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We give an elementary introduction to the Kaluza—Klein formulation, in which the gravitational and the electromagnetic fields are represented
in the geometry of a five-dimensional space. We show that, in the framework of general relativity, the interaction of a point particle, or of a
charged spin-zero field, with a gravitational and an electromagnetic field can be obtained through the metric of a five-dimensional space. We
also show that the symmetries of the metric of this five-dimensional space lead to constants of motion for the point particles, or to operators
that commute with the Klein—Gordon operator. A common misunderstanding related to the unification of gravitation and electromagnetism
given by the Kaluza—Klein formulation is discussed.
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Damos una introducen elemental a la formula@n de Kaluza—Klein, en la cual los campos gravitacional y electro&tagresan represen-

tados en la geomé#r de un espacio de dimegsicinco. Mostramos que, en el marco de la relatividad general, la intenadeiuna paitula

puntual, o de un campo cargado deiasgero, con un campo gravitacional y uno electrongéigo puede obtenerse a tesvde la ratrica de

un espacio de dimer@si cinco. Mostramos tambn que las simeias de la rdtrica de este espacio de dimémstinco llevan a constantes

de movimiento para las p&tilas puntuales, o a operadores que conmutan con el operador de Klein-Gordon. Se discute un malentendido
comin relacionado con la unificami de la gravitadin y el electromagnetismo dada por la formutecie Kaluza—Klein.

Descriptores: Teoiia de Kaluza—Klein; gedgbicas; simetas; ecuadin de Klein—Gordon.
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1. Introduction Klein theory can be obtained in a natural manner, trying to
see the world-line of a charged particle in a gravitational and
In the general theory of relativity the gravitational field is as- g, electromagnetic field as the projection on the space-time
sociated with the geometry of the space-time and the concepf 5 geodesic of a five-dimensional space. One of the ad-
of a gravitational force is no longer needed. The motion of a,antages of relating the world-lines of charged particles with
test particle under the sole influence of a gravitational field iyeodesics is that the continuous symmetries of a metric lead
obtained by assuming that its world-line is a geodesic of thejirectly to constants of motion (without making use of the

space-time metric. Noether theorem).
It is naturally interesting to see if other interactions can

be incorporated in a geometrical structure. In this sense, the In Sec. 2 making use of the Hamlltomar_l f_ormallsm, we
so-called Kaluza—Klein theory can be regarded as a parti£hOW that, in the framework of general relativity, the world-
success; in this formulation one tries to represent geome{'-nes of.chgrged particles ina gravitational and an electro-
rically the effects of a gravitational and an eIectromagneticmagneqC field are th? prOjegtlon.f, on the space-time of.the
field by considering a five-dimensional space with a metricdeodesics of the metric of a five-dimensional space, obtained

made out of the space-time metric and the four-potential oPy adding a coordinate to the space-time. In Sec. 3 we show

the electromagnetic field. By contrast with the general relathat With each continuous symmetry of the space-time metric

tivity theory, which involves a four-dimensional space-time and the electromagnetic field there is an associated constant
whose physical relevance is already established in the spé’ff mOt'Or'?' evehn i t:e chiu_r—poGtenélal IS not |.nvarf|ant. Ir;}Sec.d
cial relativity theory, the Kaluza—Klein theory makes use of I\éve N %W that the dgln— ordon equatlon' ﬁr s charge

a five-dimensional space, obtained by adding one coordinalfée can be expressed in a compact way, W't_ t € '”t?rac'
to the four coordinates of the space-time, but this fifth gi-tlons with a gravitational and an electromagnetic field given

mension arises as a mathematical convenience, without e)t(hﬁrouEh the five-dimensional met?chpr?posdgd in Sec. I2 and
perimental basis. that the continuous symmetries of the five-dimensional met-

Even though the Kaluza—Klein theory is almost as old adic lead to operators that commute WiFh the Klein-Gordon
the general relativity theory (see.g, Ref. [1] and the refer- operator. In Sec. 5, we show that if one imposes the analog of

ences cited therein), it is not commonly treated in the bookghe Einstein vacuum field equations on the five-dimensional

on general relativity (some few exceptions are Refs. [2_4])_metr|c one obtains the Einstein—Maxwell equations for a cer-

In the usual approach to the Kaluza—Klein theory, a specific‘faln class of electromagnetic fields.

form of the metric of the five-dimensional space is proposed Throughout this paper it is assumed that the reader is ac-
without any motivation. One of the aims of this paper is toquainted with the basic formalism of the general relativity
show that the form of the metric employed in the Kaluza—theory as presented,g, in Refs. [5-7], and with the Hamil-
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tonian formalism of classical mechanics as presemed,in  where the upper case Latin indices,B, . . ., run from 0 to 4,
Refs. [8-10]. andG 4 is the metric tensor of the five-dimensional space.
Indeed, splitting the double sum in (7) in the form

2. Motion of particles in gravitational and go L ges oo -
electromagnetic fields = g (G PaPs + 26 paps + G papa)

In the general relativity theory, the world-line of a particle (@ssuming, as usual, that the metric tensor is symmetric),
(with a nonzero rest mass) in a gravitational field representegomparison with Eq. (6) yields
by the space-time metrig, 3 is determined by the geodesic q
equations G = g7, Gy = —2 A,
d?z® o dz? da 0 1 ¢
d7'2+67d7'd7'_’ @
wherer is the proper time of the particle, the Greek indices
run from O to 3 and there is summation over repeated indiceSince the componenig”® andA®, appearing in (6), are func-
The Christoffel symbolsl';_, are determined by the metric tions of2“ only, we can assume that thg, 5 (and theG45)

G*paps = (%)QA"AQ.

tensor according to the standard formula are functions of: only; this implies that the new coordinate
1 P 9 P z* does not appear in the Hamiltonian (7) and, therefore, its
5, ==9* 960 %9v0 _ 995y , (2)  conjugate momentunpy, is a constant of motion. Guided by
T2 oxv  0xP Oxr

the expressions above, we shall assume that the metric of the

where(g*?) is the inverse of the matritg,z). The fact that five-dimensional space is

7 is the proper time of the particle amounts to the condition G = g*P G =_gA", G*™ =1+ k?A%A,, (8)

dz® dz? 9

Jap =gy = € (3) wherek is a constant such that? A*A, is adimensional
(identifying the constant of motiop, with ¢/xc). Note that
(assuming that the signature of the metri¢-is+ + +)). we have arbitrarily added the constant term 1 to the expres-
By means of a straightforward computation, one can version for G**; in this way the matrix G*?) is nonsingular
ify that the Hamiltonian if A, = 0. The inclusion of this term does affect the ex-
pression ofdz*/dr, but, as we shall demonstrate below, it
H = Lgaﬁpam (4)  does not modify the equations of motion of the particle in the
2mo space-time.
leads to the geodesic equations (1), Whﬁfﬂs the rest mass Then, one I’eadily Veriﬁes that the entl’ies Of the inVerse Of

of the particle and thg,, are the canonical momenta conju- the matrix(G*4#) must be given by

gated to the coordinates'; that is, the Hamilton equations )
Ga[)’ = Gap + K AaAﬁa G(x4 - HA(X’ G44 =1 (9)

dz®  OH dpo, ~ OH 5
dr  Ops’ dr oz’ ) and, therefore, the metric of the five-dimensional space is
reproduce the geodesic equations (1), using the fact that Gapdz?da? = Gpdr®da® + 2G,4dz™da?
009"’ = —¢°?(8a9p0)9°7. (Note thatp, is the conju- s i
gate momentum ta:®, but p* = ¢*pg is not.) Simi- + Guda'da” = gapda®da
Igrly, a Hamiltonian for a charged patrticle in a_grgwtatlonal + (kAgdz® + dz)2. (10)
field (represented by, z) and an electromagnetic field (rep-
resented by the four-potentidl,) is given by This last equation shows that the added coordinatehas
1 q q dimensions of length and that the metric tenSoyz has sig-
H=_—g (pa - an) (pg - ng) nature(— + + + +) (because the last term on the right-hand
2my c c . . .
side of (10) is always positive).
1 a8 q q\? Another interesting feature of the Kaluza—Klein theory is
= D3 — 2= A%p, =) A%A.|, (6 . . .
2m {g Pobp <P + (c) © that the gauge transformations can be associated with a coor-

dinate transformation. As is well known, for a given electro-
magnetic field tensot, s, the four-potential is not uniquely
determined. I is an arbitrary differentiable function of the
z%, then A, and A, + 0,& give rise to the same electro-
magnetic field tensor. Equation (10) shows that the gauge
1 p transformatiord,, — A, + 0,& produces the same effect as
H = %G PAPB; (7) " the coordinate transformatiart — 24 + x¢.

whereq is the charge of the particle (in cgs units) aatl =
gaﬁA,g.

Equation (6) is of the form of the Hamiltonian (4) for the
geodesics of a five-dimensional space,
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AN INTRODUCTION TO THE KALUZA-KLEIN FORMULATION 29

It may be pointed out that instead of choosig, as a
constant, as in Eqg. (9), one may assume that is a scalar
field (seeg.g, Refs. [1,3,4,11]), but, as we have shown, such

particle), we have, forx = 0,1, 2, 3, making use of (11)df.

a field is not present in the interactions considered above. dA22@ dzB dzC  d2z¢ dzB dz
Note also that the coordinate* was introduced just as a 0= a2 BC 4 dr a2 ‘57??
mathematical trick, to view the motion of a charged particle 5 14 41 9

in a gravitational and an electromagnetic field as the projec- Qfg4didi + ]pﬁﬁdidi - &z

tion on the space-time of a geodesic in a five-dimensional dr dr dr dr  dr?

space, without having a physical or geometrical meaning for o 5 o ydz? da? , daf dazt
this coordinate (by contrast with the ordinary space-time co- T ( by — K AE +) dr dr B ar dr’
ordinates). We do not have to specify the range of values of

x*; at this point we do not know whether the set of admissi-that is,

ble values of:* is all of R or some subset &k. (This is not

strange in the general relativity theory; as an example, in the A2z dz® da

standard derivation of the Schwarzschild solution one does 172 By 1 dr

not know in advance the admissible values of the coordinates . 5

or if they are globally defined.) Note that the possible val- . (dl‘ 4 rA OW) Faﬂdi_ (12)
ues ofz* do not restrict those gf, (which is related to the d Td dr

electric charge of the particle). For instance, in the case of a

simple pendulum in classical mechanics, the angular coordi-  op the other hand, using again the geodesic equations for
nate may be limited to take values in aninterval of lerigth ;4 — ;4 (7) and (11) we have

but its conjugate momentum can take arbitrarily large values.

We shall verify directly that the projection of the g /dz4 dz7 . daf da?
geodesics of the metric (9) on the space-time are the world- 3~ <d7- + KA, dT) TV dr
lines of charged particles in the gravitational field corre-
sponding tag, s and the electromagnetic field corresponding KA T ﬁdﬁ + k(95A )%dﬁ _
to A,. To this end, we calculate the Christoffel symbols cor- TP dr dr B4 Tar ’

responding to the metric tens@r, g, which, in order to avoid

confusion with those corresponding to the four-dimensionalvhich means thatz* /dr +xA.,dz” /dr is a constant of mo-

metric gog, will be denoted byfgc. That is, tion. Then, identifying this constant witfy kmgc, Egs. (12)
coincide with the standard equations of motion of a charged

][‘gc _ }GAR <3GBR IGcR B 8GBC> particle.
2 .

92C OxB OrR Note that the metrié7 45 only involves the gravitational
and the electromagnetic fields (but not the properties of the
particle to be considered); the mass and the charge of the
particle are part of the initial conditions that determine the
specific geodesic to be followed. Actually, the mass and the
charge only enter through the charge to mass ratio.

Making use of Egs. (8) and (9) one readily finds that

5, =15, - 32 (AgF + A F%),

I}, = 16(VgA, + V., Ag) + 1P AM(Fup A, + Fuy Ap),
a _ 1 « . . .
1= "arE 3. Constants of motion associated with sym-

I, = 3k’ AFF,,, metries of the five-dimensional metric

gy =0=T},, (11) . . .
As pointed out in the Introduction, one advantage of relat-

ing the equations of motion of a mechanical system with the

where V3 denotes the covariant derivative.g, VgA, =
OgA, — ngAp, with 9, = 9/9xz*) and

Fop = 0,A3 — 034,

is the electromagnetic field tensor.

Assuming thatz? = z4(7) is a geodesic of the five-

geodesic equations is that one has a constant of motion asso-
ciated with each continuous symmetry of the metric.

We start by looking for constants of motion for the
geodesic equations (1) associated with a vector fietdon
the space-time. More precisely, we want to find the con-
ditions on the functiong<® for gaﬁKad.’EB/dT to be con-
served as a consequence of the geodesic equations (1). Mak-
ing use of the chain rule and Egs. (1) and (2) we have (replac-

dimensional space (parameterized by the proper time of theing the summation indices where convenient)
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30 G.F. TORRES DEL CASTILLO

which means that the electromagnetic field is invariant under

d daf de?  daP the transformations generated by the Killing vediot. (Cf.
= — o K(Jéi = o 7KO¢7 . . . .
0=+ (g oK > (Ovgap) K" Ref. [6], Eq. (33.61).)
5 s Thus, a symmetry of the gravitational field [represented
o gy 327 de” s dat dat by a solution of (13)] which, at the same time, is a symme-
+gozﬁ( Y ) d d Jap ~6 d d .
T dr T dr try of the electromagnetic field [Eq. (18)], leads to a constant
= [Kaa’ygaﬁ + Gap0s K“ of motion of the form (16). That is, once we have found a
Killing vector K¢ of the space-time, which also leaves the
1ra da? da? electromagnetic field invariant [in the gauge-invariant wa
— 2K“(0490p + O8gay — aagﬁ'v)] - A ) 9 . . gaug y
dr dr defined by (18)], the functio* is determined (up to an
= (%Kaa'ygaﬂ — %KaaﬁgaV + Gap0y K“ additive constant) by Eq. (17), and v_vith all these fungtions
5 we can calculate the constant of motion (16). A very simple
+1K%0,g5 )didﬁ example is given byK“ = 0, which trivially satisfies Egs.
2 Vdr dr (13) and (18). Then, from (17) we find that* must be a

The contributions of the first two terms inside the parenthesi#rivial constant (that is, a real number) and Eq. (14) yields
of the last line cancel because they are antisymmetric in the

indices3 andry, while the factod=? /dr)(dz” /d7) is sym- 4 (da? dxzb

metric in these two indices. Similarly, only the symmetric p=K (dr + HAﬁdT) )

part on the indiceg and~ of the third term gives a nonzero

contribution (the fourth term is already symmetric). Thus,

one obtains the conditions which, apart from the arbitrary constant facfot, is the con-

stant of motion obtained in Sec. 2, identified withmc.
9apO0y K + gay 03 K + K“0a0gsy = 0, (13)

which are known as the Killing equations. (The vector fields

satisfying Egs. (13) are called Killing vectors or Killing vec- 3-1. Example. A uniform electromagnetic field in the
tor fields.) The solutions of these equations determine the Minkowski space-time

symmetries of the metrig,s (see,e.g, Ref. [4], Sec. 6.11,

Ref. [5], p. 107, or Ref. [6], Sec. 33.2). As a simple example we takgy,s) = diag(-1,1,1,1)

In an entirely similar way, one finds that the geodesic(the metric of the flat Minkowski space-time in Cartesian
equations for the five-dimensional metfit, 5 possess con- coordinates). Its Killing vectors are the generators of the
stants of motion of the form Poincaé group. We consider the electromagnetic field de-

fined by Ay = az', A3 = bz?, whereq,b are constants,
(14)  andA; = A, = 0. The non-vanishing components of
the electromagnetic field tensor are given By = a and
if the functionsk# satisfy Fy3 = b, corresponding to uniform electric and magnetic
A A A fields in thez!-direction. This field is invariant under all

Gapdo K™+ GacOp K™ + K704Gpo =0, (15) translations (i.e. K¢ = const.) and also under the transfor-
B,C = 0,1,2,3,4. In terms of the space-time metric and mations generated by the Killing vectai® = z!, K* = 29,
the four-potential, the constant of motion (14) is givenby K2 = K3 = 0 (which generates boosts in thé-direction).
Then, from Eq. (17) we find that, up to a constant term,

KAde

=G
¥ AB ar

daf 4 da? da? 41 0ND N2 o
¢ = gapK*—— + (K* + kA K?) | =— + kAg—— K* = —5rka[(2”)? + (z*)?]. Substituting into Eq. (16) we
dr dr dr obtain the constant of motion
g wed?” | (K* + kA K —L (16) 0 ]
= 9ap a : dz dz aq
dr Kmoc 0= _1.1 o 4 IL‘O [(xl)Z . (xO)Z].

A special class of solutions of (15) is defined by the con- dr 2moc

dition that theK“ be functions of the:® only. In that case,

making use of (9), Egs. (15) reduce to Egs. (13) and It should be remarked that the metric tenggg and the elec-

tromagnetic fieldt, 3 need not satisfy the Einstein equations
K(ApOs K™ + K*04Ap) = —0sK*. (17)  andthe Maxwell equations, respectively.

Equation (17) means that ;K% # 0, then the four- Of course, the existence of the constants of motion (16)

potential is not invariant under the transformations generateflUst follow directly from the equations of motion of a
on the space-time bj’®. However, one can readily verify charged particle. However, the relevant fact in this geometri-

starting fromd-9vK* — 8.8.Kk%) that Eas. (17) imply that  ¢al formulation is that these special constants of motion are
( g s HO5K7) as. (17) imply directly related to symmetries of the five-dimensional metric

K70,Fog + Foy0gK" + F, 30, K7 =0, (18)  defined above. (See also Sec. 4.)
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AN INTRODUCTION TO THE KALUZA—KLEIN FORMULATION 31
4. The Klein—Gordon equation 5. Curvature of the Kaluza—Klein metric

As we shall show now, the Klein—Gordon equation, A curious fact is that if one assumes that the five-dimensional
) ) metric (9) satisfies thanalog of the Einstein vacuum field

(Va _ WAa> <Va -~ HJAa) W= (m00>2 ¥, (19) equations, then (by suitably selecting the value of the con-

he he h stantx) one obtains the Einstein field equations with the elec-

. . . tromagnetic field as source, the Maxwell equations without

which would correspond to charged spin-zero particles, can . .

. . . : charges or currents, and the algebraic condifisf 5 =

also be conveniently written making use of the metric (9) (a : : : :

e . - . -0. In fact, if the Riemann curvature tensor is defined by

similar result, in the restricted case of a flat space-time, is
given in Ref. [4]). Using the fact that, for an arbitrary vector orA orA

field V<, Rpep = 22 — —BC
1 895 895

VoV = —0,(VIg| V), (20)

varl (VIglv?) and the Ricci tensor bR 43 = R 4, with similar def-

whereg = det(gas) (seee.g, Ref. [5], p. 66, Ref. [6], Eq. initions for other dimensions, with the aid of Egs. (11) one
(20.7), or Ref. [7], p. 225), with a similar formula for any di- 9€tS

mension, we find that the left-hand side of Eq. (19) is equiv-
alent to

+ Tl hp —ThpTie

Rop = Rap + 361 (F" F,)AaAg

Vv — 94y (o) = 4 4 9oy - (i)zAaA " + 3R (AaV, Fs? + AV, Fof) = 357 Fol Fip,
« hic @ hie he “ Ry = 6VsF," + L*FroF,, A,

1 ig 1
= ——0a (V19 9°P050) — — —=0a(V/Ig| A%) Ryy = 2k*FPF,p, (23)
V9l he \/1g] !
iq . g\2 . whereR,s is the Ricci tensor of the space-time metyigs.
- %‘4 It — (E) A% At Hence, the fifteen equatiod? 4 5 = 0 (which are the analog
. of the Einstein vacuum field equations in a five-dimensional
Then, defining space) imply that the curvature of the space-time and the elec-
tromagnetic field tensor satis
U(z) = (z) exp(igz? /khe), (21) g bt
Ros =1k%F,PF3,, 24
using again Eq. (20) and the fact thiat (G 45) = det(gaz), p =2l br (24)
one finds that Eg. (19) is equivalent to VﬁFaﬁ =0, (25)
A [rmocy? q \2 FOPE, 5 =0. (26)
WX = [(h) ~ (e } v (22)

Equations (25) are the source-free Maxwell equations and
where the covariant derivatives on the left-hand side correEgs. (24) are the Einstein field equations with an electromag-
spond to the five-dimensional metiig, 5. netic field satisfying (26) as its source,xf = +2v/G/c?,

Writing the Klein—Gordon equation in the form (22) al- whereG is the Newton gravitational constant.

lows us to make use of the symmetries of the metric (10) to It has to be emphasized that there is no reason to assume

find operators that commute with the Klein—Gordon operatorthat the metricG 45 should satisfy the analog of the Ein-

A straightforward but somewhat lengthy computation showsstein field equations in vacuum, and the fact that the equa-

that if K4 is a Killing vector [that is, a solution of (15)] then tions Rs5 = 0 lead to the Einstein—-Maxwell equations for
the electromagnetic fields satisfying the condition (26) (pro-

WANHEPOpY) = KPOp(W W' W) vided that we give the appropriate valuedpcan only be

regarded as a curious coincidence.

(again, a similar result holds in any dimension). The opera- ~ A more subtle point that leads to some misunderstand-

tors that commute with the Klein—-Gordon operator represeniiiﬂ,gS in the literature is the following. Making use of Egs.

conserved quantities and their knowledge simplifies the solu(s) and (23) one finds that the scalar curvature of the five-

tion of .the KIeip—Gordon equation. ' ' _ dimensional metric (9)R = GAZ R4z, is given by
An interesting consequence of this approach is that if one
supposes that the coordinaté corresponds to a circle of R=R- iﬁ}QFaBFaﬁ, (27)

lengthl, in the sense that* andz* + I represent the same
point, then, assuming that the functidnis single-valued, WhereR = g*’ R, is the scalar curvature of the space-time.
from (21) one finds that the charge must be quantized Furthermore, as pointed out aboviet(Gap) = det(gap),

hence,
B 2rkhe

= n, n=0,x1,+2,.... o
1= VI det(Gap)| R = /Jgl(R — k2 FPF,5).  (28)

Rev. Mex. k5. E17 (1) 27-32
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Note that Egs. (27) and (28) hold for any space-time metmatical trick, but, at the other extreme, it can be assumed that
rc g.s and any electromagnetic fieldl, 3, and that the left-  the fifth dimension is as real as the usual three spatial dimen-
hand sides of (27) and (28) correspond to the specific fivesions with the difference, it is argued, thétis the coordinate
dimensional metric (9). on a circle of an extremely small radius (seqy, Refs. [1,

As is well known, the Lagrangian densit¢gy = 3, 4, 11]). In that case, at the quantum level, the Kaluza—
\/@(R—(l/zl)nzFaﬁFaﬁ), with the appropriate value af, Klein theory makes predictions that have not been experi-
considered as a function of,5, A, and their partial deriva- mentally confirmed; by means of elementary arguments, it
tives, leads to the Einstein—Maxwell equations [without al-follows that, if the fifth dimension corresponds to a circle of
gebraic restrictions of the form (26)] and, similarly, the La- radiusa, there must exist infinite families of massive parti-
grangian density/| det(G 45)| R, considered as a function cles, which form what is called Kaluza—Klein towers, with
of G ap and their partial derivatives, leads 88,5 = 0. masses proportional t/a, comparable to the Planck mass.
However, Eq. (28) does not mean that the equatiBng = At the classical level, a good reason to doubt about the
0 are equivalent to the Einstein—Maxwell equations (as showphysical relevance of the metric (10) is the presence of the
above). If we substitute the right-hand side of (28) into thearbitrary constant; recalling thatdz* /dr + kA, dz? /d7 is
Euler-Lagrange equations, treatings and 4,, as the field identified withg/xmc, from Eq. (10) we see that (i # 0),
variables, one must obtain the Einstein—Maxwell equationsby choosing appropriately the value ©f the constantvalue
by virtue of the equality (28) these equations must also fol-of )
low by substituting the left-hand side of (28) into the Euler— dat dz? 2 ( q ) (29)

: . : ; Gap————
Lagrange equations, treating agaits and A, as the field dr dr Kmoc

variables (fourteen variables in total), and the result is nokan pe made positive, negative, or zero (by contrast, in gen-
Rap = 0 because, as pointed out abo¥e,z = 0 follow  gra| relativity there is a profound difference between space-
from the Lagrangian density/|det(Gap)| R if the Gap  |ike, timelike, and null curves). It may be noticed that the
(fifteen variables in total) are treated as the field variables. cgnstant (29) is essentially the factor appearing on the right-
In spite of these facts, it is frequently claimed that (27) hand side of (22).
represents a unification of Einstein’s theory and electromag-  Even if one does not assign a physical reality to the fifth
netism (seee.g, Ref. [1], Sec. IV, Ref. [3], or Ref. [4], dimension, the Kaluza—Klein formalism can be conveniently
Sec. 18.2). applied.e.g, in the study of the of properties of gravitational
fields coupled to electromagnetic fields (seg, Ref. [12]).
In the recent decades, various attempts have been made
trying to find unified theories that include all known funda-
As we have shown, in the context of the general relativitymental interactions, where the total number of dimensions is

theory, the effects of combined gravitational and electromaggreater than five, inspired in the Kaluza—Klein theory.

netic fields on point particles, or on spin-zero quantum fields,

can be reproduced by the appropriate definition of a metric imcknowledgement

a five-dimensional space. One can take a conservative point

of view, regarding the fifth dimension just as a useful mathe-The author wishes to thank the referee for helpful comments.
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