
troduced the concept of path controllability model to demon-
strate its applicability. The dynamic model offers a procedure

for the design of closed-loop control law applicable in disk’s
motion with path controllable.

Kemp and Yavin [14] have developed a procedure for the
calculation of torques in disk’s motion, which allows tracking
and gives a smooth ground trajectory. This work explored the
possibility of controlling the motion of the rolling disk by ap-
plying two rotors. Cushman and Duistermaat [15] analyzed
the motion and loss of energy of a disk without slipping. La-
grangian equations and Newton’s laws were used to define
the position, velocity, and energy of a thin disk. In [16], the
second-year undergraduate studies used computer algebra as
a tool to analyze the conservation of energy, the position of
the centroid and the stability of a disk on a horizontal plane.
The experiments based on video analysis indicate that stu-
dents’ understanding improved remarkably and some typical
difficulties were overcome.

In Maloney [17], the author investigated the energy trans-
formations about five situations involving the conservation
of mechanical energy, using Siegler’s Rule-Assessment tech-
nique. In each case, the study showed the relation between
conceptual and experimental analysis and identified several
strategies to connect the terminology.

Batistaet al. [18] provided a discussion about steady mo-
tion of a rigid disk with finite thickness rolling on its edge,
on a horizontal plane under the influence of gravity. The au-
thors included a complete study of the bifurcations of steady
motion on rough ground. Similarly, in [19], the author pro-
vided a solution to the bifurcations of the steady motion of
a disk on a rough plane, using Gauss hypergeometric func-
tions. In [20, 21], the displacement, speed, and acceleration
of a disk on an inclined plane without slipping were analyzed
using the Lagrangian method.

In this paper, a video analysis technique is used to help re-
late concepts through the visual tool. The proposed technique
was the students’ validation in a test-bed, with theory frame
of energy conservation, through visual tools, they linked the
theory with practical experiments. It was noticed that this
method could reduce some misunderstandings on the energy
conservation principle.

FIGURE 1. Schematic of the BW mechanism.
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4. System description

Figure 1 shows a CAD model of a boomerang wheel (BW)
mechanism. The mechanical system has a structure in a
cylindrical shape. It is composed of two lateral wheels with
radius (rw) joined to three longitudinal shafts. The shafts are
distributed around the wheels at 120◦ and located at a radius
(rp) from the center to the periphery. Each shaft has a length
(Ls) and diameter (rs).

The BW mechanism includes an elastic band traversed by
the central axis of the structure and fixed at its end wheels. At
the middle of the elastic band, a counterweight is tied in such
a way that the wheels rotate without the counterweight mov-
ing.

The mechanical system is placed at the top of a ramp at a
height (h) of 0.13 m. In this position (P1), the wheels remain
static with a brake. When the BW mechanism releases from
rest, it moves down the ramp (P2). During the movement, the
elastic band begins to turn. The torsion of the elastic band
will cause the wheels to slow down and the mechanism to
stop (P3). In this phase, the mechanism is in the process of
charging energy. Figure 2 illustrates the trajectory of the BW
mechanism.

When the elastic band is completely twisted (P3), the
BW mechanism begins to move in a contrary sense (the
boomerang effect), fromP3 to P2, from P2 to P3, and so
on. The mechanism repeats the charge and discharge process
until it stops, dissipating all the energy of the elastic band. In
this phase, the system is in the process of discharging energy.

5. Mathematical formulation

5.1. Process of charging energy

The BW mechanism will be considered a solid disk of radius
rw and massmw, that starts from rest and travels without
sliding up a slope with an opening angleφ. The reference
systemxy is located at the top of the ramp, as indicated in
Fig. 3. When the mechanism moves fromP1 to P2, the po-
tential energyV is expressed by [22]

V = mT gyG +
1
2
ktθ

2 (1)

wherekt = ω2
nIT .

FIGURE 2. Trajectory of the BW mechanism.

FIGURE 3. Free body diagram of the BW mechanism.

The kinetic energy is given by the sum of translation
and rotation motion around the centre of mass, as Eq. (2)
shows [23]:

T =
1
2
mT (ẋG

2 + ˙yG
2) +

1
2
IT θ̇2 (2)

whereIT = mwr2
w + msr

2
p, Iw = mwr2

w, andIs = msr
2
p.

Therefore, the total energy of the system is expressed as

ET =
1
2
mT (ẋG

2 + ˙yG
2)+

1
2
IT θ̇2 +mT gyG +

1
2
ktθ

2. (3)

The Lagrangian method [24] is applied to obtain the equa-
tions of motion of the disk rolling on an inclined plane. The
Lagrangian function for the system’s motion is given by

L = T − V =
1
2
mT (ẋG

2 + ˙yG
2)

+
1
2
IT θ̇2 −mT gyG − 1

2
ktθ

2 (4)

From Fig. 3, we consider the following holonomic ligatures

f
(h)
1 = (xG − rw sin φ) sec φ− rwθ = 0 (5)

f
(h)
2 = yG + xG tan φ− l sin φ− rw sec φ = 0 (6)

The three equation of motion with respect toxG, yG andθ,
respectively, are

mT ẍG = λ1 sec φ + λ2 tan φ (7)

mT ÿG + mT g = λ2 (8)

IT θ̈ + ktθ = −λ1rw (9)

Combining the holonomic ligatures with the three equations
of motion and harmonic movementxG = A cos (ωnt), we
obtain

ẍG=
r2
wmT g tan φ−kt sec2 φ(A sin (ωnt)−rw sin φ)

mT r2
w−IT sec2 φ+mT r2

w tan2 φ
(10)
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Integrating Eq. (10) with initial conditionst0 = 0, xG0 = 0, θ0 = 0, andθ̇0 = 0, we have

ẋG =
tD tan φ + Eω−1

n cos (ωnt) + tF

mT r2
w − IT sec2 φ + mT r2

w tan2 φ
(11)

xG =
0.5t2D tan φ + ω−2

n E sin (ωnt) + 0.5t2F

mT r2
w − IT sec2 φ + mT r2

w tan2 φ
(12)

WhereD = r2
wmT g, E = ktA sec2 φ andF = rwkt sinφ sec2 φ.

Therefore, the total energy of the BW mechanism for the charge process fromP1 to P2 can be expressed as

ET (t) =
1
2
mT

(
tD tan φ + Eω−1

n cos (ωnt) + tF

mT r2
w − IT sec2 φ + mT r2

w tan2 φ

)2

+
1
2
mT tan2 φ

(
tD tanφ + ω−1

n E cos (ωnt) + tF

mT r2
w − IT sec2 φ + mT r2

w tan2 φ

)2

+
IT

2r2
w

(
tD tanφ + ω−1

n E cos (ωnt) + tF

mT r2
w − IT sec2 φ + mT r2

w tan2 φ

)2

−WT tanφ

(
0.5t2D tanφ + ω−2

n E sin (ωnt) + 0.5t2F

mT r2
w − IT sec2 φ + mT r2

w tan2 φ

)

+ WT l sinφ + WT rw sec φ +
kt

2r2
w

(
0.5t2D tanφ + ω−2

n E sin (ωnt) + 0.5t2F

mT r2
w − IT sec2 φ + mT r2

w tan2 φ

)2

(13)

WhereWT is total weight of boomerang mechanism.
The Lagrangian of the disk rolling without slipping from

P2 to P3 is given by

L = T − V =
1
2
mT ẋG

2 +
1
2
IT θ̇2 − 1

2
ktθ

2 (14)

Considering the holonomic ligaturef (h)
1 = xG − rwθ = 0,

we obtain the motion equations with respect toxG andθ, re-
spectively, as follows

mT ẍG = λ1 (15)

IT θ̈ + ktθ = −λ1rw (16)

The movement is simple harmonic motion, soxG = A cos
(ωnt), ẋG = −Aωn sin (ωnt), andẍG = −ω2

nA cos (ωnt).
Combining these expressions with Eq. (15) and Eq. (16), we
obtainẍG = (−ktA cos(ωnt)/mT r2

w + IT ). Therefore, the
total energy of the BW device fromP2 toP3 can be expressed
as

E(t) =
1
2
mT A2ω2

n sin2 (ωnt) +
1

2r2
w

IT A2ω2
n sin2 (ωnt)

+
1

2r2
w

ktA
2 cos2 (ωnt) (17)

5.2. Process of discharging energy

After the BW mechanism leaves the inclined plane, it begins
moving on the horizontal plane, reaching a maximum dis-
tance (xmax), until it arrives atP3. At this point, the elastic
band untwists; therefore, the device moves back and forward
repeatedly, performing some cycles of a damped harmonic
oscillator movement until stopping completely. If the move-
ment is along thex-axis, and assuming there are no external
forces, the balance of forces for damped harmonic oscillators
is then [25]

−kx− cẋ = mT ẍ → ẍ +
c

mT
ẋ +

k

mT
x = 0 (18)

where the natural frequency (ωn) and the damping ratio (ζ)
are given by

ωn =
√

k

mT
, ζ =

c

2
√

mT k
(19)

Eq. (18) can be rewritten as [26]

ẍ + 2ζωnẋ + ω2
nx = 0 (20)

A solution of Eq. (20) is assumed to be of the formx(t) =
Aeiωnt, and using the quadratic formulaα = −ζωn ± iωn√

1− ζ2, it takes the form [27]

x(t) = A1e
(−ζωn±iωn

√
1−ζ2)t

+ A2e
(−ζωn±iωn

√
1−ζ2)t (21)

For ζ < 1 (or b/2m <
√

k/mT ), the imaginary term in the
exponent will be real and defined by the frequency of damped
vibrationωd = ωn

√
1− ζ2. Equation (21) can be rewritten

using Euler’s identity as

x(t) = e−ζωnt[C1 cos (ωd)t+e−ζωnt+C1 sin (ωd)t] (22)

An alternative form of the solution is developed using the
trigonometric identity as

x(t) = Ae−ζωnt cos (ωdt + φd) (23)

where

A =

√
x2

0 +
(

ẋ + ζωnx0

ωd

)2

, ωd = ωn

√
1− ζ2
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and

φd = tan−1

(√
1− ζ2

ζ

)
.

Now, we consider a single-degree-of-freedom torsional
system with a small viscous damper. The equation of motion
can be derived as

I0
d2θ

dt2
+ bt

dθ

dt
+ ktθ = 0 (24)

The solution of Eq. (24) can be exactly found as in the case
of linear vibrations. The frequency of damped vibration is
given by the same expression as Eq. (18) whereωn is the
undamped natural frequency given by

ωn =
√

kt

I0
(25)

and the damping rationβ is

β =
bt

2
√

I0kt

(26)

Then, the expression for the angular movement is

θ(t) = Ae−βωnt cos (ωdt− φd) (27)

Whereωd is the damped frequency. The total energy of the
BW mechanism for the discharge process can be expressed
as

ET =
1
2
mT ẋ2 +

1
2
IT θ̇2 +

1
2
ktθ

2 (28)

where

ẋ = −Aωde
−ζωnt sin (ωdt + φd)

−Aζωne−ζωnt cos (ωdt + φd)

θ̇ = −Aωde
−βωnt sin (ωdt + φd)

−Aωnβe−βωnt cos (ωdt− φd)

6. Results and Discussion

To validate the mathematical approach, a it was built proto-
type of the BW mechanism with two compact discs joined
by three wooden sticks. An elastic band joins both compact
discs. Table I summarizes the characteristics of the prototype.

TABLE I. Characteristics of the BW mechanism.

Quantity Components Mass [kg] Dimensions [cm]

1 Counterweight 0.055 dC = 6; LC = 6.5

2 Wheels 0.015 dw = 12

3 Shafts 0.0016 ds = 0.5; Ls = 6.5

FIGURE 4. Displacement of BW mechanism with measurements.

FIGURE 5. Displacement and speed of BW movement showing the
zone of the charging energy process.

The BW prototype was placed on an inclined plane with a
brake. When the brake is removed from the device, it starts to
roll without slipping along the inclined surface with an angu-
lar speed. To obtain the experimental data, we used Tracker
software, which is a free video analysis and modeling tool.
The video was recorded with the camera of a typical smart-
phone, as shown in Fig. 4.

As can be seen from Fig. 5, the displacement is divided
into two parts: the charging and discharging processes. In
the charging process, the BW mechanism goes fromP1 to
P2; its maximum speedvmax is achieved atP2, wherevmax

is approximately 1.19 m/s.
At the pointP3, the speed isV = 0 m/s. Using the data

obtained with Tracker and Eq. (1)-(2), the potential energy is
approximately 0.15 J, and the value decreases until reaching
zero, as shown in Fig. 6.

This decrease is the result of the change in height from
P1 to P2 in the inclined plane. The figure also shows that po-
tential energy tends to increase slightly from zero when the
BW mechanism moves fromP2 to P3. Moreover, the figure
shows that there is a contribution to the potential energy of
the elastic band when the BW mechanism leaves the ramp.
This contribution also can be seen in the total energy.

As the BW goes fromP1 to P2, its kinetic energy tends
to increase, because of an increase in speed while the BW
mechanism is descending on the inclined plane. However,
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when

FIGURE 6. Behaviour of potential and kinetic energy during the
charging process.

FIGURE 7. Graph of FFT applied to BW mechanism data.

the BW mechanism goes fromP2 to P3, the kinetic energy
also increases slightly, so the total energy tends to increase
above even the potential energy. In the same way, this can be
attributed to elastic kinetic energy, as shown in Fig. 6.

For the discharge process, the BW mechanism presents
harmonic oscillations with almost three cycles. The ampli-
tude of the oscillation decreases with time, and the viscous
damping force dissipates. Because no work is being done on
the system, this leads to a continual decrease in the poten-
tial and kinetic energy until it reaches equilibrium, as shown
in Fig. 6. The vibrations of the BW mechanism are cyclic
but not periodic. The logarithmic decrease is determined
using the pointx1 = x(t) and a point in a period after as
x2 = (t + (2π/ωd)), x1 = 3.27 m, andx2 = 1.30 m. The
exponential decay isβωnt = 0.922, with the damping ratio
asβ = 0.152.

Applying a fast Fourier transform (FFT) to the BW dis-
placement, we show that there are two distinct frequency
peaks, which turn out to be multiples of 0.053 Hz, as shown
in Fig. 7. The angular frequency of damped vibrationωd

is approximately 0.333 rad/s, and the undamped natural fre-
quency is approximately 0.337 rad/s. Therefore, using the

FIGURE 8. Experimental fit from BW displacement, using Eq.
(23). Values are:ζ = 0.189, ωn = 0.37 rad/s; A = 5.65 m
andx0 = 0.12 m (initial displacement).

FIGURE 9. Graph of the energies present during movement.

initial conditionsx0 = 0, φd = (nπ/2) andA = (ẋ0/ωd)
in Eq. (23), we obtain the expression of displacement in
the discharge processx(t) = 3.6e−0.051t sin (0.33t). When
comparing this expression with the values obtained exper-
imentally, the experimental expression of displacement is
x(t) = 0.12 + 5.65e−0.07t sin (0.37t).

Plotting both expressions (Fig. 8), it is clear that there
is an only slight difference in the first two cycles. However,
in the following cycles, the graph shows notable differences.
The variability in the expressions occurs because neither fric-
tional forces nor the misalignment of the floor was not con-
sidered in the analysis.

In Fig. 9, we can observe the different changes between
kinetic energyT and elastic potential energyV during the
cyclic charge and discharge, which indicate the capacity of
the elastic system to save energy and release it slowly be-
tween each cycle. The total energy of the system is strongly
related to the cycles of the elastic potential energy, so that
it acts like a rechargeable battery. At the end of each cycle,
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the energy stored in the elastic element is transformed into
translational and rotational kinetic energy. However, in each
cycle, the BW mechanism shifts a shorter distance to the pre-
vious cycle; as a result, the storage and discharge of energy
decrease.

7. Conclusion

This work shows students that this system has to be divided
into two scenarios for its analysis: when the mechanism rolls
on the inclined plane (energy charge process), and when it
rolls on a horizontal surface (energy discharge process). The
derived equations demonstrate satisfactory results. However,
in the energy discharge process, there is a difference after
the first two cycles, because neither frictional forces nor, the
misalignment of the floor was considered in the analysis. Be-
sides, the potential and kinetic energy depend on the torsion
of the elastic band, as it stores and releases the energy of
mechanical. A complete study of the frictional forces is sug-
gested to complete the mathematical approach. In relation
to students, we observed that one of the major problems in
this analysis was the construction of Free-Body diagram, due
to the system has multiple components. Therefore, it is sug-
gested to reinforce the construction free body diagram of 3D
objects in the classroom.

List of Symbols

Greek letters

α Phase angle (rad)

ζ Damping ratio (cycles/s)

θ Rotation angle (rad)

θ̇ Angular velocity (rad/s)

θ̈ Angular acceleration (rad/s2)

φ Angle of inclined plane (grades)

λ Lagrange multiplier

ω Angular frequency (rad/s)

ωd Frequency of damped vibration (rad/s)

ωn Natural Frequency (rad/s)

Nomenclature

A Amplitude (maximum value)

c Viscous damping coefficient (N s /m)

C Constant of integration

d Diameter (m)

e Eulers identity

E Energy (J)

g Gravity (m/s2)

i Imaginary part

I Moment of inertia (kgm2)

k Spring stiffness (N/m)

kt Torsional stiffness (lbft/rad)

l Lenght of ramp (m)

L Length (m)

L Lagrangian function

m Mass (kg)

P Position

r Radius (m)

t Time (s)

T Kinematic energy (J)

V Potential energy (J)

x Position in the horizontal plane (m)

ẋ Velocity in x (m/s)

ẍ Acceleration inx (m/s2)

y Position in the vertical plane (m)

ẏ Velocity in y (m/s)

ÿ Acceleration iny (m/s2)

Subscripts

C Counterweight

d Damped vibration

G Center of mass

n Natural

p Periphery

s Shaft

sp Elastic band

T Total

w Wheel
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