ENSENANZA REVISTA MEXICANA DE FiSICA E 50(1) 65-73 JUNIO 2004

Comparative kinetics of the snowball respect to other dynamical objects
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We examine the kinetics of a snowball that is gaining mass while is rolling downhill. This dynamical system combines rotational moti
with effects involving the variation of mass. In order to understand the consequences of both effects we compare its behavior with the or
some objects in which they are absent, so we compare the snowball with a ball with no mass variation and with a skier with no mass varie
nor rotational motion. Environmental conditions are also included. We conclude that the comparative velocity of the snowball respec
the other objects is particularly sensitive to the hill profile and also depend on some retardation factors such as the friction, the drag fc
the rotation, and the increment of mass (inertia). We emphasize that the increase of inertia could surprisingly diminish the retardation e
owing to the drag force. Additionally, when an exponential trajectory is assumed, the maximum velocity for the snowball can be reache
an intermediate step of the trip.

Keywords: Snowball dynamics; mass variable systems; dynamics of rigid bodies.

Se estudia la diinmica de una bola de nieve que gana masa mientras rueda cuesta abajo. Este sigteita cmbina movimiento rota-
cional con efectos que involucran la variatide la masa. Con el fin de entender las consecuencias de combinar ambos efectos, comparar
su comportamiento con el de algunos objetos en los céales estn ausentes, por lo cual comparamos a la bola de nieve con una bola sin
variacbn de masa y con un esquiador que ndavau masa ni posee movimiento rotacional. Taéntse incluyen los efectos de las condi-
ciones ambientales. Conaos que la velocidad comparativa de la bola de nieve respecto a los otros objetos es particularmente sens
al perfil del camino seguido y tanén depende de algunos efectos retardadores tales como larfrilecfuerza de arrastre, la rotaniy el
incremento de masa (inercia). Como un efecto sorprendente, el incremento de inercia puede disminuir el efecto retardador debido a la f
de arrastre. Adicionalmente, cuando se asume una trayectoria exponencial, la veldoidad para la bola de nieve se puede alcanzar en
una etapa intermedia del camino.

Descriptores: Dinamica de la bola de nieve; sistemas de masa variablemioa de cuerposgidos.

PACS: 45.20.Dd; 45.40.-F; 01.40.-d

1. Introduction is performed in the asymptotic regime. Section 4. describes

some proves of consistency to test our results. Section 5. pro-
The snowball is a dynamical object that gains mass while igjides a complete analysis of the comparative kinetics of the
rolling downhill. Itis a particularly interesting problem since foyr dynamical objects based on some environmental retar-

it permits to combine several concepts of mechanics such agtion factors. Section 6. is regarded for the conclusions.
the traslational and rotational dynamics, the rigid body, mass

variable systems, normal and tangential forces, radius of cur-

vature for a trajectory, etc [1,2]. Modeling this problem im- 2.  The problem of the snowball rolling down-

plies many input parameters and the use of numerical meth-  hijll

ods. Additionally, an ansatz should be made about the way in

which the mass (or volume) is growing with time. Environ- 2.1. Basic assumptions

mental conditions are also considered utilizing well known

assumptions about friction and drag forces. The dynamical he complete analysis of a snowball requires many input pa-

behavior of the snowball will be studied in thelocityvs ~ rameters. The problem does not have any analytical solution,

time, andvelocityvs length—planes. so it has to be solved numerically. We have listed the numeri-
Moreover a comparison with other dynamical objectsca| values assumed in this paper in table | on page 4. Besides,

could clarify many aspects of the very complex behavior ofve& make the following assumptions in order to get an equa-

the snowball. Therefore, we will develop our analysis bytion of motion.

comparing the snowballSB) motion with the one obtained

from a skier sliding without friction $NF), a skier sliding 1. The snowball is always spherical meanwhile is grow-
with friction (SF), and a ball with constant mass and vol- ing and acquiring mass. Its density is constant as well.
ume @). _ . . _ 2. Itis supposed that there is only one point of contact be-
In Sec. 2., we discuss the basic assumptions and write out  teen the snowball and the ground, and that the snow-
the equations of motion for the snowball. In Sec. 3., the com- ball rolls without slipping throughout the whole mo-

parison between the four dynamical objects mentioned above  tjon, We shall call it the No Slipping ConditiolNSC).
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3. In order to accomplish the previous condition, the F:
frictional static force that produces the rotation of
the snowball f'z.), has to hold the condition
Fr, < usN where N is the normal (contact) force
to the surface, ang, is the coefficient of static fric-
tion. We assume thai, is independent on the load
(Amontons’ law), this statement applies for not very
large loads [4].

4. The drag force owing to the wind is assumed to be of
the form
A
F, = _PAgd v2 (1)
wherep, is the air densityC, is the air drag coef-
ficient, andA is the snowball’s projected frontal area

ie, A=mr2.

We assume the air drag coefficie@}, to be con-
stant, since this assumption has given reasonable r
sults in similar problems [3]. On the other hand, it
has been established that the foicecould be a lin-

ear or quadratic function of the speed depending on thg,o ey, corresponds to the velocity of the center of mass re-
Reynolds numberKe) [5]. For Re > 1 (which is our spect to the ground.

case) a quadraiic dependence fits well with experimen- Further, the system is rotating too, we also suppose that

talissues [6]. _ _ such rotation is always made around an axis which passes
5. The mass of.the snowball increases but flnla.lly reac'heghrough the center of mass (perpendicular to the sheet in
an asymptotic value. Furthermore, a specific functiongig 1) |n this case the rotation is around a principal axis,

of the mass (or volume) in terms of time must be Sup-hence the equation of motion for the angular momentum is
posed. In our case we assume the following functlon('a[gi\,en by

form

qflGURE 1. A snowball rolling downward on a wedge, thé—axis
is parallel to the wedge surface and Yie-axis is perpendicular.

M (t) = My + Ko (1 — ") ) Le =IcWe (4)

where M, is the initial mass of the snowball and where the subscripf’ refers to the center of mass coordi-
clearly the final mass 87y + K. nates. I denotes the moment of inertia of the snowball

. ! : . measured from an axis passing through the center of mass,
6. A hill profile must be chosen in order to make the sim- and @ ¢ refers to the angular velocity. According to Fig. 1,

_ulat|on, like in other s_lmllar problems__[3], it has an L¢ is directed inside the sheet, and the torque will be

important effect on exit speed. Specifically, we have

chosen an inclined plane and an exponential trajectory. dLe
W =TcC (%)

2.2. Equations of motion

o ) We should remember that this equation is valid even if the
To simplify the problem we start assuming the snowballoenter of mass is not an inertial frame [1], which is clearly our

rolling downhill on a wedge whose anglefigsee Fig. 1). I 4556 To calculatéL we make an analogous procedure as

the timet the snowball has a madg , and in the time + dt in the case offP, and the Eq. (5) is transformed into

its mass isM + dM;let us consider a system consisting of

the original snowball of mas¥/ plus the little piece of snow doc _ dle  _,

with massd)M. At the timet, the momentum of such system Ie——+ e =7c. (6)

isP (t) = Mv (bold letters represent vectors) since the little

piece of snow is still on the ground and at rest. At the timewhere 7 ¢ is the total torque measured from the center of
t + dt the ball has absorbed the piece of snow completely, smass. For the sake of simplicity, we will omit the subscéipt
the momentum s given b (¢ + dt) = (M + dM) (v+dv)  from now on.

then the momentum changeiP = Mdv+vdM (where we On the other hand, the external forces and torques exerted
have neglected the differential of second order) and the totan the system are similar to the ones in the simple problem
force will be of a ball on a wedge [1]
dP dv dM
F=S =Ma "V ar ®) F=WN+Fp +Fy; 7=rxFr ()
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where W is the weight (which acts as the driving force), in Eq. (1). With all these ingredients and replacing Eq. (12)
N the normal forceF i, the statical friction force, anB, is  into equations (8), they become

any applied force which does not produce torque. If we use 9

as a coordinate system the one indicated in Fig. 1 (with the @+15PACd1 (ds) 281drds 5 . 0 o

Z — axis perpendicular to the sheet) we can convert these dt2  56p r \ dt Tordtdt 7 ’
equat|togs into scglartﬁ;tes_; then ILIJS||rtlgtEg§. 3), ’(6) and (7) - 8 L[l (d?s ldrds ds\ dr as)
— s==Tpr° | =1 | ————— — | —.
we get by supposing . IS parallel to azxis. Rs=3 P | 2T\ s~ i i i) @
N —Mgcost =0, Finally, to complete the implementation of Egs. (15), we
_ dv dM should propose an specific behavior faft) or M (t); we
Mgsin0 — Frs + Fy, = ME to—r shall assume that/ (¢) behaves like in Eq. (2). On the other
d aI hand, as a proof of consistency for Egs. (15), we see that if
rFr, = Idi: . (8)  we taker = constant, andC, = 0, we find that
2
The first equation decouples from the others whenever the LQS = §g sin 6
NSC is maintained; so we will forget it by now. We should dt 7
. .y . . . . _ 2
be careful in utilizing theNS_C since the radlus is not con Frs = = Mygsin0 (16)
stant. The corredNSC in this case consists of the relation 7

ds = r(d¢p) whereds is the differential length traveled by \yhich coincides with the typical result obtained in all com-

the center of mass of the snowball (in a certain differentialy,gn texts for the ball rolling downward on a wedge with the
time intervaldt), d¢ is the angle swept along the differen- Ngc [1].

tial path, andr is the snowball radius in the time interval

[t,t + dt]. Using the correcNSC, we get 2.3. A snowball downhill on an arbitrary trajectory
_ds _ r@ s w=" (9) In this case the acceleration written above converts into the
dt dt r tangential one, and the Eqg. (8) for the normal force becomes
and taking into account that the radius depends explicitly on 2
the time, we obtain N — Mgcosf = ME (17)
a=2_ l%w (10)  whereR is the radius of curvature. In order to solve Eq. (17),
r r

itis convenient to use the coordinate axis plotted in Fig. 2. In
wherew is the angular velocity is the angular acceler- cartesian coordinates, the radius of curvature is given by
ation, andv, a are the traslational velocity and acceleration
respectively[Observe that we can start from the traditional {1 + (y')Q} dy
NSC with v = wr. Nevertheless, the other traditiofd8C R(r) = ~————; Y e (18)
a = ra, is not valid anymore]. y v

It is convenient to write everything in terms of the dis- Moreover, the anglé is not constant any more, and accord-

3/2

placemens, taking into account the following relations ing to the Fig. 2 we see that
2 —d —d !
’U:ﬁ;a:dij;w:@zlﬁ (11) sin @ = dy: Yy = — Yy
dt dt dt rdt S (dz)Q + (dy)2 [1 + (y/)ﬂ
replacing (9, 10, 11) into (8), we find
dx 1
1d?s 1 drds lds)\ dI cos= — = ———— (29)
Fre=1|-— - "= —2) = 12
" Rs |:T dt?  r2dt dt} + (r dt) dt (12) ds [1 + @/)2}

Now we use the moment of inertia for the sphere
I = (2/5) Mr? and the fact the the Mass\f” and the ra-
dius “r” are variable, then

where the minus sign in the differentiéy is due to the de-
crease of the coordinate
So the problem of the snowball rolling on an arbitrary
Il 2 ( ,dM dr trajectory can be solved by replacing (19) into the first of
a5 (r P7aRs 2Mrdt> ’ (13)  Egs. (15), and making an assumption like (2). Addition-
4 dM dr ally, Eq.(17) provides the solutions for the normal force by
M = —mpr®; — =dnpr’— (14)  considering Egs. (18), (19), and the solution for the velocity
3 dt dt obtained from (15). Notwithstanding, the first of Eqgs. (15)
where the snowball densigyhas been taken constant. Addi- does not depend on the normal force wheneverNBE is
tionally, we assume the applied forég to be the drag force maintained. So, we shall ignore it henceforth.
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As it can be seen, we assume the same méasfor the skier
TABLE |. Input parameters to solve the equation of motion for the and the ball, and this is also the initial mass of the snowball
SNF, SF, SB,and theB. All measurements are in the MKS sys- ending with a mass dfM.

tem of units.M, is the initial mass of all objectds, defines the
increment of mass for th8B see Eq.(2)p andpa are the snow
and air densities respectively, the statical coefficient of friction
between theB and the ground (and also between B and the
ground). Cy is the air drag coefficien] the angle of the wedge,
As is the skier frontal area? is a parameter that defines the ra-
pidity of increase of mass in th®B, see Eq. (2).g is the gravity
accelerationup is the dynamical coefficient of friction between
the SFand the ground, ana, is the initial velocity of the four ob-
jects. Further, in the exponential trajectayy= he™*“, whereh

is the height of the hill.

Mo = Ko =85 p=917 pa =09 . =0.03
Cy=0.3 0 = (4.76)° As =06 B=0.07
g=9.8 h=25 a=0035 pup=003 wvy=0

¥

FIGURE 2. A snowball rolling downward on an exponential tra-
jectory. To find the local value of the angte we define the
X,Y — axis as indicated in the figure. We see that for a suffi-
ciently large value of we getd — 0.

3. Comparison of the snowball with other dy-
namical objects

May be the clearest way to understand the dynamical behav-

ior of the snowball, is by comparing it with the dynamics of

3.1. Asymptotic limits

Before solving all these problems, we shall study the asymp-
totic limits of the four objects in the inclined plane, and
the exponential trajectory with and without drag force. The
asymptotic regime provides useful information, and can be
used to analyze the consistency of the numerical solutions.
These limits depend on the drag force, the trajectory, and the
object itself.

3.1.1. Inclined plane with no drag force

For each object we obtain the following limits

e For theSFits velocity is easily found

v =19+ gt (sinf — up cosh) (20)

so there is no finite value for the velocity, and its be-
havior is linear respect to time. TI®&NF asymptotic
limit is obtained just taking:.p — 0.

For theSB from Eqg. (15), and assuming that the ra-
dius reaches an asymptotic limi., dr/dt — 0 when
t — oo we get
5 .
v(tﬂoo)zvoo:voJr?gtsmﬁ (21)
getting a linear behavior respect to time. The same be-
havior is exhibited by th& whent — ~c.

Observe that., in the SBis independent on the mass,
and equal to the value for the b&l| it is reasonable
owing to the asymptotic behavior assumed for $i&;
Eqg. (2).

other simpler objects. In our case we shall compare the dy-

namics of four dynamical objects

1. A skier sliding with no friction ENF).

2. The same skier but sliding with frictiorsf).

3. A ball with constant mass and volumB)(

4. A snowball with variable mass and volum&R)

Such comparison will be performed in the— ¢t and

3.1.2. Inclined plane with drag force

e For theSFits equation of motion is easily obtained

dv

dt

C4A
= —upgcostd — %02 + gsinf

and in the asymptotic limitlv.,/dt — 0, so we get
that

v — z planes. The behavior of the first two objects were
reproduced from the article by Catalfamo [3], and the equa-
tions for the ball were obtained from the ones of the snow-
ball by settingr — constant. In making the comparison
we use the input parameters of Table I, most of the parame-
ters in this table were extracted from [3][However, we have
changed mildly the parameters that describe the profile ofthe e For theSB from Eqg. (15), and setting®s/dt? — 0,
exponential trajectory, in order to keep the NSC throughout]. dr/dt — 0, we obtainu,,

2 2g

oo

= paCa A (22)

(sin@ — pup cosb)

Now, by settingup — 0, we getv,, for the SNF
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Finally, the reader could have noticed that one of our main
2 56p ing — 29 My . 0 23 assumptions was tHeSC. However, this condition can only
Voo = 91paCy MY T oy AL Pt (23) " pe valid if we ensure that the statical friction force does not
wherer,, = r (t — o). The second term in (23) is obtained exceed'the valug:; N all over the ”ale.CtOTy in each case.
from Eq.(2) by taking the asymptotic limit when— oo, in Othemlse, the snowball would_ start slipping preventing us
this casé“ is given b ' of using the fundamental relations (9) and (10). Addition-
=159 y ally, if the snowball started sliding, the frictional force would

3 become dynamicdle. Fr, = upN producing a coupling
oo = [4@ (Mo + KO)} among the three Egs. (8), remember that we have assumed
that the first one was decoupled. As a first approach, we
study the validity of theNSC in the asymptotic regime by
calculatingF'r, (t — o0) andusN (t — o).
For the inclined plane, these limits can be estimated by
using Eq. (2), the first of Egs. (8), and the second of Egs. (15)

In the case of théB, we obtain the expression (23), but
oo, Moo, Ao are constant in time and equal to its initial
Values’f’(), M(], Ap.

3.1.3. Exponential trajectory with no drag force

In this case it is easier to examine the asymptotic limits, since psN (t —o00) —  psMocgcost
when the objects have traveled a long p#th;> 0, and the 9 d2s
object is reduced to run over a horizontal plane, see Fig. 2 Fry(t—00) — My |5 (24)
. 5 dt
Therefore the limits are o0
e For theSF, v, = 0. it is easy to verify that theNSC is valid in the asymp-

o ) ~ totic limit for the wedge, since in the case of the presence
e FortheSNF, itis found easily by energy conservation of 3 drag force we geFr. (t — c0) = 0. Additionally,

V2 = 2gh + v2 in the case of absence of the drag force it is found that
_ o _ Frs (t — 00) = (2/7) (My + Ko) gsin 8, and the condition
whereh is the height of the hill. Fr. (t — 00) < psN (t — c0) is accomplished by our in-

e For theB we can findv., by taking into account that Put parameters (see Table ). o _
energy is conserved because friction does not dissipate FOr the exponential trajectory the analysis is even simpler,
energy when theNSC is held [1]. By using energy Since the path for. IargeT times becomes a horizontal straight
conservation we obtain[Since what really matters forliné, the asymptotic limits fo#'z; andy, N are the same as
energy conservation is the height of the center of masdn Eas. (24), but wittd — 0; and theNSC condition is held
there is a tiny difference that can be neglected if thevhent — oo.
radius of the ball is much smaller that the height of the ~ However, theNSC in the asymptotic regime does not

hill] guarantee that it is held throughout the path. For example,
o 10 in the case of the exponential trajectory, the maximum slope
Vs, = —gh o 0 : .
7 of the profile is found at the beginning of the trajectory, it was

For the snowball the limit is not easy to obtain becausepecause of this fact that we changed mildly the profile param-
energy is not conserved and Eq. (15) does not proeters defined in Ref. [3]. Consequently, by using the first of
vide any useful information [By using — 0, and  Egs. (8) as well as the Egs. (15), (17), (18), and (19); we
d*s/dt*> — 0, the second of Egs. (15) becomes triv- solved numerically fof 'z, vs time and lengthand fory, N

ial]. However, according to Figs. 5, this limit is lower ystime and lengthutilizing the numerical input values of Ta-
than the one of thB owing to the increment of inertia. ple |. We then checked thadtz, < u,N throughout the time

. ) ) or length interval considered in each case.
3.1.4. Exponential trajectory with drag force

In this case all velocities vanish for sufficiently long time. g Analysis

4. Proves of consistency In order to make a clear comparison, we take the initial mass

of all the objects to be equal, and all initial velocities are zero.
The equations of motion for each object where solved by dn Fig. 3—6 we use the following conventions: The dashed
fourth order Runge Kutta integrator [7]. To verify the correct dotted line corresponds to tI8NF, the solid line represents
implementation of the program, we reproduce the results obthe SF, the dashed line refers to ti& and finally the dot-
tained by [3], and solve analytically the problem of the ball of ted line corresponds to tt&B. In both, ball and snowball we
constant radius in the inclined plane without drag force, theonly consider statical friction, and neglect possible dynamic
results were compared with the numerical solution. Addition-frictional effects due to sliding because we have guaranteed
ally, all the asymptotic values discussed above were obtainetthat theNSC is valid throughout the trajectory, as explained
consistently. in Sec. 4..
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FIGURE 3. Plots in thev — ¢ plane (left) and the — x plane (right) when the objects travel in a wedge of constant slope with no drag force.
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FIGURE 4. Plots in thev — ¢ plane (left), and the — z plane (right) when the objects run over a wedge of constant slope with drag force.

In Fig. 3 we plotv vst, andv vsx for constant slope of time (or length) the increase of inertia vanishes (according to
the wedge without drag force. Of course, all graphics in theour assumptions) so that the velocities of bBthndSB coin-
v — t plane are straigth lines except the one for the snowballcide, in agreement with the analysis made in Sec. 3.1.1. We
We can see that th8NF is the fastest object as expected, checked that condition, though it does not appear in Fig. 3,
since no retardation factors are acting on it, next we havéecause of the short time and length interval displayed.
the B which posseses the rotation as a retardation factor. Ad- The line corresponding to th®F is below the line cor-
ditionally, theSB line is always below th® line because in responding to the&sNF as it must be, however the relation
the former, two retardation factors are present: the rotatiotvetween theSF and SB lines is particularly interesting and
and the increase of inertia. However, for sufficiently longdeserves more attention. At the beginning 8iis slightly
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slower than theSF, but for sufficiently long time, theSB  factors at the beginning makes tB8 slower but when the
becomes faster. It can be explained in the following way, aincrease of inertia is small enough, tB8 becomes faster
the beginning theSB has two retardation factors: the rota- than theSF. Nevertheless, we should point out that this be-
tion and the increase of inertia, while tis# only has one havior depend on the value pf,, if it were large enough the
retardation factor: the sliding friction. On the other hand, forline for the SF would lie below the lines foB andSB at alll
sufficiently long time the increment of inertia becomes neg-times, in contrast if it were small enough tB& line would
ligible in the SB, and only the rotation acts as a retardationlie above theB andSB lines. Notwithstanding, the rapidity
factor, consequently th8B behaves like th& as shown in  of the SF must be smaller than theNF speed at any time
Sec. 3. Therefore, the combination of the two retardatiorand for any value ofip.
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FIGURE5. Plots in thev — t plane (left), and the — x plane (right) when the objects travel on an exponential trajectory with no drag force.
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FIGURE 6. Plot in thev — ¢ plane (left), and the — = plane (right) when the objects run over an exponential trajectory with drag force.
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According to this analysis, when the objects travel in aalways increasing, though for long times they are practically
wedge with no drag force, the pattern of velocities in de-at the same height henceforth, getting the terminal velocity.
scendent order for any set of the input parameters (as long &s particular, we see that the terminal velocity of tBE is
the initial masses and velocities are the same) is the followzero as it was shown in Sec. 3.1.3.
ing: the SNF, the B and theSB. The comparative velocity In Fig. 6 the elements travel in an exponential hill with
of the SF depend on the input parameters, but it must be aldrag force. In this case, the conservation of energy does not
ways slower than th&NF. As a proof of consistency, it can hold for any of the objects, consequently maximum velocities
be checked that the asymptotic limits in Egs. (20), (21) obeyn intermediate steps of the trajectory are allowed for all of
this pattern. them. All terminal velocities are zero as expected. Because

Figure 4 correspond to a wedge with constant slope inof the same arguments discussed above, the line o8Ehe
cluding drag force. In this case the comparative behaviois below to the one of th&NF. However, any other pattern
among the four elements is not as simple as in Fig. 3, bedepends on the numerical factors used.
cause in this case the lines cross out each other. However, A final comment is in order, we can realize that though
the line describing th&F is always below the line describing the solution of the kinetics of the snowball depends on the
the SNF as it should be. This more complex behaviour owesansatz made about the mass growth, the bulk of our results
to the frontal area dependence of the drag force. For instancand analysis only depend on the fact that the snowball mass
we can realize that at short times the comparative behavior kgaches a finite asymptotic value. So that the discussion is
very similar to the one in Fig. 3, since the drag force has nofluite general, especially in the asymptotic regime.
still acted significantly. All these elements get an asymptotic
limit as we Qe§cribed in section 3.. We see thgt the Iargesé. Conclusions
asymptotic limit correspond to th®&B, in opposition to the
case of Fig. 3 with no drag force, in which the snowball waswe have described the behavior of a snowball acquiring mass
one of the slowest objects; the clue to explain this fact rewhile rolling downhill, taking into account the enviromental
cides in the frontal area dependence of the drag force. Fromonditions. The dynamics of the snowball is very complex
Egs. (22) and (23) we can verify that for all these objectshecause it is a rotating object, and at the same time its mass
the terminal velocity behaves a8 o M/A, this quotientis  and moment of inertia are variables. In order to visualize
larger for theB than for theSNF and theSFin our case, then  better the effects due to the rotation and mass variation, we
the asymptotic velocity s is larger tharsy » andvsr, for  compare its motion with the kinetics of two objects in which
both the skier and the ball this ratio is a constant. In contrasthe rotation and mass variational effects are absenSite
since in the snowball the mass grows cubically with the radiusyith Friction and theSkier with No Friction), and with one
while the area grows quadratically, its velocity behaves suclybject in which the rotation is present but no the mass varia-
that U%B o r (t) . Therefore, for sufficiently long times, its tion (theBall of constant mass and radius).
velocity grows with the radius of th&B, getting a higher ter- The comparative behavior of these objects depend on the
minal velocity (of course it depends on the asymptotic valuarajectory but also on some retardation factors: the friction,
of r (¢)). Observe that if we had assumed a non asymptoti¢he drag force, the increase of mass (inertia), and the rota-
behavior ofr (¢) in (15) we would have not obtained any fi- tional effects. It is worth remarking that despite the incre-
nite terminal velocity for the snowball even in the presence ofment of inertia is a retardation factor in some circumstances,
a drag force. Furthermore, we see that the terminal velocityt could surprisingly diminish the retardation effect due to the
for the SB is reached in a longer time than the others, it isdrag force. In addition, some local maxima of the velocities
also because of the slow growthr). for each object appears in an exponential trajectory, showing

Figure 5 describes the four elements traveling in an expothat the maximum velocity might be achieved at an interme-
nential hill with no drag force. Two features deserve speciabliate step of the path.
attention: (1) The terminal velocity is achieved in a very short ~ Finally, we point out that despite the complete solution of
time specially in the cases of tlBNF and theB, these limits  the snowball depends on an ansatz about the way in which
coincides with the ones obtained in Sec. 3.. (2) ForS8Be its mass grows; its comparative dynamics respect to the other
and theSFthere is a local maximum velocity at a rather shortobjects in the asymptotic regime is basically independent of
time, the diminution in the velocity since then on, owes tothe details of the growth, and only depend on the assumption
the decreasing in the slope of the path in both cases, the ithat the mass reaches an asymptotic value, a very reasonable
crement of inertia in the case of tI8B, and the friction in  supposition. Therefore, we consider that our analysis is not
the SF. Such local maximal velocity cannot be exhibited by very model dependent at least in the regime of large times or
theSNF and theB because conservation of energy applies forlengths. In addition, these asymptotic limits serves also to
them, and as they are always descending their velocities ashow the consistency of our results.
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