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We present a pedagogical approach to the Lorentz group. We start by introducing a compact notation to express the elements of the
damental representation of the rotations group. Lorentz coordinate transformations are derived in a novel and compact form. We s
how to make a Lorentz transformation on the electromagnetic fields as well. A covariant time-derivative is introduced in order to deal w
non-inertial systems. Examples of the usefulness of these results such as the rotating system and the Thomas precession, are also pre:

Keywords: Special relativity; Lorentz transformations.

En este trabajo se presenta una aproxigragiedaggica al grupo de Lorentz. Se comienza introduciendo una rotaxmpacta para
expresar los elementos de la represedrafiindamental del grupo de rotaciones. Las transformaciones de Lorentz de las coordenadas
derivan de una manera compacta. Se muestra @antmo realizar las transformaciones de Lorentz sobre los campos electi@magn

Se introduce una derivada temporal covariante para tratar con sistemas no inerciales, para mostrar la utilidacctigleste presentan
tambén ejemplos tales como el sistema rotante y la préned Thomas.

Descriptores: Relatividad especial; transformaciones de Lorentz.
PACS: 03.30

1. Introduction

Special relativity was first introduced nearly a century ago in i — 7' = R%, )
order to explain the massive experimental evidence againg;o that

ether as the medium for propagating electromagnetic waves.

As a consequence of special relativity an unexpected space- =7 7. (2)

time structure was discovered. The pure Lorentz transforma- ] )

tions called boosts relate the changes of the space distancis three dimensional sggoﬁ,c_orresponds to &< 3 orthog-
and time intervals when they are measured from two differenPn@l matrix and the arrayis written as a column. In order to
inertial frames. Rotations and boost transformations form thdnd explicitly the 2 matrix we analyze infinitesimal rotations

general Lorentz group (The properties of the Lorentz groupt"d: @s usual, then construct a finite transformation, made of
can be found in other references such as [1-4]). an infinite number of infinitesimal ones. If an infinitesimal

We show how one can understand boost transformationéf"’meormatIon is represented by
which follow from the postulates of special relativity, as cor- i— 7 =707, (3)
responding to deformations of the classical Galilean transfor-
mations. Also we introduce a covariant temporal derivativethen, from (2) 4 in first approximation satisfies
to deal with non-inertial systems. This article is arranged PSS 4
as follows. In Sec. 2 we show a simple way to generate and rer= )
write the matrices associated with the rotation of three dimenfor all . The solution of this equation is given by
sional vectors and present some applications of our notation. .
In Sec. 3 we find the matrices of the boost transformations 0F =060 x T, (5)

starting from Galileo’s only by imposing the constance Oftheth infinitesimal 1053 phvsicall ies the total inf
velocity of light. Finally, in Sec. 4 we show how the electro- € infinitesimal vectobd physically carries the total infor-

magnetic fields transform under general Lorentz transformaation about of the rotatior}f] gives the magnitude of the

tions in the same fashion we introduced before. An append&Otatlon angle and = 69/|6.9‘ are Fhe coordlnf’;\tes of.th.e 'unlt.
deal with non-inertial system. vector, parallel to the rotation axis. From this the (infinitesi-

mally) transformated coordinates are written as

. 7= (1-60x)Z. (6)
2. Rotations
The expression in brackets corresponds to the infinitesimal

2.1. Rotations of the co ordinate frame rotation matrixR(66). The quantityidx is a (matrix) opera-
tor which can be defined as follows:
Under rotations the Cartesian coordinates of a specific vector o

transform linearly according to (60x)Z = 66 x Z, (1)
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or more explicitly, wheree;;;, is the totally antisymmetric Levi-Civita tensor.
(The sum over the repeated indexes is understood.) Writing
. 0 =063 969
d0x = 003 0 —d6; |. (8) J; = ié;x, (14)

—00y 86, 0
we find that the generators can be re-written as

Writting
5= lim §/N Ox =—i0- 7 (15)
. . q . that is, 7 corresponds to a hermitian base for the generator
the matrix for a finite anglé rotation corresponds to space. According to (12) and (13) thés then satisfy
- N
~ . = N . 0x [(Tiy T;] = i€s06 T (16)
= = - g j :
w0 = o ] = g (1-5)
B The relation (16) corresponds to the algebra of rotations.
—0x
=e . 9)

2.3. Rotating systems
The expansion of the exponential in (9) gives usEhmatrix
explicitly, All of the subsection 2.2. is standard, however in connection
. . A . with subsection 2.1. we can obtain interesting results. As an
e 9 =00 . —sinf 6 x —cosH(Ox)?, (10)  example of the usefulness of the notation introduced in (9)

. ) ) . ) for the rotation matrix, let’s find the velocity and acceleration
which applied to the coordinates gives the conventional exgy 4 particle observed from a rotating system. Let a vegtor

pression of coordinate rotations [4]. For arriving to (10) We o the coordinates of a particle in an inertial system @hd
have used the properties of the triple vector product to obtaify,o -ordinates of the same particle observed from a rotat-
(5x)($x) _ 67$~ G- & (11) ing system, with angular velocity; the origi_ns of t_hese two
systems are located at the same geometrical point so that the
the last term is understood to be the coefficient of an identitycoordinates satisfy the relation
matrix. In this notation the period after a vector implies its

o —0x

transpositions- = 67 . i =e 0, (17)
2.2. Rotations algebra wheref is a time-dependent function. In the inertial system

the velocity and acceleration of one particle are the first and
As is well known a group is a set of operators with a mul-second time-derivative of the coordinates, respectively. As-
tiplication law which satisfies four basic properties: closure,suming that the components of a force, acting over the parti-
associativity, existence of the identity and the existence of @le, transform according to (17) we conclude that, in the ro-
unique inverse for each element. The set of rotation matriceting system, the second Newton &= ma does not have
R represents a group: the rotation group. The elements ahis form, unless we change the time-derivative to a covariant
the rotation group are labeled by the set of continuos paramime-derivative given by
etersd;. The antisymmetric matrigdx generates the rotation

—

matrix R(0), this is why it is called “generator”. Genera- p — eff?xi ix _ 4 + &% +%@ x 0)x

. . t -
tors form a vector space as well. The rotations algebra is the dt de
: ; 1 o
commutation relgtlons among the elements of the generators L ((@ « ) x 9) ¥+ (18)
vector space basis. 3

The closure pr_operty itis nothlng more than the S.tateme.n\;vhere we have used (12) in the known relation
that the composition of two rotations is again a rotation. This
is implemented in group theory language by saying thatthe ~_, = , 1
commutator between two generators is a generator. For the © Be” =B+ B, A] + 5HB’A]’A]
generators of the rotation group we obtain 1
- - - o +§[[[BvA]7AH7A]+
[0x,9x] = (0 x ¢)X, (12) '
- : . Thus we can define a covariant velocity of the patrticle,
where we have used the Jacobi identity for the triple VeCOLeen in the rotating system, as the covariant derivative of the

product. coordinates; in the simple case in whighs paralell tod we
If the ¢; form the standard basis of the coordinate spacey . e ' P P

they satisfy the algebra
da’

= — —/
éi . éj = 5ij7 éz X éj = Eijkék’a (13) v = E +wxa. (19)
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In the same way the covariant acceleration is then given by us proceed like this; for the/c — 0 approximation take the
deformed Galilean transformations to be
7 _D L, a2z 03 d# . .
a = tv—W—F wxa—kwx(wxx) =t 5t

+axa,. (20) 7 =7t (23)

whered is the angular acceleration of the system. In theintroducing a factost. In order to satisfy (22) in first approx-
second term of the RHS we recognize the Coriolis accelerdMation we obtain

tion [4-7], and the centrifugal acceleration in the third term. 5t — Uz o4
In this way the primed vectors are related with the un-primed t= 2 (24)
quantities by a relation similar to (17). Notice that (22) together with (23) satisfy the first equation

in (21) even ifc?t? — &2 not vanishes. That is, evenifandt
represent the coordinates of any arbitrary event. These so de-
formed Galilean transformations correspond to infinitesimal

Lorentz transformations are the rules that relate space-tim@0ost transformations.

coordinates of any event in two different inertial systems. Itis convenient to define a infinitesimal parameter as
Basically, Lorentz transformations can be classified in two

types, rotations and boosts. A general Lorentz transformation on
is a mixing between them. Boosts are the Lorentz transforma-

tions when the systems have parallel spatial axis with spatialve can write the infinitesimal Lorentz transformation (23),
origin in relative movement. As we will see, Lorentz trans- using (24) and (25), as the following matrix equation:

formations are the generalization of the classical rotations to , .
ct . 0 o ct (26)
) o7 0 ¥ )

3. Lorentz transformations

oy

(25)

u/c—0

4-dimensional space-time.

3.1. Boost transformations Assuming

In order to deduced how to transform the coordinates of any o1 = ngnoo /N,

event after a boost let us tal® to be an inertial system in - . :
one can reconstruct the finite Lorentz transformations, using

relative movement with respect to another inertial system T : . ) .

The respective axes in both systems are parallel. Take alsaop_roge_dure similar to the_ one introduced in (.9)’ performing

their spatial origin as coincident at time zero for both sys-f':m infinite number of infinitesimal transformations the result
ct )

tems. We get that the space-time origin of the two systems i
the same. According to the Galilean transformations, in that ct!
case, the coordinat¢’sandz”’ of a event,as observed froffi, 7
0 -7 ct
| (5 7)) e
7 = 7 — it (21) Expanding the exponential we obtain

I
=
b=

—

|
2|

N
| O
o
N~

P4
N
8]

T
are related with thé and’ coordinates ofs given by

t =t

wheret is the velocity ofS’ relative toS. As a result of these €xp ( _m —077' )
. . . . n
relations the velocity of one particle observedshis the ve-
locity observed byS minus the relative velocityi. Clearly _ coshn —1 - sinhn
2 . ; . = A . o |- (28)
this is in contradiction with the postulate of special relativ- —asinhn ad - coshn — (4x)

ity that the speed of the light is constant independently of thef:rom (27) and (28) we can work out the relative velocity be-

choice of coordinates, because that relation of velocities I veen the two coordinate systems

mains true even when a light pulse is considered instead of a

=

particle, i=—2|  —atanh (29)
According to the special relativity principles if we sup- L2 P "
pose that a light pulse is emitted from the origin the space;
. . . therefore
time coordinates, the pulse must satisfy
b u/c
sin =
Ft -t =7 7% =0. (22) g T—u2/c2
One can, however, try to modify the Galilean transforma- coshn = ———= =7 (30)
tions to make it compatible with the relativity principles, let V1—u?/c?
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Thus (29) gives the relation between the paramgtend the  that is(1/2)N; and—(1/2)N;* satisfy independently satisfy
relative velocityu. It is evident that ifu/c — 0 we get the rotation algebra (16), additionally,
n — u/c; for this reasom is called the relative “rapidity”. §

In general, a Lorentz vector is a 4-vector which trans- Wi, NjT=0. (38)
forms according to (27) [with (28) and (30)]. Just by intro- . . “
ducing a deformation to the Galilean transformations one ca{We. S‘?,e. that_ the Lorentz algebra can be splitted into two “ro-
. . - . ation” invariant subalgebras.
introduce the results of special relativity and motivate the ne-

cessity of a constant speed of light (for any observer). 3.3. Thomas precession

3.2. Lorentz algebra Relation (33) correspond to the application of two consecu-

As in subsection 2.2. once we know the wav a vector transtive boosts; it shows that a vector is rotated when these two
.o y boosts are applied. This phenomena is known as the Thomas
forms we can find out about the group algebra that thes

ransformations imply. From the expression (27) one ca recession. Physically the Thomas precession appears when

. we try to describe the time evolution of quantities asociated
guess the generators of a boost transformation. The set 90 accelerated particles

.bOOSt transformations does not form agroup, this can be see- In order to analyze the problem of an accelerated particle
ing by the fact that the commutation relation between boos{he usual thinking is of a non-inertial system as composed of

generators is not a boost generator itself, infinite inertial system where the particle is always instanta-
0 i 0 R neously at rest in one of them [1, 8,9]. However, as we will
K i 0 ) ) ( 20 ﬂ see, this problem is equivalent (at least locally) to consider-
. ing only one non-inertial rest frame where the “boost” from
( 9 0- ) 31) the laboratory system is characterized by a time depending
0 —(TxR)x )’ rapidity 77(¢).
. . For the non-accelerated particle the time derivative used
Nevertheless this generators form a vector space which cap ihe laboratory system changes as
be expanded in the basis &f defined by

d d 1d
A =, - 22
Ki = < 2 60 > . (32) e dr ydt’
’ when the observer uses the system where the particle is at
The commutation relations (31) for ti&s are rest.
. Following the procedure of subsection 2.3., for an accel-
(Ki, K5] = i€ijn T (33)  erated particle, we must define a covariant time derivative for

an observer in the frame in which the particle is at rest, as

where, in this case, thg's are the rotation generators given \yiih the the rotating system (18)

in (13) extended to four dimensions,

d ~ed g
0. i d Dt = 8_7.}C7/enllc. (39)
\71‘:(8» P ) (34) dt dt
16X In the non-relativistic approximation, and considering (39)
The generator& do not form a closed algebr&, & J's do, ~ acting only on 3-vectors (see appendix) we have
the algebra closes with d -
U Xu
D, = — — | %, 40
(T3, K] = ieijnkn. (35) Tt ( 22 ) (40)

Relations (16), (34) and (35) form the Lorentz algebra. Thigvhere is the velocity the particle seen from the laboratory
algebra is a manifestation of the fact that rotations, togethesystem. Comparing with (18) we find that this system has a
with boosts, form a group, the Lorentz group. Thils and  precession frecuency given by

J's are a basis for the generator space of this group. We

can change the basis, in partiCL_JIar a good cho_ice is the basis 3= u Xf = — & (41)
compounded by thd/’s and their complex conjugat&™’s 2c
defined by &r is called Thomas frecuency. For instance, the time
evolution of the spin vector of a accelerated particle
Ni=Ti+ Ki, (36)  of mass m, chargee and gyro-magnetic ratig is not
2/ dr— 4 ’
which satisfy the algebra ds/dt=g(e/2m) 5 > B’ but
ds . e , =
NG, N;] = 2ies1 N, (37) ity X §= 95,5 x B, (42)
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whereB’ is the magnetic field observed in the rest frame ofwhich correspond to the usual electromagnetic boost trans-
the particle. Once again, following the method introduced informations.

classical mechanics and deforming the Galilean set of trans- We now have that the square of transformation (47) gives
formations one is able to obtain, without too much effort, a

fundamental result of relativistic mechanics. (E' +iB')? = (E +iB)? (49)

i.e. E2 — B2 andB - E are invariant quantities. So, if
B-E + 0, the electric an magnetic fields will exist simultane-
ously in all inertial frames, while the angle between the fields
h Stays acute or obtuse depending on its value in the original
coordinate frame.
In the case in which the fields are ortogon&l-(E = 0),

< 0 —E- > < 50 ) B < p ) it is possible to find an inertial frame where

4. Transformations of the electromagnetic
field

In the same spirit of this paper, Maxwell equations wit
sources can be written in a matricial form as

E Bx = J (43)
-V E'=0 if B*>E? or B =0 if E*>>B2%
where+— over the derivatives means that they act to the right.

We are assuming = ¢, = 1 for simplicity. (Homoge- Let us clarify this with an example. Consider a particle mov-
neous Maxwell equatlons are obtained by dualify.» —5,  inginan electromagnetic field whefe B = 0 andB* > E?
B — E p — ()) We can then write the e|ectromagnet|c (the case wher&? < E? can be obtained from this by dual-
field array as a combination of the generators of the Lorentity). As we saw, there is an inertial system where the particle
group; in our notation |s afected only by a magnetic field’. Using the condition
- = 0 in the first expresion of (48) and taking both the par-
( 0 —-E- ) _ 7(E R4iB. j) (44) aIIeI and perpendicular components with respeét vee find

E Bx .
Under Lorentz transformations the spacetime derivative and B .
the sources in (43) transforms like the coordinates in (27), so sinhn @ x B = coshn(iux)?E;
the matrix of the electromagnetic fields transform according
to from which we obtain
E'-R+iB - J=e ™E .- K +iB - J)e™ ;  (45) _ixB=E, (50)
taking infinitesimal transformations for the fields we find  \yhere we have used = —(ax)2E andtanhn = w. This

equation does not univocally determifieso there are many

E -K+iB'-J=E-K+iB-J i ;
+iB-J +iB-J system where the electric field vanishes.

+ [(E K +iB - j)ﬁﬁ. ;6], In particular we can choose the velocity to be ortogonal
to the magnetic field, obtaining the following expresion for
For the’'s and J's coefficients we have the velocity
E' = E + i x B, E
o W= . (51)

B' = B — §if x E;
' _ _ ' Because the Eq. (47) corresponds to a rotation, we see that
these coupled equations can be written in one, using a coMhe parallel component @ of the electromagnetic field is an

plexified electromagnetic vector field: invariant, so for our cas8 and B’ must be parallel. Further-
Lo S = more, by the invariance df? — B2 we obtain
(B +iB) = (1 — i67x)(E + iB), (46) y
. P . . . . B2 _E2
corresponding to an infinitesimal imaginary rotation of the B =X—_" B (52)
quantity £ 4+ iB. The finite transformation is therefore B

In this example we saw the utility of the relation (49)
which is easilly derived from (47) and is not evident from

which can be expanded as in (10). Taking the real and Imagthe usual transformations (48). (Usually is derived using ten-

(E +1iB) = e " (E +iB), 47

inary parts we finally obtain sorial notation). .
Another interesting example of Lorentz transformations
E' =i - E +sinhn @ x B — coshn(ax)?E, of the electromanetic field is when we consider the evolution

of the spin of a charged particle, moving in a region with an

3 o8 B sinhnd x B — coshn(ix)2B L o 2
B' = i- B —sinhn @ x E'—coshn(iax)°B,  (48)  glectric fieldE. In the system in which the particle is at rest
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a magnetic field appears. Its value is given by the second ex36), as
presion in (48) which, in the non relativistic aproximation, is

written as D, = e*%ﬁ-N%e%ﬁ-ﬁ fee, (54)
B'=—ixE. where we have used the fact thaf and ;' commute
(Eg. (38)). TheNs satisfy the simple relation
The evqutlon of the spin is given by (42) and (41), where
U= eE/m therefore NiN; = 65 + i€y,
45 1) Zsx @x ), (53) Sowehave
dt 2m e noo.o .
o ) i e2™V = cosh — + 7.N sinh —,
which is the Thomas equation [10] witB = 0 andy — 1 2 2
As it is well known, this equation gives the correct spin-orbit 5,4 therefore
correction in the non relativistic aproximation [11].
o AN d;ﬁ'N:dJr( dn
. de/ de/ Tar
5. Conclusions
We have introduced a way of writing the coordinates of a + sinh nd— —i(coshn — 1)1 x dn/) -N. (55)
rotated vector and deduced the Coriolis acceleration in a d’ dt
stralg_htforward way. The generators of the rotation groumea”y’ returning to the’s andiC’s we write
are given a compact form. In the same spirit we have ob-
tained Lorentz transformations for 4-vectors and show how 1d dn . di\ =
the Thomas precession appears in a non-inertial system after Dt = ~dt <dt 7] + sinhn—= dt ) K
the introduction the covariant time derivative. . .
Using a matrix construction we write the non- —i(cosh n—1)7 x dn | J. (56)
homogeneous Maxwell equations in a compact form and, gl de
starting from this, we deduce the Lorentz transformations ofy, a non-relativistic approximation; — 1, we have
the electromagnetic fields using the notation introduced be-
fore. We show that the Lorentz transformation of the electro- d @ AXU =
magnetic fields can be seen as a rotations of the complexified Dy ~a + —-K - 262 . (57)

electromagnetic vectat + iB3. o ) o )
Considering the covariant derivative acting only on 3-vectors

and using the definitions of thé&’s given in (16) we obtain
Appendix: Non-inertial system
d U X U
In this appendix we will explitly find the time covariant Dy = dt T ( 2¢2 ) x (58)
derivative given in (40) for non-inertial system. We can ex-
press this derivative written in terms of tiéé's, defined in  which is the result (42).
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