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An eikonal approach for the atomic photoelectric effect on H-like atoms
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Most quantum mechanics textbooks introduce the atomic photoelectric effect expressing the final continuum state in the high energy limit as
a plane wave. This approximation has shown to give clear differences between gauges though. In this work, we show that an approximation
based on the asymptotic limit of the exact wave function for the final state leads to better results whether form of the interaction Hamiltonian
is used as the photon energy increases. This asymptotic eikonal approximation leads to the exact result in velocity gauge for increasing
photon energies, evidencing the relevance of the Coulomb potential even at large distances.
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Gran parte de los textos de mecánica cúantica introducen el efecto fotoeléctrico expresando la función de onda para el estado final en el
lı́mite de altas energı́as como una onda plana. Sin embargo, esta aproximación conduce a resultados que dependen de la norma utilizada para
el cálculo de la amplitud de transición. En este trabajo se muestra que una aproximación basada en el lı́mite asint́otico de la funcíon de onda
exacta para el estado final, conduce a mejores resultados independientemente de la forma del hamiltoniano de interacción utilizado a medida
que se incrementa la energı́a del fot́on. Esta aproximación asint́otica eikonal conduce al resultado exacto en la norma de velocidad para altas
enerǵıas del fot́on incidente, evidenciando la relevancia del potencial coulombiano a grandes distancias.

Descriptores: Fotoionizacíon; funcíon de onda coulombiana.

PACS: 01.40.Fk; 32.80.Fb

In the last few years, there has been a notorious increase of
studies referring many electron ionization of atoms by radi-
ation fields. This is mainly consequence, of a new gener-
ation of experimental devices, which now provide fully de-
tailed information on the dynamic of the charged fragments
involved in the collision of charged particles and photons
with atoms [1, 2]. These advances in experimental studies
have also encouraged theoreticians to improve the theoretical
models regularly used in atomic collisions physics to describe
the many particles continuum [3–5].

In spite of the conceptual advance achieved on com-
plex multielectron systems, by the end of quantum mechan-
ics courses the student generally does not realize the conse-
quences of considering the many particles continuum under
different approximations.

In this work we consider the atomic photoelectric effect
of the hydrogen atom which is usually introduced within the
semiclassical theory of radiation. The equivalence between
the different representations of the interaction operator,i.e.,
gauges, is usually shown using the Heisenberg equation of
motion assuming that the exact wave functions for the initial
and final states are being employed. Furthermore, the process
is commonly presented in a non-relativistic high energy ap-
proximation [6–8] where terms in the Hamiltonian that scale
as 1/c2 are neglected. This approximation is usually denoted
as dipolar approximation and is valid fora0/λ << 1 be-
ing a0 the Bohr radius andλ the photon wavelength. An-
other usual approximation consists in considering the photo-
electron continuum wave function as a plane wave. This ap-
proximation notably simplifies the analytical work and leaves

a clear qualitative insight of the differential cross sections.
However, the cross sections for the photoelectric effect of hy-
drogen calculated in different gauges and using plane waves
to represent the final electron wave function, lead to differ-
ent results [9]. The main reason for this discrepancy is given
by the fact that the plane wave is not a solution ofH0 +V (r)
(with V (r) = −Z/r) but of the free particle HamiltonianH0.
In other words, since the exact initial state is considered, the
main reason for the lack of agreement between gauges is con-
sequence of an approximated final state wave function which
does not properly take account of the Coulomb potential.

In this work we propose the use of the asymptotic form of
the Coulomb wave function in order to represent the photo-
electron continuum. We show that the differential cross sec-
tions in both gauges lead to a better description of the process
without incrementing the mathematical complexity. Compar-
ison with the exact results obtained when the final state is
represented with a Coulomb wave function is performed and
the advantages of the here proposed approximation are sum-
marized. Atomic units will be used throughout this paper.

We describe an initial bound electron in the ground state
of an hydrogenic atom by,

ϕi =
Z3/2

√
π

e−Zr. (1)

We perform our analysis for H-like atoms but for practical
purposes, we consider the valueZ = 1 restricting ourselves
to the H atom. The solution of the Schrödinger equation for
the two body Coulomb problem in the continuum with in-
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coming boundary condition,

[H0 + V (r)]Ψ(−) = EΨ(−) (2)

is given by a Coulomb wave function [8,10,11],

Ψ(−)
C =

NC

(2π)3/2
eik·r

1F1[iα, 1,−ikr − ik · r] (3)

where1F1[a, c, z] is the Kummer function [12],

NC = e−(πα/2)Γ(1− iα)

is the normalization constant andα = −Zµ/k is the Som-
merfeld parameter [8,10,11]. The momentum of the emitted
electron isk and the reduced mass of the two particles system
is µ. The usual plane wave approximation for the continuum
state, could be easily recovered by taking the limitα → 0.

The differential cross section for the photoionization pro-
cess is given by [6,7],

dσ

dΩ
=

4π2k

c ω
|MG

1s|2 (4)

whereω is the photon energy,c = 137 andMG
1s is the transi-

tion amplitude in gaugeG. Taking into account the Heisen-
berg equation of motion[H0 + V (r), r] = p we obtain the
following expressions for the transition amplitudes in the ve-
locity and length gauges [9],

MV
1s = 〈Ψ(−)|eikγ ·rε̂ · 5|ϕi〉 (5)

ML
1s = ω〈Ψ(−)|eikγ ·rε̂ · r|ϕi〉 (6)

where we have noted withkγ the momentum vector of the
photon. In the following, we work within the dipolar approx-
imation, which is equivalent to considerkγ = 0 in the above
expressions. When the exact wave functions are used to rep-
resent the initial and final states, Eq. (5) and Eq. (6) lead
identical results. This means that the obtained cross sections
are gauge-independent. The transition amplitudes calcula-
tions are performed by using Nordsieck-like integrals when
Coulomb wave functions are used. Nordsieck-like integrals
are widely used in atomic physics and nowadays are tabu-
lated in several textbooks and articles [7, 11, 13–15]. How-
ever, this could not be considered a straightforward calcula-
tion in a quantum mechanics course and could probably ex-
ceed the time deserved to the subject. The plane wave ap-
proximation mainly consist on the Fourier transform of the
initial state which leads to

MV
PW = iε̂ ·

(
Z5/2

√
π(2π)3/2

)
8πk

(k2 + Z2)2
. (7)

By the other sideML
PW is exactly twiceMV

PW leading to
a constant factor4 of discrepancy between the velocity and
length gauges for the differential cross section. We now con-
sider the eikonal approximation which mainly concerns us.

Asymptotically (for larger), the continuum wave function
Eq. (3) is given by [8,12]

Ψ(−)
r → eik·r

(2π)3/2

{
e−iα log(kr+k·r)

+
Γ(1− iα)

Γ(iα)
e−i(kr+k·r)

(−kr − k · r)1−iα

}
. (8)

The first term of Eq.(8) is given by a plane wave times
an eikonal distortion that explicitly shows that the Coulomb
potential of the nucleus is felt by the emitted electron even at
large distances. The second term is related to the scattering
of the photoelectron by the nucleus [8] and clearly behaves
as an spherical incoming wave.

As an approximated model we propose the eikonal ap-
proach which retains the asymptotic distortion effect of the
Coulomb potential:

Ψ(−)
eik =

eik·r

(2π)
3
2

e−iα log(kr+k·r). (9)

The transition amplitude in velocity gauge for the eikonal
approximation is given by

MV
eik =

−Z5/2ε̂·√
π(2π)3/2

∫
dre−ik·r−Zr r̂ (kr + k · r)iα

. (10)

In order to simplify calculations, we now rewrite this ex-
pression as follows:

MV
eik = − lim

k′→k
ε̂ ·

(
Z5/2

√
π(2π)3/2

)
kiαi

×∇k′

[∫
dre−ik′k̂·r−Zr 1

r

(
r + k̂·r

)iα
]

, (11)

where we have consideredk′ = k′k̂. Introducing the
parabolic coordinates commonly used for the two body prob-
lem [8]:

ξ = r + k̂·r,
η = r − k̂·r,
φ = arctan(y/x),

where z is defined along thek axis. Taking into account that
the volume element in these coordinates is given by

dr =
(ξ + η)

4
dξdηdφ, (12)

the integral between brackets in Eq. (11) turns separable:

I = π

∫ ∞

0

∫ ∞

0

dξdηe−(ik′+Z) ξ
2 ξiαe(ik′−Z) η

2 . (13)

The integrals can be easily performed and they give

I =
4πΓ(1 + iα)
(k′2 + Z2)

(
ik′ + Z

2

)−iα

. (14)
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Finally, the transition amplitude in velocity gauge for the
eikonal approximation is obtained:

MV
eik =

(
ε̂ · k̂

) √
2
π

Z5/2k−i Z
k Γ

(
1−i

Z

k

)(
ik+Z

2

)i Z
k

×
(

2k2(ik + Z) + Z(k2 + Z2)
k(k2 + Z2)2(ik + Z)

)
. (15)

Following the same line of reasoning, it could be shown
that the length gauge transition amplitude is given by,

ML
eik = −

(
ε̂ · k̂

)√
2
π

Z3/2ik−i Z
k Γ

(
1− i

Z

k

)

×
(

2−1−i Z
k Z(ik + Z)i Z

k (5k2 + Z2)
k2(k − iZ)(k + iZ)2

)
(16)

Since the angular factor that modulates the transition am-
plitude is given by

(
ε̂ · k̂

)
= cos θ, we could express

dσG

dΩ
= BG cos2 θ. (17)

The factorBG does not depend on angular coordinates.
In other words, it contains all the information on the electron
emission probability as a function of the photon energy. In
Fig. 1 we showB as a function of the emitted electron en-
ergy for the different models considered to represent the final
wave function for the photoelectron.

Both forms (velocity and length) of the interaction Hamil-
tonian are presented. It could be seen that the plane wave
model in velocity gauge overestimates the exact result given
by the Coulomb wave function of Eq. (3) for electrons emit-
ted with more than about 5.5 eV. The length gauge prediction

FIGURE 1. B as a function of the emitted electron energy for the
different models considered. Theories are: solid-line: the Coulomb
wave model; dot-dashed line: eikonal wave model in velocity
gauge; dashed-line: eikonal wave model in length gauge; dotted-
line: plane wave model in velocity gauge; short-dashed-line: plane
wave model in length gauge.

for the same model, increases the overestimation by an exact
factor 4, as already mentioned. The alternative approximated
eikonal model, here suggested, shows a closer agreement be-
tween gauges compared to the plane wave model in the in-
termediate to high energy range. In this limit, the velocity
gauge also tends to the exact result given by the Coulomb
wave function as the electron energy increases. In the thresh-
old region, both approximated models seem to fail to describe
the zero energy resonance obtained with the Coulomb wave
function. This explicitly shows that these approximated mod-
els could only be considered consistent in the intermediate to
high energy limit.

In Fig. 2 we present the differential cross section for an
electron emitted withE = 250eV . It could be seen that the
eikonal model in both gauges is in better agreement with the
Coulomb wave than the plane wave model in velocity gauge.
The total cross section for the eikonal model could be easily
obtained in both gauges by an angular integration of Eq. (17),

σV,L =
16π3k

3c ω
BV,L. (18)

This total cross section represents the photoionization
emission probability as a function of the photon energy.

As a conclusion, we have presented an alternative ap-
proximation in order to introduce the atomic photoelectric
effect in quantum courses. We have represented the photo-
electron with an asymptotically correct eikonal model. We
have shown that this model reduces the gauges discrepancies
typical of the plane wave approximation used so far. We have
shown that in the intermediate to high energy limit this ap-
proximation in velocity gauge tends to the exact value given
by the Coulomb wave. Furthermore, its implementation does
not require further knowledge on special functions or integral
representations. This kind of analysis, could be helpful to es-
timulate the student’s intuition on the spurius effects inherent
to the use of approximated wave functions in the description
of physical processes.

FIGURE 2. The angular distribution in atomic units forE =
250eV . Results obtained with the Coulomb wave function, the
plane wave and the eikonal wave are shown in both length and ve-
locity gauges. Theories as in Fig. 1.
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