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The scalar normal modes and Green functions for the classical wave equation subject to Dirichlet and Neumann boundary conditions on
confocal hyperboloidal surfaces, which model the shapes of the electrodes in a scanning tunneling microscope or a conductor-insulator-
conductor junction, are explicitly constructed. These modes and functions are of interest as possible starting points for the study of the
Casimir effect between the electrodes of such devices.
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Se construyen exjglitamente los modos normales y las funciones de Green escalares para laredaamida ésica sujetas a condiciones

de frontera de Dirichlet y de Neumann en superficies hiperboloidales confocales, las cuales modelan las formas de los electrodos en un
microscopio de tunelaje y barrido, y en juntas conductor-aislante-conductor. Estos modos y funciones sossdmimteposibles puntos

de partida para el estudio del efecto Casimir entre los electrodos de tales dispositivos.

Descriptores:Ecuacon de onda @sica; modos normales; funciones de Green; micrdaabgbarrido y tunelamiento; efecto Casimir.

PACS: 3.50.De; 41.20Jv; 68.37.Ef; 12.20.Ds

1. Introduction modes or the Green functions for the classical wave equation

) ) ) ) subject to Dirichlet and Neumann boundary conditions at the
The modeling of the tip and sample surfaces in scanning tungyrface of the electrodes [9].

neling microscopy (STM) as confocal hyperboloids has been
used in the recent literature [1-3]. Such a modeling can also In this work, motivated by the interest in the study of the
be extended for conductor-insulator-conductor (CIC) junc-Casimir effect for hyperboloidal electrodes, the correspond-
tions [4,5]. The quantitative description of the electrostaticing normal modes and Green functions are constructed using
potential, the electric intensity field and the electrostatic enprolate spheroidal coordinates. The task is accomplished in
ergy distribution between the electrodes in both devices, takiwo successive steps. In Sec. 2, the solutions of the homoge-
ing into account the applied bias voltage and the charges imeous classical wave equation in those coordinates are identi-
duced in the electrodes while the tunneling electron is in tranfied in general, and selected according to Dirichlet and Neu-
sit between the latter, involves the solutions of the Laplacenann boundary conditions in particular. The orthonormal
equation and the Green function for the Poisson equation sulibases of these Dirichlet and Neumann solutions are used in
ject to Dirichlet boundary conditions [2,4,5]. Sec. 3to construct the respective Green functions, as the par-
Casimir analyzed the quantum electromagnetic vacuunticular solutions of the inhomogeneous wave equation with a
energy change in the presence and absence of one of two upeint and instantaneous source. Section 4 presents a discus-
charged parallel plane conductors, and concluded that thesson of the analogies and differences between the problem
should be a net attractive force between the latter [6]. Experand results of this paper and those of the electrostatic situ-
imental measurements have confirmed the existence of thaion [5], and also the remaining and anticipated steps for
so-called Casimir effect [7]. The effect has also been investhe quantum analysis of the Casimir effect for the STM and
tigated for other geometries of the electrodes [8]. Some ofIC-junction geometries. In the Appendix some basic prop-
the possible starting points for the analysis of the Casimir eferties of the angular and radial spheroidal functions needed
fect for electrodes of a given shape require the scalar normah Secs. 2 and 3 are included.
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2. Solutions of the homogeneous wave equa-

tion in spheroidal coordinates

The prolate spheroidal coordinates <(<oco, —1<£<1,

0<p<2r) are defined by the transformation equations to

Cartesian coordinates,

= fy/(n*=1)(1 - &) cos g,
y=fvVm?* =11 -§)sinep,
z = fng, 1)

d*®
7dg02 = —m?®, (8)
&7 )

wherew?, m? and\ are the successive separation constants.
The time dependent solution is chosen to vary harmonically
with frequencyw, T = e~ . The periodicity condition on

the azimuth angle dependent functidmp + 27) = (),
determines the integer values of the separation constant,
m = 0,+1,£2,..., as well as the form of the function itself,

where 2f is the distance between the focii located at,ime o jts alternativesos(m¢) andsin(mg). The combi-
(2=0,y=0,2= * f). Constant values of the respective co- nationw/c = k is identified as the wave number.

ordinates correspond to confocal prolate spheroids with ec-

centricity 1/n, confocal hyperboloids with eccentricity/¢,
and meridian half-planes making an anglewith the xz
plane[10, 11] . The respective scale factors

,'72_52
h:
n f 172_17
712_52
h§:f 1_§2a

he = f/(? = 1)(1 = &%), ()

and the orthogonal unit vectors

(icos + jsing)ny/1 — € + ké/n? — 1

0= ;
/2 — €2
f* f(icoscp+jsing0)§\/l —n? +IA€7]\/1 — &2
o /nZ — €2 ’
» = —isinp + jcos p, 3)

Equations (6) and (7) have the same form, but their so-
lutions are defined in the respective domaihss< 7 < oo
and—1 < ¢ < 1, and correspond to the radial and angu-
lar spheroidal functions [11, 12]. When both domains are
entirely available, the respective spheroidal functions can be
written as series of Bessel functions and associated Legen-
dre functions of integer orders, involving the same expansion
coefficients and the same characteristic values of the separa-
tion constant\. The latter can be calculated via the orthodox
continued fraction equation method [11], or by an equivalent
matrix method [12].

The normal mode solutions of the homogeneous wave
equation, Eg. (4), to be selected are the one subjected to the
Dirichlet boundary conditions of vanishing at the surfaces of
the two hyperboloidal electrodes considered in this work,

wD(na§:£17<pat):oa wD(n7§:€2>@at):07 (10)

and to the Neumann boundary conditions of vanishing nor-
mal derivatives on the same surfaces,

57/1N(77;5790at) =0 ai/w(%f,%t)

= =0. (11
9¢ §=&1 23 £=&2 -

follow from the evaluation of the differential displacement The separable solutions of Eq.(5) and the boundary condi-
vector. Then, the homogeneous wave equation in these coafons of Egs. (10) and (11) lead to the restrictions on the

dinates has the form

respective solutions of Eq. (7):

Ep(=£&)=0, Ep(¢=¢&)=0, (12)
and

where the prime denotes the derivative with respe¢t to

In order to construct these functions, let us consider the gen-
eral solutions of Eq. (7), for chosen valuesrofk f and \.
They are simply the superpositions of the angular spheroidal

in which each factor satisfies the respective differential equafunctions of the first and second kinds [11],

1 0, 5 o 0 9 0
Ser=ait e tae sy
1 0?1 6?
It clearly admits separable solutions
P(n,&50,t) = HmE(E)P()T(t) (5)
tions:
d d m? wif?
P e H=as ). @

Eon (6) = AL ST (K, ) + B S (kf,€), (14)
given by Eq. (A.1) and (A.2). Fdr= D, Egs. (12) become
AD S(l) (kfa€1)+BD 5(2) (kfagl) 207

mn~mn mn=~mn

AD S (kf, &)+ BL, S (kf,&) =0,  (15)
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a set of two linear homogeneous algebraic equations for theiesw? . = k2 ¢, and eigenvalues? (k2 _f). Foreach
unknown coefficientst? 'y BD . The latter may be differ- eigenfrequency, Egs. (15) and (16) determine the ratios of the

ent from zero only if the determinant of Egs.(15) vanishes coefficients in the solution of Eq.(14):
SO (kf,€1) S (kf,
(6] 61) S (1. 2) AD SRAKRDL &) SAD,Lf.6)

—Sian(kf.€0)S5h (kS E) =0, (16) BbL 751(7%7)1(/{D f.6)  SEUED f.&) (7

mns mns
which will happen only for an infinite set of discrete wave
numberg{;ﬂ'@mS7 s=1,2,3,...,with Corresponding frequen_ Then, the Dirichlet angular spheroidal functions can be writ-
| ten in two alternative forms

= N [ SO f €)SE (B f ) = SE (DS €1) S (6 f€)] (18)

exhibiting that they are solutions of Eq.(7) and satisfy both
boundary conditions of Eqs.(12). The eigenvalue nature he coefficientsdY andBY  have nontrivial and nonvan-
the problem defined by these equations guarantees that t%eﬁing values onlyfrcl)r mn

basis of the functions of Eq.(18) is orthogonal and complete.
The normalization constants can be chosen so that 5(1)’(“7 51)5(2)1'(kf, &)

mn m

&2

—Sin (kf,£0) SO (kf,62) =0, (22)
/ dfar?ms (kgnsf7 E)Er?’ms’ (kr[r)Lns’f7 6):(577-71’588’7 (19)
corresponding to discrete sets of values for the wave num-
berkN ., s=1,2,3,..., frequenciess? . = kN ¢, and

&1
SN D kD )EE (kD £,E)=0(6-€). (20)  eigenvaluesN. (kN ). e

nm

Now the ratio of the coefficients in the solution of Eq.(14)

Similarly, forb = N, Egs.(13) take the forms are
, , N (2) (.N () (.N
AN SO (kf,61) + BN, S (kf,6) =0, A Sn (Ko &) S (Kinns f82) 55

Biin  Siah (koo f S (kY
A{ang% (kf; 52) + Bﬁnsg% (kf’ 52) =0. (21) ( mns ’61) ( mnsf7 52)
and the Neumann orthonormal angular spheroidal functions

| take the alternative forms

E%ns (g) = Nﬁns |:S’r(737)z/ (k%nsfv 52)5'5717)1(k‘717\£nsf’ 6) - ‘97(712: (k%nsfv 62)Sg%(kznsfv f):|
- NTJY\L]TLS {Sérb))/ (kVIanf’ gl)Sv(ra)z(kTIanfv 5) - S’Sri); (kgvfa 51)57(37)1,(]{71:{”3]07 5)} . (24)
The counterparts of Eqs.(19) and (20) expressing the or-

thonormality and the completeness of the Neumann basis are
obtained by the replacemeit — N.

VP (0,60, )=R0) (ko f 1) Z004(6)
The radial spheroidal functior8'%), (kf, ) of Eq. (6),

ime ,—iwP ¢
to be used in Eq. (5), are given by Egs.(A.5-8), as superpo- Xt mnat, (25)
§|t|0n§ of spherical Bes;gl functlons.of kipd= 1,2, 3,4,. ' WM (0, €, 0, t):R%(kZme, MEY ()
involving the same coefficients and eigenvalues appearing in
the angular spheroidal functions. Xez‘wefiwf,vmst7 (26)

In conclusion, two infinite discrete sets of separable solufor b = D and N boundary conditions. Here the radial mode
tions of the wave equation, of the form of Eq.(5), have beerwith p = 1, involving the regular spherical Bessel functions,
identified in this section: is chosen to represent stationary spheroidal waves between
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the hyperboloidal electrodes. Other choices are possible densuring that the boundary conditions of Egs. (28) and (29)
pending on the situation at hand. are satisfied because the hyperboloidal coordinate dependent
functions satisfy Eqgs.(12) and (13), respectively.

The substitution of Egs.(30),(31) and (32) in EqQ.(27) us-
ing the differential wave operator of Eq.(4), leads to the ordi-
The Green functions are solutions of the inhomogeneougary differential equation for the dependent expansion “co-
wave equation with a unit, point and instantaneous source, €fficients” of Eq.(32):

3. Construction of the Green functions

1 82 . . d o d _m? b2 2,0 3b (1b
<v2—28752> G (7’ t; ’I“/,t/):—47T(S(’I’—7_"/)(S(t—tI), (27) %(n _1)%_712_1+kmns /\ (kmnsf)
and are subjected to the respective Dirichlet and Neumann X G (1,1 ) =—4m6 (n—n') (33)

boundary conditions o ] ] ]
which is the inhomogeneous version of the radial Eq.(6). Its

Gp(T,t;7,t')|wes = 0, (28)  solutions are constructed from the appropriate combinations
PYe. of radial spheroidal functionB,(ﬁ?,( Koo fs ) Egs.(A.5-8).
T[/\’(F,t;f',t’)\;,as =0, (29) Itis necessary to distinguish betwegn< n’ andn > 7/,

n

and to use the symmetry of the Green functions under the ex-
on the surface of the electrodes. Next, the construction othange of the field and source positions and times, and their
these Green functions is implemented for the hyperboloidatontinuity at7 = #, ¢ = ¢'. These conditions lead to the
geometry. choices

Since the right hand side of Eq.(27) is zero at all points
of space and instants of time, except at the pirt 7 and IRA <) =Ch R, (KD 0 VRO, (Kb o) (34)
instantt = ¢’ in which the source is present, the Green func- b )
tions can be constructed using the known solutions of the ho- Gmns (1200)=Clrrs "m( mnsf>11) "m( mnsfs11) (38)
mogeneous Eq.(4). The space dependent Dirac-delta functhﬁvolvmg the regular(p

= 1) and the outgoingp = 3)
in spheroidal coordinates has the form

spheroidal radial functions Egs. (A.5,6,7).

L, §(n—n)8(&—&)d(p — &) Integration of Eq.(33) aroung = " allows us to recog-
6(r—17") = ho el . (30)  nize the discontinuity of the derivative of its solution at that
¢ position,

The complete orthonormal sets of eigenfunctions in the

hyperboloidal, azimuthal and time independent variables, s 2_1)01931715(77772’) _(nz_l)dgfnns(n, M| _ 4 (36)
lutions of Eqs.(7), (8) and (9), studied in the previous section, dn —y dn n=n,
allow the representations
Substitution of Egs.(34) and (35) in Eq.(36) leads to the de-
8(E—£€)5(p— )t —t) Z Z Z Zb sl termination of the coefficient§?
—b ’ eim(%’—qﬁ ) e_iw'lnns(t_t ) Cﬁnns( ? - ) {R(l) (ksnnsf’ )R(3) (kfnnsfv 77/)
R, (s 1 VR, (Kb fo1)] = 47 (37)
forb = D andN.
The same functions are used in the expansions of th&he quantity inside the brackets is identified as the Wron-
Green functions skian of the radial functions of the first and third kinds. Its
value follows from Egs. (A.11,12) and leads to the coeffi-
Gb(n7£a¢7t;n/7€/7@/7t/) = Zzzgfnns n 77/ cients
zm,(ap ") e~ mm(t t') C’ff,,mg = 471'Z/kmns. (38)

(32)
2 2m The final form of the Green functions of Eq. (32) follows

| from Egs. (34), (35) and (38):

471'2
Go(n, & 0.0, € ¢ ) Zzzkb Jemn (kb f: 1) heS) (Kb £ 115)

m n mns

'L’”L(Qﬂ—ip e_iw:)n ns (t_t/)

( mnsf E) ( mnsf7£) 271_ 271_ Y

(39)
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using the Morse and Feschbach convention for the radial spheroidal wave functions, and the hyperboloidal wave functions of
Egs. (18) and (22) fob = D andN.
Their time Fourier transforms can be evaluated in a straightforward way:

%)
. gt 471'1
Gb(777 fa 2 77/7 gla (pl; UJ) = / Gb(nv €7 ®, t; 77/7 5/’ @la t7 )SZW(t ¢ )d(t - t/) = %

eim(lp—tp/) 6(w B wfnns)

b )
27T wm,ns

X Z Z Z]emn(k%ns,ﬂ 77<)h€£rl7/)n (kfnnsfﬂ 77>)Elr)nn(k21nsf7 S)E?nn(k?nnsf7 gl)

m n S

(40)

exhibiting the discretization of the frequency spectra.

I
Poisson equations, respectively. The normal modes and

. . Green functions in this work are constructed using spheroidal
4. Discussion functions, Egs.(25) and (26), while the harmonic functions in

Ref. 5 are simply and directly associated Legendre functions

The scalar normal modes and Green functions for the classj the first and second kinds. Both situations involve simpler
cal wave equation between confocal hyperboloidal electrodesy tions for the CIC-junction and STM geometries.
have been constructed in Secs. 2 and 3. The discussion of this - 5¢imir evaluated the change of the quantum electromag-

section is focussed on three specific points: the general rgjatic vacuum energy,

sults of this work and their concrete applications to the cases

of two symmetric hyperboloidal and one plane and one hy- 1<Z hw) _ 1(2 ﬁw) (41)
perboloidal electrodes, which are geometries of special inter- 2 ;2 s

estin CIC-junction and STM devices. Itis also instructive to plane electrodes at 1) a finite separation and II) an in-
compare the electrostatic and electromagnetic situations chr

the latt ina th loai q dift i thei nite separation, where the first term includes the discrete
€ latter, recognizing the anaogies and differences In theig,, 1, ation over the characteristic frequencies for the paral-
equations and solutions. Finally, the results of Secs. 2 and

. : ) =7 I neighboring electrodes, and the second term becomes and
Whlch SErve as mpyt data for the a”"".'ys's of the Casimir ?fintegral over the continuum of frequencies associated with II.
fect, in the regpect_l\_/e mode summation and Green funCtIorI1|e introduced a cut-off function and used the Euler-Mclaurin
methods, are identified. ) ~ formula to implement the summation over both terms [6].

The scalar normal modes constructed in Sec. 2 for Dirichgqy the hyperboloidal electrodes, the characteristic frequen-
let and Neumann boundary conditions are represented bé’les%l;m for both the Dirichlet, Eq. (16), and Neumann,
Egs. (25) and (26), respectively. The explicit forms of the hy'Eq. (22’)" modes, have to be included in the I-term.
perboloidal wavefunctions are given by Egs. (18) and (24), ' The sum of the zero-point energies of the modes can also

and the corresponding characteristic frequencies and eigegg rewritten as a space and frequency integral of the spectral
values are evaluated via Egs. (16) and (22). Green function, Eq. (40)

In the specific case of symmetric hyperboloidal elec-
trodes, for whiché, = —¢&;, the hyperboloidal wavefunc- lzhwbe—iwn _h /d%
2 o i

tions have a definite parity and reduce to eitﬁé}%(kf, £) p ¢

or Sﬁ%(kf, £) in Eq.(14), with the consequent particulariza- dw 4 )

tions in the subsequent equations. Similarly, in the case of a X / guﬂGb(F’ 7iw)e” =) (42)
F—7! t—t’

plane electrodé; = 0 and a hyperboloidal one < &; < 1,
the hyperboloidal wavefunctions in Eq.(14) reduce to eithetusing the regularization techniques [9]. For additional QED
Sﬁ%(kf, &) or Sﬁf),,(k;f, ¢€), and additionally only odd (even) techniques and their applications to the analysis of the
or even (odd) values of in Egs. (A.1) or (A.2) need to be Casimir effect, the reader is referred to Refs. 8 and 9.
included for Dirichlet (Neumann) boundary conditions, re-
spectively. In both cases Eqs.(16) and (22) are simplified.
The Dirichlet and Neumann Green functions were explic-
itly constructed in Sec. 3 using the respective normal moderhe properties and representations of the angular and radial
bases, with the result of Eq. (39). Their spectral representaspheroidal functions, presented here for completeness sake,
tion of Eq. (40) was also obtained. can also be found in [11-14]. The angular spheroidal func-
Both this work and Ref. 5 deal with hypeboloidal elec- tions of the first and second kinds are the linearly independent
trodes, using prolate spheroidal coordinates to describe thesolutions of Eq.(7), expressed as linear combinations of as-
shapes and fields. The electromagnetic and electrostatic sgociated Legendre polynomialg), ., and functionsQ;” , .
uations, studied in each case, are based on the homogeneaighe second kind, respectively, with common coefficients
and inhomogeneous wave equations, and the Laplace arahd eigenvalues evaluated by matrix methods described in the

Appendix
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same references: Equation (6) can be written explicitly for the radial spheroidal
) wave functions of the first and second kinds, in order to eval-
STkt &) = > dr(kf)Pp (), (A1)  uate its Wronskian:
r=0or1l _
d d m?

o k2f27’2 —A

[e*¢) Z(n2 _ 1)— —
STakf€) = D drm(kNQni (), (A2 L TS _
e xR (kf,m) =0, (A.9)
and are associated with the successive eigenvalues of the sep-- d J m? -
aration constanth,,,,, (kf). — (P =1)— — .
The radial spheroidal functions?{%)(kf,n) of the Ldn dn - n® =1 |
p-kind, p = 1,2, are proportional to those of Egs.(A.1) xR (kf,n) = 0. (A.10)
and (A.2), respectively, with the replacement of the angular
variable¢ by the radial variable. The joining of the angular By multiplying Eq.(A.9) byR(Qll(kf, n) and Eq.(A.10) by

and radial functions is given by Rﬁ%(kf, 1), substracting them and integrating in the vicin-

_ k2f27]2 Y

Stan(hef,m) = w0 R, (), (A3) ltyofn theresultis
Sk fom) = kG R, (kf,m), (A.4) , AR, (kf,m)

O = 1) | R (k f, m) ="
including the explicit forms of the joining factoréﬁlb in the "
Flammer convention [11,13]. W AR (kf,n)
While the convergence of Egs. (A.1) and (A.2) is assured Ry (S, TI)T = constant  (A.11)
for —1 < ¢ < 1, the same does not hold fgr> 1. A better
representation is a series of spherical Bessel functions: The net result is that the Wronskian of the radial spheroidal
wavefunctions is inversely proportional g® —1). The value

71 m
= (2 ! 2.1\ 2 ionali izati
R,(};Zl(k:f, )= { Z (2m+r) dmn} (77 ) of the proportionality constant depends on the normalization

7l " convention for the radial functions themselves.

7=0,1 . .
In the Morse and Feschbach convention and notation [14]:

oo

7)!
S im0 g0 (), (A5) dnen (k.1
r=0,1 r Jemn(kfa n)T
where .
djemn(kf,n) 1
- mn k 5 = — < A.12
D@ =), D@ =u@) (A6 oy emn(Bf) = maa Ty (A12)

There are also radial spheroidal functions of phe 3 and 4
kinds involving the corresponding outgoing and incomingAcknowledgement
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