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An introduction to the Kaluza-Klein formulation
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We give an elementary introduction to the Kaluza–Klein formulation, in which the gravitational and the electromagnetic fields are represented
in the geometry of a five-dimensional space. We show that, in the framework of general relativity, the interaction of a point particle, or of a
charged spin-zero field, with a gravitational and an electromagnetic field can be obtained through the metric of a five-dimensional space. We
also show that the symmetries of the metric of this five-dimensional space lead to constants of motion for the point particles, or to operators
that commute with the Klein–Gordon operator. A common misunderstanding related to the unification of gravitation and electromagnetism
given by the Kaluza–Klein formulation is discussed.
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Damos una introducción elemental a la formulación de Kaluza–Klein, en la cual los campos gravitacional y electromagnético est́an represen-
tados en la geometrı́a de un espacio de dimensión cinco. Mostramos que, en el marco de la relatividad general, la interacción de una partı́cula
puntual, o de un campo cargado de espı́n cero, con un campo gravitacional y uno electromagnético puede obtenerse a través de la ḿetrica de
un espacio de dimensión cinco. Mostramos también que las simetrı́as de la ḿetrica de este espacio de dimensión cinco llevan a constantes
de movimiento para las partı́culas puntuales, o a operadores que conmutan con el operador de Klein–Gordon. Se discute un malentendido
común relacionado con la unificación de la gravitacíon y el electromagnetismo dada por la formulación de Kaluza–Klein.
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1. Introduction

In the general theory of relativity the gravitational field is as-
sociated with the geometry of the space-time and the concept
of a gravitational force is no longer needed. The motion of a
test particle under the sole influence of a gravitational field is
obtained by assuming that its world-line is a geodesic of the
space-time metric.

It is naturally interesting to see if other interactions can
be incorporated in a geometrical structure. In this sense, the
so-called Kaluza–Klein theory can be regarded as a partial
success; in this formulation one tries to represent geomet-
rically the effects of a gravitational and an electromagnetic
field by considering a five-dimensional space with a metric
made out of the space-time metric and the four-potential of
the electromagnetic field. By contrast with the general rela-
tivity theory, which involves a four-dimensional space-time
whose physical relevance is already established in the spe-
cial relativity theory, the Kaluza–Klein theory makes use of
a five-dimensional space, obtained by adding one coordinate
to the four coordinates of the space-time, but this fifth di-
mension arises as a mathematical convenience, without ex-
perimental basis.

Even though the Kaluza–Klein theory is almost as old as
the general relativity theory (see,e.g., Ref. [1] and the refer-
ences cited therein), it is not commonly treated in the books
on general relativity (some few exceptions are Refs. [2–4]).
In the usual approach to the Kaluza–Klein theory, a specific
form of the metric of the five-dimensional space is proposed
without any motivation. One of the aims of this paper is to
show that the form of the metric employed in the Kaluza–

Klein theory can be obtained in a natural manner, trying to
see the world-line of a charged particle in a gravitational and
an electromagnetic field as the projection on the space-time
of a geodesic of a five-dimensional space. One of the ad-
vantages of relating the world-lines of charged particles with
geodesics is that the continuous symmetries of a metric lead
directly to constants of motion (without making use of the
Noether theorem).

In Sec. 2, making use of the Hamiltonian formalism, we
show that, in the framework of general relativity, the world-
lines of charged particles in a gravitational and an electro-
magnetic field are the projections on the space-time of the
geodesics of the metric of a five-dimensional space, obtained
by adding a coordinate to the space-time. In Sec. 3 we show
that with each continuous symmetry of the space-time metric
and the electromagnetic field there is an associated constant
of motion, even if the four-potential is not invariant. In Sec.
4, we show that the Klein–Gordon equation for a charged
field can be expressed in a compact way, with the interac-
tions with a gravitational and an electromagnetic field given
through the five-dimensional metric proposed in Sec. 2 and
that the continuous symmetries of the five-dimensional met-
ric lead to operators that commute with the Klein–Gordon
operator. In Sec. 5, we show that if one imposes the analog of
the Einstein vacuum field equations on the five-dimensional
metric one obtains the Einstein–Maxwell equations for a cer-
tain class of electromagnetic fields.

Throughout this paper it is assumed that the reader is ac-
quainted with the basic formalism of the general relativity
theory as presented,e.g., in Refs. [5–7], and with the Hamil-
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tonian formalism of classical mechanics as presented,e.g., in
Refs. [8–10].

2. Motion of particles in gravitational and
electromagnetic fields

In the general relativity theory, the world-line of a particle
(with a nonzero rest mass) in a gravitational field represented
by the space-time metricgαβ is determined by the geodesic
equations

d2xα

dτ2
+ Γα

βγ

dxβ

dτ

dxγ

dτ
= 0, (1)

whereτ is the proper time of the particle, the Greek indices
run from 0 to 3 and there is summation over repeated indices.
The Christoffel symbols,Γα

βγ , are determined by the metric
tensor according to the standard formula

Γα
βγ =

1
2
gαρ

(
∂gβρ

∂xγ
+

∂gγρ

∂xβ
− ∂gβγ

∂xρ

)
, (2)

where(gαβ) is the inverse of the matrix(gαβ). The fact that
τ is the proper time of the particle amounts to the condition

gαβ
dxα

dτ

dxβ

dτ
= −c2 (3)

(assuming that the signature of the metric is(−+ + +)).
By means of a straightforward computation, one can ver-

ify that the Hamiltonian

H =
1

2m0
gαβpαpβ (4)

leads to the geodesic equations (1), wherem0 is the rest mass
of the particle and thepα are the canonical momenta conju-
gated to the coordinatesxα; that is, the Hamilton equations

dxα

dτ
=

∂H

∂pα
,

dpα

dτ
= − ∂H

∂xα
, (5)

reproduce the geodesic equations (1), using the fact that
∂αgβγ = −gβρ(∂αgρσ)gσγ . (Note thatpα is the conju-
gate momentum toxα, but pα ≡ gαβpβ is not.) Simi-
larly, a Hamiltonian for a charged particle in a gravitational
field (represented bygαβ) and an electromagnetic field (rep-
resented by the four-potentialAα) is given by

H =
1

2m0
gαβ

(
pα − q

c
Aα

)(
pβ − q

c
Aβ

)

=
1

2m0

[
gαβpαpβ − 2

q

c
Aαpα +

(q

c

)2

AαAα

]
, (6)

whereq is the charge of the particle (in cgs units) andAα ≡
gαβAβ .

Equation (6) is of the form of the Hamiltonian (4) for the
geodesics of a five-dimensional space,

H =
1

2m0
GABpApB , (7)

where the upper case Latin indices,A,B, . . ., run from 0 to 4,
andGAB is the metric tensor of the five-dimensional space.
Indeed, splitting the double sum in (7) in the form

H =
1

2m0

(
Gαβpαpβ + 2Gα4pαp4 + G44p4p4

)

(assuming, as usual, that the metric tensor is symmetric),
comparison with Eq. (6) yields

Gαβ = gαβ , Gα4p4 = −q

c
Aα,

G44p4p4 =
(q

c

)2

AαAα.

Since the componentsgαβ andAα, appearing in (6), are func-
tions ofxα only, we can assume that theGAB (and theGAB)
are functions ofxα only; this implies that the new coordinate
x4 does not appear in the Hamiltonian (7) and, therefore, its
conjugate momentum,p4, is a constant of motion. Guided by
the expressions above, we shall assume that the metric of the
five-dimensional space is

Gαβ = gαβ , Gα4 = −κAα, G44 = 1 + κ2AαAα, (8)

whereκ is a constant such thatκ2AαAα is adimensional
(identifying the constant of motionp4 with q/κc). Note that
we have arbitrarily added the constant term 1 to the expres-
sion for G44; in this way the matrix(GAB) is nonsingular
if Aα = 0. The inclusion of this term does affect the ex-
pression ofdx4/dτ , but, as we shall demonstrate below, it
does not modify the equations of motion of the particle in the
space-time.

Then, one readily verifies that the entries of the inverse of
the matrix(GAB) must be given by

Gαβ = gαβ + κ2AαAβ , Gα4 = κAα, G44 = 1 (9)

and, therefore, the metric of the five-dimensional space is

GABdxAdxB = Gαβdxαdxβ + 2Gα4dxαdx4

+ G44dx4dx4 = gαβdxαdxβ

+ (κAαdxα + dx4)2. (10)

This last equation shows that the added coordinate,x4, has
dimensions of length and that the metric tensorGAB has sig-
nature(−+ + + +) (because the last term on the right-hand
side of (10) is always positive).

Another interesting feature of the Kaluza–Klein theory is
that the gauge transformations can be associated with a coor-
dinate transformation. As is well known, for a given electro-
magnetic field tensor,Fαβ , the four-potential is not uniquely
determined. Ifξ is an arbitrary differentiable function of the
xα, thenAα and Aα + ∂αξ give rise to the same electro-
magnetic field tensor. Equation (10) shows that the gauge
transformationAα 7→ Aα + ∂αξ produces the same effect as
the coordinate transformationx4 7→ x4 + κξ.
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It may be pointed out that instead of choosingG44 as a
constant, as in Eq. (9), one may assume thatG44 is a scalar
field (see,e.g., Refs. [1,3,4,11]), but, as we have shown, such
a field is not present in the interactions considered above.
Note also that the coordinatex4 was introduced just as a
mathematical trick, to view the motion of a charged particle
in a gravitational and an electromagnetic field as the projec-
tion on the space-time of a geodesic in a five-dimensional
space, without having a physical or geometrical meaning for
this coordinate (by contrast with the ordinary space-time co-
ordinates). We do not have to specify the range of values of
x4; at this point we do not know whether the set of admissi-
ble values ofx4 is all ofR or some subset ofR. (This is not
strange in the general relativity theory; as an example, in the
standard derivation of the Schwarzschild solution one does
not know in advance the admissible values of the coordinates
or if they are globally defined.) Note that the possible val-
ues ofx4 do not restrict those ofp4 (which is related to the
electric charge of the particle). For instance, in the case of a
simple pendulum in classical mechanics, the angular coordi-
nate may be limited to take values in an interval of length2π,
but its conjugate momentum can take arbitrarily large values.

We shall verify directly that the projection of the
geodesics of the metric (9) on the space-time are the world-
lines of charged particles in the gravitational field corre-
sponding togαβ and the electromagnetic field corresponding
to Aα. To this end, we calculate the Christoffel symbols cor-
responding to the metric tensorGAB , which, in order to avoid
confusion with those corresponding to the four-dimensional
metricgαβ , will be denoted byIΓA

BC . That is,

IΓA
BC =

1
2
GAR

(
∂GBR

∂xC
+

∂GCR

∂xB
− ∂GBC

∂xR

)
.

Making use of Eqs. (8) and (9) one readily finds that

IΓα
βγ = Γα

βγ − 1
2κ2(AβFα

γ + AγFα
β),

IΓ4
βγ = 1

2κ(∇βAγ +∇γAβ) + 1
2κ3Aµ(FµβAγ + FµγAβ),

IΓα
γ4 = − 1

2κFα
γ ,

IΓ4
γ4 = 1

2κ2AµFµγ ,

IΓα
44 = 0 = IΓ4

44, (11)

where∇β denotes the covariant derivative (e.g., ∇βAγ =
∂βAγ − Γρ

βγAρ, with ∂α = ∂/∂xα) and

Fαβ = ∂αAβ − ∂βAα

is the electromagnetic field tensor.

Assuming thatxA = xA(τ) is a geodesic of the five-
dimensional space (parameterized by the proper time of the

particle), we have, forα = 0, 1, 2, 3, making use of (11) [cf.
Eq. (1)],

0 =
d2xα

dτ2
+ IΓα

BC

dxB

dτ

dxC

dτ
=

d2xα

dτ2
+ IΓα

βγ

dxβ

dτ

dxγ

dτ

+ 2IΓα
β4

dxβ

dτ

dx4

dτ
+ IΓα

44

dx4

dτ

dx4

dτ
=

d2xα

dτ2

+
(
Γα

βγ − κ2AβFα
γ

)dxβ

dτ

dxγ

dτ
− κFα

β
dxβ

dτ

dx4

dτ
,

that is,

d2xα

dτ2
+ Γα

βγ

dxβ

dτ

dxγ

dτ

= κ

(
dx4

dτ
+ κAγ

dxγ

dτ

)
Fα

β
dxβ

dτ
. (12)

On the other hand, using again the geodesic equations for
xA = xA(τ) and (11) we have

d
dτ

(
dx4

dτ
+ κAγ

dxγ

dτ

)
= −IΓ4

βγ

dxβ

dτ

dxγ

dτ

− κAαIΓα
βγ

dxβ

dτ

dxγ

dτ
+ κ(∂βAγ)

dxβ

dτ

dxγ

dτ
= 0,

which means thatdx4/dτ +κAγdxγ/dτ is a constant of mo-
tion. Then, identifying this constant withq/κm0c, Eqs. (12)
coincide with the standard equations of motion of a charged
particle.

Note that the metricGAB only involves the gravitational
and the electromagnetic fields (but not the properties of the
particle to be considered); the mass and the charge of the
particle are part of the initial conditions that determine the
specific geodesic to be followed. Actually, the mass and the
charge only enter through the charge to mass ratio.

3. Constants of motion associated with sym-
metries of the five-dimensional metric

As pointed out in the Introduction, one advantage of relat-
ing the equations of motion of a mechanical system with the
geodesic equations is that one has a constant of motion asso-
ciated with each continuous symmetry of the metric.

We start by looking for constants of motion for the
geodesic equations (1) associated with a vector fieldKα on
the space-time. More precisely, we want to find the con-
ditions on the functionsKα for gαβKαdxβ/dτ to be con-
served as a consequence of the geodesic equations (1). Mak-
ing use of the chain rule and Eqs. (1) and (2) we have (replac-
ing the summation indices where convenient)
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0 =
d
dτ

(
gαβKα dxβ

dτ

)
= (∂γgαβ)

dxγ

dτ
Kα dxβ

dτ

+ gαβ(∂γKα)
dxγ

dτ

dxβ

dτ
− gαβKαΓβ

γδ

dxγ

dτ

dxδ

dτ

=
[
Kα∂γgαβ + gαβ∂γKα

− 1
2Kα(∂γgαβ + ∂βgαγ − ∂αgβγ)

]dxβ

dτ

dxγ

dτ

=
(

1
2Kα∂γgαβ − 1

2Kα∂βgαγ + gαβ∂γKα

+ 1
2Kα∂αgβγ

)dxβ

dτ

dxγ

dτ
.

The contributions of the first two terms inside the parenthesis
of the last line cancel because they are antisymmetric in the
indicesβ andγ, while the factor(dxβ/dτ)(dxγ/dτ) is sym-
metric in these two indices. Similarly, only the symmetric
part on the indicesβ andγ of the third term gives a nonzero
contribution (the fourth term is already symmetric). Thus,
one obtains the conditions

gαβ∂γKα + gαγ∂βKα + Kα∂αgβγ = 0, (13)

which are known as the Killing equations. (The vector fields
satisfying Eqs. (13) are called Killing vectors or Killing vec-
tor fields.) The solutions of these equations determine the
symmetries of the metricgαβ (see,e.g., Ref. [4], Sec. 6.11,
Ref. [5], p. 107, or Ref. [6], Sec. 33.2).

In an entirely similar way, one finds that the geodesic
equations for the five-dimensional metricGAB possess con-
stants of motion of the form

ϕ = GABKA dxB

dτ
(14)

if the functionsKA satisfy

GAB∂CKA + GAC∂BKA + KA∂AGBC = 0, (15)

B,C = 0, 1, 2, 3, 4. In terms of the space-time metric and
the four-potential, the constant of motion (14) is given by

ϕ = gαβKα dxβ

dτ
+ (K4 + κAαKα)

(
dx4

dτ
+ κAβ

dxβ

dτ

)

= gαβKα dxβ

dτ
+ (K4 + κAαKα)

q

κm0c
. (16)

A special class of solutions of (15) is defined by the con-
dition that theKA be functions of thexα only. In that case,
making use of (9), Eqs. (15) reduce to Eqs. (13) and

κ(Aα∂βKα + Kα∂αAβ) = −∂βK4. (17)

Equation (17) means that if∂βK4 6= 0, then the four-
potential is not invariant under the transformations generated
on the space-time byKα. However, one can readily verify
(starting from∂β∂γK4 = ∂γ∂βK4) that Eqs. (17) imply that

Kγ∂γFαβ + Fαγ∂βKγ + Fγβ∂αKγ = 0, (18)

which means that the electromagnetic field is invariant under
the transformations generated by the Killing vectorKα. (Cf.
Ref. [6], Eq. (33.61).)

Thus, a symmetry of the gravitational field [represented
by a solution of (13)] which, at the same time, is a symme-
try of the electromagnetic field [Eq. (18)], leads to a constant
of motion of the form (16). That is, once we have found a
Killing vector Kα of the space-time, which also leaves the
electromagnetic field invariant [in the gauge-invariant way
defined by (18)], the functionK4 is determined (up to an
additive constant) by Eq. (17), and with all these functions
we can calculate the constant of motion (16). A very simple
example is given byKα = 0, which trivially satisfies Eqs.
(13) and (18). Then, from (17) we find thatK4 must be a
trivial constant (that is, a real number) and Eq. (14) yields

ϕ = K4

(
dx4

dτ
+ κAβ

dxβ

dτ

)
,

which, apart from the arbitrary constant factorK4, is the con-
stant of motion obtained in Sec. 2, identified withq/κm0c.

3.1. Example. A uniform electromagnetic field in the
Minkowski space-time

As a simple example we take(gαβ) = diag (−1, 1, 1, 1)
(the metric of the flat Minkowski space-time in Cartesian
coordinates). Its Killing vectors are the generators of the
Poincaŕe group. We consider the electromagnetic field de-
fined by A0 = ax1, A3 = bx2, wherea, b are constants,
and A1 = A2 = 0. The non-vanishing components of
the electromagnetic field tensor are given byF10 = a and
F23 = b, corresponding to uniform electric and magnetic
fields in thex1-direction. This field is invariant under all
translations (i.e.,Kα = const.) and also under the transfor-
mations generated by the Killing vectorK0 = x1, K1 = x0,
K2 = K3 = 0 (which generates boosts in thex1-direction).
Then, from Eq. (17) we find that, up to a constant term,
K4 = − 1

2κa[(x0)2 + (x1)2]. Substituting into Eq. (16) we
obtain the constant of motion

ϕ = −x1 dx0

dτ
+ x0 dx1

dτ
+

aq

2m0c
[(x1)2 − (x0)2].

It should be remarked that the metric tensorgαβ and the elec-
tromagnetic fieldFαβ need not satisfy the Einstein equations
and the Maxwell equations, respectively.

Of course, the existence of the constants of motion (16)
must follow directly from the equations of motion of a
charged particle. However, the relevant fact in this geometri-
cal formulation is that these special constants of motion are
directly related to symmetries of the five-dimensional metric
defined above. (See also Sec. 4.)
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4. The Klein–Gordon equation

As we shall show now, the Klein–Gordon equation,
(
∇α − iq

~c
Aα

)(
∇α − iq

~c
Aα

)
ψ =

(m0c

~

)2

ψ, (19)

which would correspond to charged spin-zero particles, can
also be conveniently written making use of the metric (9) (a
similar result, in the restricted case of a flat space-time, is
given in Ref. [4]). Using the fact that, for an arbitrary vector
field V α,

∇αV α =
1√
|g|∂α

(√|g|V α
)
, (20)

whereg ≡ det(gαβ) (see,e.g., Ref. [5], p. 66, Ref. [6], Eq.
(20.7), or Ref. [7], p. 225), with a similar formula for any di-
mension, we find that the left-hand side of Eq. (19) is equiv-
alent to

∇α∇αψ − iq
~c
∇α(Aαψ)− iq

~c
Aα∂αψ −

( q

~c

)2

AαAαψ

=
1√
|g|∂α

(√|g| gαβ∂βψ
)− iq

~c
1√
|g|∂α

(√|g|Aαψ
)

− iq
~c

Aα∂αψ −
( q

~c

)2

AαAαψ.

Then, defining

Ψ(xA) = ψ(xα) exp(iqx4/κ~c), (21)

using again Eq. (20) and the fact thatdet(GAB) = det(gαβ),
one finds that Eq. (19) is equivalent to

\∇A \∇AΨ =
[(m0c

~

)2

−
( q

κ~c

)2
]

Ψ, (22)

where the covariant derivatives on the left-hand side corre-
spond to the five-dimensional metricGAB .

Writing the Klein–Gordon equation in the form (22) al-
lows us to make use of the symmetries of the metric (10) to
find operators that commute with the Klein–Gordon operator.
A straightforward but somewhat lengthy computation shows
that if KA is a Killing vector [that is, a solution of (15)] then

\∇A \∇A(KB∂BΨ) = KB∂B( \∇A \∇AΨ)

(again, a similar result holds in any dimension). The opera-
tors that commute with the Klein–Gordon operator represent
conserved quantities and their knowledge simplifies the solu-
tion of the Klein–Gordon equation.

An interesting consequence of this approach is that if one
supposes that the coordinatex4 corresponds to a circle of
length l, in the sense thatx4 andx4 + l represent the same
point, then, assuming that the functionΨ is single-valued,
from (21) one finds that the charge must be quantized

q =
2πκ~c

l
n, n = 0,±1,±2, . . . .

5. Curvature of the Kaluza–Klein metric

A curious fact is that if one assumes that the five-dimensional
metric (9) satisfies theanalogof the Einstein vacuum field
equations, then (by suitably selecting the value of the con-
stantκ) one obtains the Einstein field equations with the elec-
tromagnetic field as source, the Maxwell equations without
charges or currents, and the algebraic conditionFαβFαβ =
0. In fact, if the Riemann curvature tensor is defined by

IRA
BCD =

∂IΓA
BD

∂xC
− ∂IΓA

BC

∂xD
+ IΓA

RCIΓR
BD − IΓA

RDIΓR
BC

and the Ricci tensor byIRAB = IRC
ACB , with similar def-

initions for other dimensions, with the aid of Eqs. (11) one
gets

IRαβ = Rαβ + 1
4κ4(FµνFµν)AαAβ

+ 1
2κ2(Aα∇ρFβ

ρ + Aβ∇ρFα
ρ)− 1

2κ2Fα
ρFβρ,

IRα4 = 1
4κ∇βFα

β + 1
4κ3F ρσFρσAα,

IR44 = 1
4κ2FαβFαβ , (23)

whereRαβ is the Ricci tensor of the space-time metricgαβ .
Hence, the fifteen equationsIRAB = 0 (which are the analog
of the Einstein vacuum field equations in a five-dimensional
space) imply that the curvature of the space-time and the elec-
tromagnetic field tensor satisfy

Rαβ = 1
2κ2Fα

ρFβρ, (24)

∇βFα
β =0, (25)

FαβFαβ =0. (26)

Equations (25) are the source-free Maxwell equations and
Eqs. (24) are the Einstein field equations with an electromag-
netic field satisfying (26) as its source, ifκ = ±2

√
G/c2,

whereG is the Newton gravitational constant.
It has to be emphasized that there is no reason to assume

that the metricGAB should satisfy the analog of the Ein-
stein field equations in vacuum, and the fact that the equa-
tions IRAB = 0 lead to the Einstein–Maxwell equations for
the electromagnetic fields satisfying the condition (26) (pro-
vided that we give the appropriate value toκ) can only be
regarded as a curious coincidence.

A more subtle point that leads to some misunderstand-
ings in the literature is the following. Making use of Eqs.
(8) and (23) one finds that the scalar curvature of the five-
dimensional metric (9),IR = GABIRAB , is given by

IR = R− 1
4κ2FαβFαβ , (27)

whereR = gαβRαβ is the scalar curvature of the space-time.
Furthermore, as pointed out above,det(GAB) = det(gαβ),
hence,

√
| det(GAB)| IR =

√
|g|(R− 1

4κ2FαβFαβ

)
. (28)
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Note that Eqs. (27) and (28) hold for any space-time met-
ric gαβ and any electromagnetic fieldFαβ , and that the left-
hand sides of (27) and (28) correspond to the specific five-
dimensional metric (9).

As is well known, the Lagrangian densityLEM =√
|g|(R−(1/4)κ2FαβFαβ

)
, with the appropriate value ofκ,

considered as a function ofgαβ , Aα, and their partial deriva-
tives, leads to the Einstein–Maxwell equations [without al-
gebraic restrictions of the form (26)] and, similarly, the La-
grangian density

√
|det(GAB)| IR, considered as a function

of GAB and their partial derivatives, leads toIRAB = 0.
However, Eq. (28) does not mean that the equationsIRAB =
0 are equivalent to the Einstein–Maxwell equations (as shown
above). If we substitute the right-hand side of (28) into the
Euler–Lagrange equations, treatinggαβ andAα as the field
variables, one must obtain the Einstein–Maxwell equations;
by virtue of the equality (28) these equations must also fol-
low by substituting the left-hand side of (28) into the Euler–
Lagrange equations, treating againgαβ andAα as the field
variables (fourteen variables in total), and the result is not
IRAB = 0 because, as pointed out above,IRAB = 0 follow
from the Lagrangian density

√
|det(GAB)| IR if the GAB

(fifteen variables in total) are treated as the field variables.
In spite of these facts, it is frequently claimed that (27)

represents a unification of Einstein’s theory and electromag-
netism (see,e.g., Ref. [1], Sec. IV, Ref. [3], or Ref. [4],
Sec. 18.2).

6. Discussion

As we have shown, in the context of the general relativity
theory, the effects of combined gravitational and electromag-
netic fields on point particles, or on spin-zero quantum fields,
can be reproduced by the appropriate definition of a metric in
a five-dimensional space. One can take a conservative point
of view, regarding the fifth dimension just as a useful mathe-

matical trick, but, at the other extreme, it can be assumed that
the fifth dimension is as real as the usual three spatial dimen-
sions with the difference, it is argued, thatx4 is the coordinate
on a circle of an extremely small radius (see,e.g., Refs. [1,
3, 4, 11]). In that case, at the quantum level, the Kaluza–
Klein theory makes predictions that have not been experi-
mentally confirmed; by means of elementary arguments, it
follows that, if the fifth dimension corresponds to a circle of
radiusa, there must exist infinite families of massive parti-
cles, which form what is called Kaluza–Klein towers, with
masses proportional to1/a, comparable to the Planck mass.

At the classical level, a good reason to doubt about the
physical relevance of the metric (10) is the presence of the
arbitrary constantκ; recalling thatdx4/dτ + κAγdxγ/dτ is
identified withq/κm0c, from Eq. (10) we see that (ifq 6= 0),
by choosing appropriately the value ofκ, theconstantvalue
of

GAB
dxA

dτ

dxB

dτ
= −c2 +

(
q

κm0c

)2

(29)

can be made positive, negative, or zero (by contrast, in gen-
eral relativity there is a profound difference between space-
like, timelike, and null curves). It may be noticed that the
constant (29) is essentially the factor appearing on the right-
hand side of (22).

Even if one does not assign a physical reality to the fifth
dimension, the Kaluza–Klein formalism can be conveniently
applied,e.g., in the study of the of properties of gravitational
fields coupled to electromagnetic fields (see,e.g., Ref. [12]).

In the recent decades, various attempts have been made
trying to find unified theories that include all known funda-
mental interactions, where the total number of dimensions is
greater than five, inspired in the Kaluza–Klein theory.
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