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Quantum transport properties of one dimensional barriers: a simple approach
to calculate transfer matrices
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We present a simple method for calculating the transfer matrix of a one dimensional system consisting of a number of rectangular barriers of
arbitrary shape. We also make use of the Cayley-Hamilton theorem and the spectral theory of finite complex matrices to calculate high powers
of matrices in a simple way, obtaining analytic expressions that are easily evaluated. We give an example of the transmission coefficient and
conduction bands for a complex-basis superlattice. The method provides an intuitive approach to the construction for the transfer matrix.
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Presentamos un ḿetodo simple para el calculo de la matriz de transferencia de un sistema unidimensional que consiste de un numero de
barreras rectangulares de forma arbitraria. También hacemos uso del teorema de Cayley-Hamilton y la teorı́a espectral de matrices complejas
finitas para calcular, de una manera sencilla, potencias grandes de las matrices; obteniendo expresiones analı́ticas que son f́acilmente evalua-
bles. Damos un ejemplo del coeficiente de transmisión y bandas de conducción para una superred de base compleja. El método provee una
manera intuitiva para la construcción de la matriz de transferencia.

Descriptores:Matriz de transferencia; superredes; transporte electrónico.

PACS: 73.23.-b,73.21.Cd,73.40.Gk

Binary-type superlattices (SL) in recent years have found a
great number of applications [1] including semiconductor-
diode lasers, electro-optical modulators and infrared detec-
tors among others. Thanks to the great advances in crystal
growing techniques, specially molecular beam epitaxy, it is
now possible to grow with high precision semiconductor SL’s
of more than two materials, the so called complex-basis su-
perlattices. These structures often exhibit superior electron-
ics, optical and transport characteristics compared to binary
SL’s. Furthermore, this kind of structures are becoming more
important from the technological point of view because of the
potential applications in nanotechnology.

One way to investigate the transport properties of SL’s is
by calculating the transfer matrix of the structure, although
many techniques have been given in the literature [2–4], such
as Green function methods, envelope functions, etc.

In this paper, we report a technique based on the transfer
matrix method to calculate the transmission coefficient and
other transport properties of complex-basis superlattices. We
also show two alternative ways to calculate high powers of
transfer matrices that arise when dealing with large SL’s.

We are interested in structures composed of a sequence of
arbitrary potential barriers, as the one shown in Fig. (1) [2].
We now calculate the transfer matrix corresponding to an ar-
bitrary barrier in the structure.

Let

φL(z1) =
(

Aeik1z1

Be−ik1z1

)
, (1)

and

φR(z1) =
(

Ceik2z1

De−ik2z1

)
, (2)

FIGURE 1. A general potential profile used to calculate the transfer
matrix from z1 to z5. Two different kind of matrices are used in
order to calculate the transmission.

be the state vectors [5] to the left and right ofz1, respectively,
wherez1 is a point in the graph where the potential has a dis-
continuity. The continuity conditions of the state vectors at
the interface lead us to the following relation

φL(z1) = M(z1)φR(z1), (3)

where

M(z1) =
1
2

(
1 + r 1− r
1− r 1 + r

)
, (4)

is a transition matrix between regions with different values
for the potential andr = k2m1/k1m2 [6]. Similar matrices
are defined for every point where the potential changes like
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in z2, z3 etc. It is important to notice that this matrix is inde-
pendent of the position of the barrier, a property that will be
used later.

In the above equations the wave vectors are given by

ki =

√
2mi

~2
(E − Vi), (5)

andmi is the effective mass.
There is a transporting matrix [7] that connects the points

z1 andz2 inside the barrier, that is

φL(z1) = M(z2, z1)φR(z2), (6)

given by

M(z2, z1) =
(

e−ik2l 0
0 eik2l

)
, (7)

wherel = z2 − z1. A similar transporting matrix can be de-
fined for any pair of points as long as the potential remains
constant. If the electron’s energy is less thanV for this part
of the graph then we will have thatk → ik. The total transfer
matrix for this first barrier will be

M(z1, z2) = M(z1)M(z2, z1)M(z2). (8)

The calculation for the multiple barrier graph can be ob-
tained using a few simple rules. 1. Every point in the graph
with a discontinuity in the potential will have a transition ma-
trix, like the one in Eq. (4). 2. Every section in the graph with
constant potential will have a transporting matrix like the one
in Eq. (7). Notice thatk may be real or complex depending
on the value of the potential in that section of the graph. The
total transfer matrix from one point to another in the graph
will be given by a simple product of2 × 2 matrices starting
from the left.

These rules are easily generalized in the following way.
Let’s call zi to every point in thez axis in which there is a
change in the potential, andki is given in Eq. (5), the wave
vector corresponding to the potentialVi betweenzi−1 andzi.

FIGURE 2. Plot of the transmission coefficient for a
Al0.45Ga0.55As/GaAs DBRT structure with 5 nm barriers and a
5.5 nm GaAs well. The energy is given in eV.

The transition matrixM(zi) corresponding to the pointzi

will be defined by
(

Aie
ikizi

Bie
−ikizi

)
=

1
2

(
1 + ri 1− ri

1− ri 1 + ri

)

×
(

Ai+1e
iki+1zi

Bi+1e
−iki+1zi

)
, (9)

whereri = ki+1mi/kimi+1. We notice that this transition
matrix changes the state vector into another one with a dif-
ferent wave vector at the same point. In contrast, the trans-
porting matrixM(zi+1, zi) from one point to another takes
the state vector with the same momentum but to a different
point along the axis. This is so because we are transporting
the wave vector in a region where the potential is constant.
Therefore we have
(

Ai+1e
iki+1zi

Bi+1e
−iki+1zi

)
=

1
2

(
e−iki+1li 0

0 eiki+1li

)
×

×
(

Ai+1e
iki+1zi+1

Bi+1e
−iki+1zi+1

)
, (10)

whereli = zi+1 − zi. For instance, in order to calculate the
transmission for an arbitrary number of barriers, we have

(
A1e

ik1z1

B1e
−ik1z1

)
=

[
N−1∏

i=1

[M(zi)M(zi+1, zi)

]
M(zN )

×
(

AN+1e
ikN+1zN

BN+1e
−ikN+1zN

)
, (11)

whereN is the number of discontinuities in the graph. The
transmission coefficient can be calculated from the equation
A1e

ik1z1 = M11AN+1e
ikN+1zN to get

T =
∣∣∣∣
AN+1

A1

∣∣∣∣
2

=
1

|M11|2 , (12)

whereM is the total transfer matrix fromz1 to zN , andM11

is the element (1,1).
As an example [11], we consider a Al0.45Ga0.55As/GaAs

double-barrier resonant tunneling (DBRT) structure. In Fig. 2
we plot the transmission coefficient as function of energy cal-
culated with the method just described.

If we consider now a periodic repetition of the potential
profile of Fig. 1, we obtain what is known in the literature as a
complex-basis superlattice. Using the formalism previously
described the transfer matrixM for the basis can be calcu-
lated. The total transfer matrix of the entire superlattice will
be the product ofN single basis transfer matricesM , orMN .

In this case, the product ofN identical transfer matri-
ces that arises can be easily obtained by using the Cayley-
Hamilton theorem [8], which allows one to express powers
of a unimodular matrixM , as in our case, in the following
form [9]

MN = UN−1M − UN−2, (13)
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whereUn(t) is thenth Chebyshev polynomial of the second
kind, and2t is the trace ofM . There is another way to calcu-
late high powers of a matrix and this is given by the spectral
theory of finite complex matrices [10]. In this technique, the
N th power of the matrixM is expressed as

MN = λN
1 E1 + λN

2 E2, (14)

whereλi are the eigenvalues ofM andEi are two idempo-
tent matrices associated withM . The matricesEi have the
following properties:E1 + E2 = 1 andEiEj = Eiδij . This
second approach to the calculation of powers of a matrix may
be more computationally convenient whenN is very large,
because there is no need to evaluate the Chebyshev polyno-
mials.

It is important to stress that equations 13 and 14, when
inserted in 12, will give a compact analytic expression for
the transmission coefficient of a system composed of iden-
tical barriers or bases. This is an important point, because
it is well known that the use of transfer matrices will give
rise to numerical instabilities that arise because the coeffi-
cients in a given layer are evaluated from those in previous
layers, and the numerical errors increase with the growing
exponentials [12, 13]. However, this problem appears when
explicit multiplication of transfer matrices is done, getting
worse for larger systems. In our case, no multiplication is
performed and hence numerical instabilities are absent. This
feature makes our method specially well suited for very long
systems.

Once the total transfer matrixM for a certain graph
has been calculated, the transmission coefficient will
be given by T=|M11|−2. As an example we calcu-
late the transmission coefficient for a superlattice com-
posed of 5 structures as the one shown in Fig. 1.
The composition is, starting from the first barrier,
Al0.5Ga0.5As/GaAs/Al0.3Ga0.7As/Al0.4Ga0.6As/GaAs, with
widths 8, 5, 9 and 4 nm respectively, with a distance within
bases of 4 nm. The calculated transmission coefficient is
shown in Fig. 3.

FIGURE 3. Plot of the transmission coefficient for a superlattice
with N = 5 (solid line) and another withN = 100, as described
in the text. The energy is given in eV.

Consider now a superlattice with the same basis as before
but with N = 100. In this case we use Eq. (14) to calculate
the 100th power of the single basis transfer matrix. Compar-
ison with theN = 5 case shows that the transmission peaks
become narrower leaving large regions of energy when the
transmission sharply goes to zero, a property useful for filter
design.

We would like to stress the simplicity of our approach
compared to other calculations [14,15]. This simplicity arises
from two main reasons. First, the use of state vectors instead
of wave function coefficients eliminates the position depen-
dence in the transition matrices. Second, because of this we
can make use of matrix theorems to simplify the calculation
of powers of matrices and obtain the total transfer matrix in
a simple expression. We have shown how to obtain the trans-
mission coefficient with this approach. Other physical prop-
erties can be easily calculated as well. In Fig. 4 we show the
electronic band structure for the above superlattice as func-
tion of the concentrationx of the first barrier in Fig. 1. No-
tice that drawing a vertical line atx = 0.5, the intersections
with the bands give the same values for energy that those in
Fig. 3 for theN = 100 system.

FIGURE 4. Electronic band structure as function of the Al concen-
trationx, of the first barrier in Fig. 1. The energy is in eV.

FIGURE 5. Electronic band structure as function of the well dis-
tanced (in Angstroms) for the same system as in Fig 4.
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Figure 5 shows also the band diagram but as a function
of the width in the well located between the first and sec-
ond barriers in Fig. 1. These are obtained using the relation
cos(kd) = TrMT /2, whered is the SL period,k the crystal
momentum andMT is the total transfer matrix for one basis
in the infinite superlattice.

In conclusion, we report in this paper a simple and
straightforward way to calculate the transfer matrix of a sys-
tem composed of a number of rectangular barriers of arbitrary
shape. Also, we give a way to simplify the calculation of the
transfer matrix for a system composed of a large number of
identical structures, or bases. This arises from the use of sec-

ond type transfer matrices that do not depend on the position
of the barrier, making them identical and therefore we can
make use of either the Cayley-Hamilton theorem or the spec-
tral theory for the calculation of powers of a matrix.
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