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Comparative kinetics of the snowball respect to other dynamical objects
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We examine the kinetics of a snowball that is gaining mass while is rolling downhill. This dynamical system combines rotational motion
with effects involving the variation of mass. In order to understand the consequences of both effects we compare its behavior with the one of
some objects in which they are absent, so we compare the snowball with a ball with no mass variation and with a skier with no mass variation
nor rotational motion. Environmental conditions are also included. We conclude that the comparative velocity of the snowball respect to
the other objects is particularly sensitive to the hill profile and also depend on some retardation factors such as the friction, the drag force,
the rotation, and the increment of mass (inertia). We emphasize that the increase of inertia could surprisingly diminish the retardation effect
owing to the drag force. Additionally, when an exponential trajectory is assumed, the maximum velocity for the snowball can be reached at
an intermediate step of the trip.

Keywords: Snowball dynamics; mass variable systems; dynamics of rigid bodies.

Se estudia la dińamica de una bola de nieve que gana masa mientras rueda cuesta abajo. Este sistema dinámico combina movimiento rota-
cional con efectos que involucran la variación de la masa. Con el fin de entender las consecuencias de combinar ambos efectos, comparamos
su comportamiento con el de algunos objetos en los cualeséstos est́an ausentes, por lo cual comparamos a la bola de nieve con una bola sin
variacíon de masa y con un esquiador que no varı́a su masa ni posee movimiento rotacional. También se incluyen los efectos de las condi-
ciones ambientales. Concluı́mos que la velocidad comparativa de la bola de nieve respecto a los otros objetos es particularmente sensible
al perfil del camino seguido y también depende de algunos efectos retardadores tales como la fricción, la fuerza de arrastre, la rotación y el
incremento de masa (inercia). Como un efecto sorprendente, el incremento de inercia puede disminuir el efecto retardador debido a la fuerza
de arrastre. Adicionalmente, cuando se asume una trayectoria exponencial, la velocidad máxima para la bola de nieve se puede alcanzar en
una etapa intermedia del camino.

Descriptores: Dinámica de la bola de nieve; sistemas de masa variable; dinámica de cuerpos rı́gidos.

PACS: 45.20.Dd; 45.40.-F; 01.40.-d

1. Introduction

The snowball is a dynamical object that gains mass while is
rolling downhill. It is a particularly interesting problem since
it permits to combine several concepts of mechanics such as
the traslational and rotational dynamics, the rigid body, mass
variable systems, normal and tangential forces, radius of cur-
vature for a trajectory, etc [1,2]. Modeling this problem im-
plies many input parameters and the use of numerical meth-
ods. Additionally, an ansatz should be made about the way in
which the mass (or volume) is growing with time. Environ-
mental conditions are also considered utilizing well known
assumptions about friction and drag forces. The dynamical
behavior of the snowball will be studied in thevelocity vs
time, andvelocityvs length−planes.

Moreover a comparison with other dynamical objects
could clarify many aspects of the very complex behavior of
the snowball. Therefore, we will develop our analysis by
comparing the snowball (SB) motion with the one obtained
from a skier sliding without friction (SNF), a skier sliding
with friction (SF), and a ball with constant mass and vol-
ume (B).

In Sec. 2., we discuss the basic assumptions and write out
the equations of motion for the snowball. In Sec. 3., the com-
parison between the four dynamical objects mentioned above

is performed in the asymptotic regime. Section 4. describes
some proves of consistency to test our results. Section 5. pro-
vides a complete analysis of the comparative kinetics of the
four dynamical objects based on some environmental retar-
dation factors. Section 6. is regarded for the conclusions.

2. The problem of the snowball rolling down-
hill

2.1. Basic assumptions

The complete analysis of a snowball requires many input pa-
rameters. The problem does not have any analytical solution,
so it has to be solved numerically. We have listed the numeri-
cal values assumed in this paper in table I on page 4. Besides,
we make the following assumptions in order to get an equa-
tion of motion.

1. The snowball is always spherical meanwhile is grow-
ing and acquiring mass. Its density is constant as well.

2. It is supposed that there is only one point of contact be-
tween the snowball and the ground, and that the snow-
ball rolls without slipping throughout the whole mo-
tion. We shall call it the No Slipping Condition (NSC).
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3. In order to accomplish the previous condition, the
frictional static force that produces the rotation of
the snowball (FRS

), has to hold the condition
FRS

≤ µsN whereN is the normal (contact) force
to the surface, andµs is the coefficient of static fric-
tion. We assume thatµs is independent on the load
(Amontons’ law), this statement applies for not very
large loads [4].

4. The drag force owing to the wind is assumed to be of
the form

Fv = −ρACdA

2
v2 (1)

whereρA is the air density,Cd is the air drag coef-
ficient, andA is the snowball’s projected frontal area
i.e., A = πr2.

We assume the air drag coefficientCd to be con-
stant, since this assumption has given reasonable re-
sults in similar problems [3]. On the other hand, it
has been established that the forceFv could be a lin-
ear or quadratic function of the speed depending on the
Reynolds number (Re) [5]. For Re > 1 (which is our
case) a quadratic dependence fits well with experimen-
tal issues [6].

5. The mass of the snowball increases but finally reaches
an asymptotic value. Furthermore, a specific function
of the mass (or volume) in terms of time must be sup-
posed. In our case we assume the following functional
form

M (t) = M0 + K0

(
1− e−βt

)
(2)

where M0 is the initial mass of the snowball and
clearly the final mass isM0 + K0.

6. A hill profile must be chosen in order to make the sim-
ulation, like in other similar problems [3], it has an
important effect on exit speed. Specifically, we have
chosen an inclined plane and an exponential trajectory.

2.2. Equations of motion

To simplify the problem we start assuming the snowball
rolling downhill on a wedge whose angle isθ (see Fig. 1). In
the timet the snowball has a massM , and in the timet+dt
its mass isM + dM ;let us consider a system consisting of
the original snowball of massM plus the little piece of snow
with massdM . At the timet, the momentum of such system
is P (t) = Mv (bold letters represent vectors) since the little
piece of snow is still on the ground and at rest. At the time
t + dt the ball has absorbed the piece of snow completely, so
the momentum is given byP (t + dt) = (M + dM) (v+dv)
then the momentum change isdP = Mdv+vdM (where we
have neglected the differential of second order) and the total
force will be

F =
dP
dt

= M
dv
dt

+ v
dM

dt
(3)

FIGURE 1. A snowball rolling downward on a wedge, theX−axis
is parallel to the wedge surface and theY−axis is perpendicular.

wherev corresponds to the velocity of the center of mass re-
spect to the ground.

Further, the system is rotating too, we also suppose that
such rotation is always made around an axis which passes
through the center of mass (perpendicular to the sheet in
Fig. 1). In this case the rotation is around a principal axis,
hence the equation of motion for the angular momentum is
given by

LC = IC
−→ω C (4)

where the subscriptC refers to the center of mass coordi-
nates. IC denotes the moment of inertia of the snowball
measured from an axis passing through the center of mass,
and−→ω C refers to the angular velocity. According to Fig. 1,
LC is directed inside the sheet, and the torque will be

dLC

dt
= −→τ C (5)

We should remember that this equation is valid even if the
center of mass is not an inertial frame [1], which is clearly our
case. To calculatedLC we make an analogous procedure as
in the case ofdP, and the Eq. (5) is transformed into

IC
d−→ω C

dt
+−→ω C

dIC

dt
= −→τ C . (6)

where−→τ C is the total torque measured from the center of
mass. For the sake of simplicity, we will omit the subscriptC
from now on.

On the other hand, the external forces and torques exerted
on the system are similar to the ones in the simple problem
of a ball on a wedge [1]

F = W + N + FRs + Fa; −→τ = r× FRs (7)
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whereW is the weight (which acts as the driving force),
N the normal force,FRs the statical friction force, andFa is
any applied force which does not produce torque. If we use
as a coordinate system the one indicated in Fig. 1 (with the
Z − axis perpendicular to the sheet) we can convert these
equations into scalar ones; then using Eqs. (3), (6) and (7)
we get by supposing thatFa is parallel to theX − axis.

N −Mg cos θ = 0 ,

Mg sin θ − FRs + Fa = M
dv

dt
+ v

dM

dt
,

rFRs = I
dω

dt
+ ω

dI

dt
. (8)

The first equation decouples from the others whenever the
NSC is maintained; so we will forget it by now. We should
be careful in utilizing theNSC since the radius is not con-
stant. The correctNSC in this case consists of the relation
ds = r (dφ) whereds is the differential length traveled by
the center of mass of the snowball (in a certain differential
time intervaldt), dφ is the angle swept along the differen-
tial path, andr is the snowball radius in the time interval
[t, t + dt]. Using the correctNSC, we get

v =
ds

dt
= r

dφ

dt
= rω ⇒ ω =

v

r
(9)

and taking into account that the radius depends explicitly on
the time, we obtain

α =
a

r
− 1

r

dr

dt
ω (10)

whereω is the angular velocity,α is the angular acceler-
ation, andv, a are the traslational velocity and acceleration
respectively[Observe that we can start from the traditional
NSC with v = ωr. Nevertheless, the other traditionalNSC
a = rα, is not valid anymore].

It is convenient to write everything in terms of the dis-
placements, taking into account the following relations

v =
ds

dt
; a =

d2s

dt2
; ω =

dφ

dt
=

1
r

ds

dt
(11)

replacing (9, 10, 11) into (8), we find

rFRs = I

[
1
r

d2s

dt2
− 1

r2

dr

dt

ds

dt

]
+

(
1
r

ds

dt

)
dI

dt
(12)

Now we use the moment of inertia for the sphere
I = (2/5) Mr2 and the fact the the Mass “M” and the ra-
dius “r” are variable, then

dI

dt
=

2
5

(
r2 dM

dt
+ 2Mr

dr

dt

)
, (13)

M =
4
3
πρr3 ;

dM

dt
= 4πρr2 dr

dt
(14)

where the snowball densityρ has been taken constant. Addi-
tionally, we assume the applied forceFa to be the drag force

in Eq. (1). With all these ingredients and replacing Eq. (12)
into equations (8), they become

d2s

dt2
+

15ρACd

56ρ

1
r

(
ds

dt

)2

+
23
7

1
r

dr

dt

ds

dt
−5

7
g sin θ=0,

FRs=
8
3
πρr2

[
1
5
r

(
d2s

dt2
−1

r

dr

dt

ds

dt

)
+

(
ds

dt

)
dr

dt

]
. (15)

Finally, to complete the implementation of Eqs. (15), we
should propose an specific behavior forr (t) or M (t) ; we
shall assume thatM (t) behaves like in Eq. (2). On the other
hand, as a proof of consistency for Eqs. (15), we see that if
we taker = constant, andCd = 0, we find that

d2s

dt2
=

5
7
g sin θ

FRs =
2
7
M0g sin θ (16)

which coincides with the typical result obtained in all com-
mon texts for the ball rolling downward on a wedge with the
NSC [1].

2.3. A snowball downhill on an arbitrary trajectory

In this case the acceleration written above converts into the
tangential one, and the Eq. (8) for the normal force becomes

N −Mg cos θ = M
v2

R
(17)

whereR is the radius of curvature. In order to solve Eq. (17),
it is convenient to use the coordinate axis plotted in Fig. 2. In
cartesian coordinates, the radius of curvature is given by

R (x) =

[
1 + (y′)2

]3/2

y′′
; y′ ≡ dy

dx
(18)

Moreover, the angleθ is not constant any more, and accord-
ing to the Fig. 2 we see that

sin θ =
−dy

ds
=

−dy√
(dx)2 + (dy)2

= − y′√[
1 + (y′)2

]

cos θ =
dx

ds
=

1√[
1 + (y′)2

] (19)

where the minus sign in the differentialdy is due to the de-
crease of the coordinatey.

So the problem of the snowball rolling on an arbitrary
trajectory can be solved by replacing (19) into the first of
Eqs. (15), and making an assumption like (2). Addition-
ally, Eq.(17) provides the solutions for the normal force by
considering Eqs. (18), (19), and the solution for the velocity
obtained from (15). Notwithstanding, the first of Eqs. (15)
does not depend on the normal force whenever theNSC is
maintained. So, we shall ignore it henceforth.
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TABLE I. Input parameters to solve the equation of motion for the
SNF, SF, SB,and theB. All measurements are in the MKS sys-
tem of units.M0 is the initial mass of all objects,K0 defines the
increment of mass for theSB see Eq.(2),ρ andρA are the snow
and air densities respectively,µs the statical coefficient of friction
between theB and the ground (and also between theSB and the
ground). Cd is the air drag coefficient,θ the angle of the wedge,
AS is the skier frontal area,β is a parameter that defines the ra-
pidity of increase of mass in theSB, see Eq. (2).g is the gravity
acceleration,µD is the dynamical coefficient of friction between
theSF and the ground, andv0 is the initial velocity of the four ob-
jects. Further, in the exponential trajectoryy = he−αx, whereh
is the height of the hill.

M0 = K0 = 85 ρ = 917 ρA = 0.9 µs = 0.03

Cd = 0.3 θ = (4.76)◦ AS = 0.6 β = 0.07

g = 9.8 h = 25, α = 0.035 µD = 0.03 v0 = 0

FIGURE 2. A snowball rolling downward on an exponential tra-
jectory. To find the local value of the angleθ we define the
X, Y − axis as indicated in the figure. We see that for a suffi-
ciently large value ofx we getθ → 0.

3. Comparison of the snowball with other dy-
namical objects

May be the clearest way to understand the dynamical behav-
ior of the snowball, is by comparing it with the dynamics of
other simpler objects. In our case we shall compare the dy-
namics of four dynamical objects

1. A skier sliding with no friction (SNF).

2. The same skier but sliding with friction (SF).

3. A ball with constant mass and volume (B).

4. A snowball with variable mass and volume. (SB)

Such comparison will be performed in thev − t and
v − x planes. The behavior of the first two objects were
reproduced from the article by Catalfamo [3], and the equa-
tions for the ball were obtained from the ones of the snow-
ball by settingr → constant. In making the comparison
we use the input parameters of Table I, most of the parame-
ters in this table were extracted from [3][However, we have
changed mildly the parameters that describe the profile of the
exponential trajectory, in order to keep the NSC throughout].

As it can be seen, we assume the same massM0 for the skier
and the ball, and this is also the initial mass of the snowball
ending with a mass of2M0.

3.1. Asymptotic limits

Before solving all these problems, we shall study the asymp-
totic limits of the four objects in the inclined plane, and
the exponential trajectory with and without drag force. The
asymptotic regime provides useful information, and can be
used to analyze the consistency of the numerical solutions.
These limits depend on the drag force, the trajectory, and the
object itself.

3.1.1. Inclined plane with no drag force

For each object we obtain the following limits

• For theSF its velocity is easily found

v = v0 + gt (sin θ − µD cos θ) (20)

so there is no finite value for the velocity, and its be-
havior is linear respect to time. TheSNF asymptotic
limit is obtained just takingµD → 0.

• For theSB from Eq. (15), and assuming that the ra-
dius reaches an asymptotic limiti.e., dr/dt → 0 when
t →∞ we get

v (t →∞) ≡ v∞ = v0 +
5
7
gt sin θ (21)

getting a linear behavior respect to time. The same be-
havior is exhibited by theB whent →∞.

Observe thatv∞ in theSB is independent on the mass,
and equal to the value for the ballB, it is reasonable
owing to the asymptotic behavior assumed for theSB,
Eq. (2).

3.1.2. Inclined plane with drag force

• For theSF its equation of motion is easily obtained

dv

dt
= −µDg cos θ − ρACdA

2M
v2 + g sin θ

and in the asymptotic limitdv∞/dt → 0, so we get
that

v2
∞ =

2g

ρACd

M

A
(sin θ − µD cos θ) (22)

Now, by settingµD → 0, we getv∞ for theSNF

• For theSB from Eq. (15), and settingd2s/dt2 → 0,
dr/dt → 0, we obtainv∞
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v2
∞ =

56ρ

21ρACd
r∞g sin θ =

2g

ρACd

M∞
A∞

sin θ (23)

wherer∞ ≡ r (t →∞) . The second term in (23) is obtained
from Eq.(2) by taking the asymptotic limit whent → ∞, in
this caser∞ is given by

r∞ =
[

3
4πρ

(M0 + K0)
] 1

3

In the case of theB, we obtain the expression (23), but
r∞, M∞, A∞ are constant in time and equal to its initial
valuesr0, M0, A0.

3.1.3. Exponential trajectory with no drag force

In this case it is easier to examine the asymptotic limits, since
when the objects have traveled a long path,θ → 0, and the
object is reduced to run over a horizontal plane, see Fig. 2
Therefore the limits are

• For theSF,v∞ = 0.

• For theSNF, it is found easily by energy conservation

v2
∞ = 2gh + v2

0

whereh is the height of the hill.

• For theB we can findv∞ by taking into account that
energy is conserved because friction does not dissipate
energy when theNSC is held [1]. By using energy
conservation we obtain[Since what really matters for
energy conservation is the height of the center of mass,
there is a tiny difference that can be neglected if the
radius of the ball is much smaller that the height of the
hill]

v2
∞ =

10
7

gh

For the snowball the limit is not easy to obtain because
energy is not conserved and Eq. (15) does not pro-
vide any useful information [By usingθ → 0, and
d2s/dt2 → 0, the second of Eqs. (15) becomes triv-
ial]. However, according to Figs. 5, this limit is lower
than the one of theB owing to the increment of inertia.

3.1.4. Exponential trajectory with drag force

In this case all velocities vanish for sufficiently long time.

4. Proves of consistency

The equations of motion for each object where solved by a
fourth order Runge Kutta integrator [7]. To verify the correct
implementation of the program, we reproduce the results ob-
tained by [3], and solve analytically the problem of the ball of
constant radius in the inclined plane without drag force, the
results were compared with the numerical solution. Addition-
ally, all the asymptotic values discussed above were obtained
consistently.

Finally, the reader could have noticed that one of our main
assumptions was theNSC. However, this condition can only
be valid if we ensure that the statical friction force does not
exceed the valueµsN all over the trajectory in each case.
Otherwise, the snowball would start slipping preventing us
of using the fundamental relations (9) and (10). Addition-
ally, if the snowball started sliding, the frictional force would
become dynamicali.e. FRD

= µDN producing a coupling
among the three Eqs. (8), remember that we have assumed
that the first one was decoupled. As a first approach, we
study the validity of theNSC in the asymptotic regime by
calculatingFRS

(t →∞) andµsN (t →∞).
For the inclined plane, these limits can be estimated by

using Eq. (2), the first of Eqs. (8), and the second of Eqs. (15)

µsN (t →∞) → µsM∞g cos θ

FRS
(t →∞) → 2

5
M∞

(
d2s

dt2

)

∞
. (24)

it is easy to verify that theNSC is valid in the asymp-
totic limit for the wedge, since in the case of the presence
of a drag force we getFRS

(t →∞) = 0. Additionally,
in the case of absence of the drag force it is found that
FRs (t →∞) = (2/7) (M0 + K0) g sin θ, and the condition
FRS

(t →∞) ≤ µsN (t →∞) is accomplished by our in-
put parameters (see Table I).

For the exponential trajectory the analysis is even simpler,
since the path for large times becomes a horizontal straight
line, the asymptotic limits forFRS andµsN are the same as
in Eqs. (24), but withθ → 0; and theNSC condition is held
whent →∞.

However, theNSC in the asymptotic regime does not
guarantee that it is held throughout the path. For example,
in the case of the exponential trajectory, the maximum slope
of the profile is found at the beginning of the trajectory, it was
because of this fact that we changed mildly the profile param-
eters defined in Ref. [3]. Consequently, by using the first of
Eqs. (8) as well as the Eqs. (15), (17), (18), and (19); we
solved numerically forFRS

vs time and length, and forµsN
vs time and length; utilizing the numerical input values of Ta-
ble I. We then checked thatFRS ≤ µsN throughout the time
or length interval considered in each case.

5. Analysis

In order to make a clear comparison, we take the initial mass
of all the objects to be equal, and all initial velocities are zero.
In Fig. 3–6 we use the following conventions: The dashed
dotted line corresponds to theSNF, the solid line represents
the SF, the dashed line refers to theB, and finally the dot-
ted line corresponds to theSB. In both, ball and snowball we
only consider statical friction, and neglect possible dynamic
frictional effects due to sliding because we have guaranteed
that theNSC is valid throughout the trajectory, as explained
in Sec. 4..

Rev. Mex. F́ıs. E 50 (1) (2004) 65–73
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FIGURE 3. Plots in thev− t plane (left) and thev−x plane (right) when the objects travel in a wedge of constant slope with no drag force.

FIGURE 4. Plots in thev − t plane (left), and thev − x plane (right) when the objects run over a wedge of constant slope with drag force.

In Fig. 3 we plotv vs t, andv vsx for constant slope of
the wedge without drag force. Of course, all graphics in the
v − t plane are straigth lines except the one for the snowball.
We can see that theSNF is the fastest object as expected,
since no retardation factors are acting on it, next we have
theB which posseses the rotation as a retardation factor. Ad-
ditionally, theSB line is always below theB line because in
the former, two retardation factors are present: the rotation
and the increase of inertia. However, for sufficiently long

time (or length) the increase of inertia vanishes (according to
our assumptions) so that the velocities of bothB andSBcoin-
cide, in agreement with the analysis made in Sec. 3.1.1. We
checked that condition, though it does not appear in Fig. 3,
because of the short time and length interval displayed.

The line corresponding to theSF is below the line cor-
responding to theSNF as it must be, however the relation
between theSF andSB lines is particularly interesting and
deserves more attention. At the beginning theSB is slightly
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slower than theSF, but for sufficiently long time, theSB
becomes faster. It can be explained in the following way, at
the beginning theSB has two retardation factors: the rota-
tion and the increase of inertia, while theSF only has one
retardation factor: the sliding friction. On the other hand, for
sufficiently long time the increment of inertia becomes neg-
ligible in the SB, and only the rotation acts as a retardation
factor, consequently theSB behaves like theB as shown in
Sec. 3. Therefore, the combination of the two retardation

factors at the beginning makes theSB slower but when the
increase of inertia is small enough, theSB becomes faster
than theSF. Nevertheless, we should point out that this be-
havior depend on the value ofµD, if it were large enough the
line for theSF would lie below the lines forB andSB at all
times, in contrast if it were small enough theSF line would
lie above theB andSB lines. Notwithstanding, the rapidity
of the SF must be smaller than theSNF speed at any time
and for any value ofµD.

FIGURE 5. Plots in thev− t plane (left), and thev−x plane (right) when the objects travel on an exponential trajectory with no drag force.

FIGURE 6. Plot in thev − t plane (left), and thev − x plane (right) when the objects run over an exponential trajectory with drag force.
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According to this analysis, when the objects travel in a
wedge with no drag force, the pattern of velocities in de-
scendent order for any set of the input parameters (as long as
the initial masses and velocities are the same) is the follow-
ing: theSNF, the B and theSB. The comparative velocity
of theSF depend on the input parameters, but it must be al-
ways slower than theSNF. As a proof of consistency, it can
be checked that the asymptotic limits in Eqs. (20), (21) obey
this pattern.

Figure 4 correspond to a wedge with constant slope in-
cluding drag force. In this case the comparative behavior
among the four elements is not as simple as in Fig. 3, be-
cause in this case the lines cross out each other. However,
the line describing theSF is always below the line describing
theSNF as it should be. This more complex behaviour owes
to the frontal area dependence of the drag force. For instance,
we can realize that at short times the comparative behavior is
very similar to the one in Fig. 3, since the drag force has not
still acted significantly. All these elements get an asymptotic
limit as we described in section 3.. We see that the largest
asymptotic limit correspond to theSB, in opposition to the
case of Fig. 3 with no drag force, in which the snowball was
one of the slowest objects; the clue to explain this fact re-
cides in the frontal area dependence of the drag force. From
Eqs. (22) and (23) we can verify that for all these objects
the terminal velocity behaves asv2 ∝ M/A, this quotient is
larger for theB than for theSNFand theSF in our case, then
the asymptotic velocityvB is larger thanvSNF andvSF , for
both the skier and the ball this ratio is a constant. In contrast,
since in the snowball the mass grows cubically with the radius
while the area grows quadratically, its velocity behaves such
that v2

SB ∝ r (t) . Therefore, for sufficiently long times, its
velocity grows with the radius of theSB, getting a higher ter-
minal velocity (of course it depends on the asymptotic value
of r (t)). Observe that if we had assumed a non asymptotic
behavior ofr (t) in (15) we would have not obtained any fi-
nite terminal velocity for the snowball even in the presence of
a drag force. Furthermore, we see that the terminal velocity
for the SB is reached in a longer time than the others, it is
also because of the slow growth ofr(t).

Figure 5 describes the four elements traveling in an expo-
nential hill with no drag force. Two features deserve special
attention: (1) The terminal velocity is achieved in a very short
time specially in the cases of theSNFand theB, these limits
coincides with the ones obtained in Sec. 3.. (2) For theSB
and theSF there is a local maximum velocity at a rather short
time, the diminution in the velocity since then on, owes to
the decreasing in the slope of the path in both cases, the in-
crement of inertia in the case of theSB, and the friction in
theSF. Such local maximal velocity cannot be exhibited by
theSNFand theB because conservation of energy applies for
them, and as they are always descending their velocities are

always increasing, though for long times they are practically
at the same height henceforth, getting the terminal velocity.
In particular, we see that the terminal velocity of theSF is
zero as it was shown in Sec. 3.1.3.

In Fig. 6 the elements travel in an exponential hill with
drag force. In this case, the conservation of energy does not
hold for any of the objects, consequently maximum velocities
in intermediate steps of the trajectory are allowed for all of
them. All terminal velocities are zero as expected. Because
of the same arguments discussed above, the line of theSF
is below to the one of theSNF. However, any other pattern
depends on the numerical factors used.

A final comment is in order, we can realize that though
the solution of the kinetics of the snowball depends on the
ansatz made about the mass growth, the bulk of our results
and analysis only depend on the fact that the snowball mass
reaches a finite asymptotic value. So that the discussion is
quite general, especially in the asymptotic regime.

6. Conclusions

We have described the behavior of a snowball acquiring mass
while rolling downhill, taking into account the enviromental
conditions. The dynamics of the snowball is very complex
because it is a rotating object, and at the same time its mass
and moment of inertia are variables. In order to visualize
better the effects due to the rotation and mass variation, we
compare its motion with the kinetics of two objects in which
the rotation and mass variational effects are absent (theSkier
with Friction and theSkier with No Friction), and with one
object in which the rotation is present but no the mass varia-
tion (theBall of constant mass and radius).

The comparative behavior of these objects depend on the
trajectory but also on some retardation factors: the friction,
the drag force, the increase of mass (inertia), and the rota-
tional effects. It is worth remarking that despite the incre-
ment of inertia is a retardation factor in some circumstances,
it could surprisingly diminish the retardation effect due to the
drag force. In addition, some local maxima of the velocities
for each object appears in an exponential trajectory, showing
that the maximum velocity might be achieved at an interme-
diate step of the path.

Finally, we point out that despite the complete solution of
the snowball depends on an ansatz about the way in which
its mass grows; its comparative dynamics respect to the other
objects in the asymptotic regime is basically independent of
the details of the growth, and only depend on the assumption
that the mass reaches an asymptotic value, a very reasonable
supposition. Therefore, we consider that our analysis is not
very model dependent at least in the regime of large times or
lengths. In addition, these asymptotic limits serves also to
show the consistency of our results.
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