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The static uniform electric charge distribution, the stationary and time-harmonically-varying uniform electric current distributions, on infinite
planes, are known to produce uniform electrostatic, uniform magnetostatic and plane wave electromagnetic fields around the respective
sources, since the introductory course of electricity and magnetism. This paper presents some natural extensions of these familiar systems
for harmonically distributed sources on the planes, which can be assimilated in the electromagnetic theory course.
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Desde el curso introductorio de electricidad y magnetismo se enseña que las distribuciones uniformes en planos infinitos, de carga eléctrica
est́atica y de corrientes eléctricas estacionarias y variables armónicamente en el tiempo, producen campos electrostáticos uniformes, campos
magnetost́aticos uniformes y campos electromagnéticos en ondas planas en la vecindad de las respectivas fuentes. Este trabajo presenta
algunas extensiones naturales de esos sistemas familiares para fuentes distribuidas armónicamente sobre los planos, las cuales pueden ser
asimiladas en el curso de teorı́a electromagńetica.

Descriptores: Fuentes arḿonicas en planos; campos electrostáticos; magnetostáticos y de radiación electromagńetica.

PACS: 41.20.Cv, 41.20.Gz, 41.20.Jb

1. Introduction

Some of the simplest electrostatic, magnetostatic and elec-
tromagnetic field configurations and their sources, covered
in the electricity and magnetism introductory course [1], are
briefly discussed in this paragraph in order to motivate the
study of some of their natural extensions to be developed in
the present work. The uniform electric intensity field associ-
ated with a static uniformly distributed electric charge on an
infinite plane can be evaluated from Coulomb’s law and the
superposition principle, or by a direct application of Gauss’s
law. The uniform magnetic induction field associated with
a stationary uniformly distributed electric current on an infi-
nite plane can be evaluated from the field of a line of current
and the superposition principle, or by a direct application of
Ampère’s law. The plane wave electromagnetic field associ-
ated with a time-harmonically-varying uniformly distributed
electric current in an infinite plane can be evaluated from
Maxwell’s equations in the differential and boundary con-
dition forms. The common feature of uniform distributions
of the sources on the respective planes is translated into the
uniform nature of the electrostatic and magnetostatic fields,
and into the propagation in the directions perpendicular to the
plane of the plane wave electromagnetic fields.

The geometry and the distribution of the sources in the
systems discussed in the previous paragraph make the respec-
tive problems become one-dimensional, and thereby among
the simplest and most didactic. This article presents some
natural extensions of these familiar situations, keeping the
sources on infinite planes, but changing their distributions
from uniform to harmonic, leading to exact and easy to con-
struct electrostatic, magnetostatic and electromagnetic fields.

The rest of the article is organized as follows. Section 2
covers the electrostatic case for circular and hyperbolic co-
sine charge distributions in one of the cartesian coordinates
in the source plane. Section 3 covers the magnetostatic case
for stationary transverse currents with circular and hyperbolic
cosine distributions in one of the cartesian coordinates in the
source plane. Section 4 covers the electromagnetic case for
time-harmonically-varying, transverse and longitudinal cur-
rents with a cosine distribution in one of the cartesian coor-
dinates in the source plane. Section 5 consists of a discus-
sion of the results for each specific situation, the connections
among them, and some points of didactic interest. The Ap-
pendix contains some results on the Laplace and Helmholtz
equations and their solutions, which are relevant for the con-
struction of the fields in Secs. 2-4.

2. Electrostatic fields from harmonically dis-
tributed charges on an infinite plane

Gauss’s law in its differential and boundary conditions forms,

∇ · ~E = 4πρ, (1)

( ~E2 − ~E1) · n̂ = 4πσ (2)

establishes the connections between the volume charge den-
sity ρ and the electric intensity field~E at any point in space,
and between the surface charge densityσ on a boundary sur-
face and the components of the field normal to such a surface,
respectively.

The conservative nature of the electrostatic field is de-
scribed by the corresponding differential and boundary con-
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ditions forms:

∇× ~E = 0 (3)

( ~E2 − ~E1)× n̂ = 0 (4)

expressing the curlless character of the electric intensity field,
and the continuity of its tangential components at the bound-
ary surface, respectively.

For the static electric charges distributed harmonically on
an infinite plane,ρ(~r) = 0 for all points outside the plane.
Then the electric intensity field can be constructed as a diver-
genceless, Eq. (1), and curlless, Eq. (3), field, with discon-
tinuous normal components, Eq. (2), and continuous tangen-
tial components, Eq. (4), at the source plane. As shown in
the Appendix, Eq. (1) and (3), are equivalent to the Laplace
equation in the situation under discussion, and therefore the
electric intensity field must be a harmonic function deter-
mined by the harmonicity of the source.

2.1. Circular cosine distribution of charge in the x-y
plane

The static charge on thez = 0 plane is assumed to have the
distribution defined by its surface charge density

σ(x, y, z = 0) = σ0 cos
πx

L
(5)

which is cosenoidal with a period2L in thex direction, and
independent of they coordinate. The latter makes the prob-
lem become two dimensional. The electrostatic field depends
only on thex and z coordinates, and its components must
be harmonic functions of the types of Eq. (A.4). The har-
monicity of the source, Eq. (5), selects the valuek = π/L
in Eq. (A.4). It is necessary to write the electrostatic field
~E(x, z) distinguishing between its forms above and below
the source plane:

~E(x, z ≥ 0) =
(

îEa
0x sin

πx

L
+ k̂Ea

0z cos
πx

L

)
e−

πz
L (6)

~E(x, z ≤ 0) =
(

îEb
0x sin

πx

L
+ k̂Eb

0z cos
πx

L

)
e

πz
L , (7)

ensuring their correct asymptotic behavior forz → ∞ and
z → −∞, respectively. The divergenceless condition of
Eq. (1) translates into the restrictions on the amplitudes in
Eqs. (6) and (7):

Ea
0x = Ea

0z (8)

and

Eb
0x = −Eb

0z. (9)

The reader can check that the curlless condition, Eq. (3),
is also satisfied. Then the continuity of the tangential compo-
nents, Eq. (4), requires that

Ea
0x = Eb

0x (10)

∴ Eb
0z = −Ea

0z. (11)

Finally, the discontinuity of the normal components,
Eq. (3), defines their value in terms of the surface charge den-
sity amplitude,

Ea
0z = 2πσ0. (12)

In conclusion, the harmonic electrostatic field produced
by the source of Eq. (5) takes the final forms:

~E(x, z ≥ 0) = 2πσ0

(
î sin

πx

L
+ k̂ cos

πx

L

)
e−

πz
L (13)

~E(x, z ≤ 0) = 2πσ0

(
î sin

πx

L
− k̂ cos

πx

L

)
e

πz
L . (14)

2.2. Hyperbolic cosine distribution of charge in the y-z
plane

The static charge on thex = 0 plane is chosen to have a
hyperbolic cosine distribution

σ(x = 0, y, z) = σ0 cosh kz (15)

along the z-axis, and independent of they coordinate. The
reader can recognize that such a distribution corresponds to
the choiceC = D in Eq. (A.4). The same arguments used in
Sect. 2.1 lead to propose the expressions for the field in front
and in back of the source plane:

~E(x ≥ 0, z) = îEf
0x cos kx cosh kz + k̂Ef

0z sin kx sinh kz
(16)

~E(x ≤ 0, z) = îEb
0x cos kx cosh kz + k̂Eb

0z sin kx sinh kz
(17)

Again, the divergenceless condition on the electric field
leads to the restrictions on the amplitudes

Ef
0x = Ef

0z, (18)

Eb
0x = Eb

0z. (19)

These conditions, in turn, ensure that the field is curlless.
The tangential components of the field vanish at the source
plane, guaranteeing that Eq. (4) is satisfied. The discontinu-
ity of the normal components, Eq. (2), leads to

Ef
0x = −Eb

0x = 2πσ0 (20)

Therefore, the electrostatic field is given by the final ex-
pression:

~E(x ≥ 0, z) = 2πσ0

×
(
î cos kx cosh kz + k̂ sin kx sinh kz

)
(21)

~E(x ≤ 0, z) = 2πσ0

×
(
−î cos kx cosh kz − k̂ sin kx sinh kz

)
. (22)

This section can be concluded by noticing that the limit
situations of both alternative harmonic sources, Eq.(5) for
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L → ∞, and Eq. (15) fork → ∞, correspond to the fa-
miliar situation of the uniformly charged plane, for which the
electrostatic field is also uniform as expressed by the limits
of Eqs. (13)-(14) and (21)-(22), respectively.

3. Magnetostatic fields from stationary cur-
rents harmonically distributed on an infi-
nite plane

Ampére’s law in its differential and boundary condition
forms,

∇× ~B =
4π

c
~J, (23)

( ~B2 − ~B1)× n̂ =
4π

c
~K, (24)

give the connections between the surface current density~J
and the magnetic induction field~B at any point in space, and
between the linear current density~K on a boundary surface
and the components of the field tangential to the surface, re-
spectively.

The non-existence of magnetic monopoles is expressed
by Gauss’s law for the magnetic induction field in its differ-
ential and boundary condition forms,

∇ · ~B = 0 (25)

( ~B2 − ~B1) · n̂ = 0, (26)

reflecting the solenoidal character of the field, and the conti-
nuity of its normal components at the boundary surface, re-
spectively.

For the stationary electric currents distributed harmoni-
cally on an infinite plane,~J(~r) = 0 for all points outside the
plane. Therefore the magnetic induction field must be curl-
less, Eq. (23), and solenoidal, Eq. (25), just as it happened
with the electrostatic field in the previous section. However,
Eq. (24) shows that the magnetic induction field must have
discontinuous tangential components, while its normal com-
ponents are continuous, Eq. (26). Nevertheless, the magnetic
induction field must also be a harmonic function determined
by the harmonicity of the source.

3.1. Circular distribution of current in the x− yx− yx− y plane

A stationary current in they direction and cosenoidally dis-
tributed in thex coordinate on thez = 0 plane,

K̂(x, y, z = 0) = ĵK0 cos
πx

L
, (27)

has a period2L and is independent of they coordinate.
The magnetic induction field associated with such a source
depends on thex and z coordinates, is divergenceless and
curlless, and consequently its components must be harmonic
functions of the type of Eq. (A.4) withk = π/L. The ex-
pressions of the field above and below the source plane are

chosen as

~B(x, y, z≥0)=
(

îBa
0x cos

πx

L
+ k̂Ba

0z sin
πx

L

)
e−

πz
L (28)

~B(x, y, z≤0)=
(

îBb
0x cos

πx

L
+ k̂Bb

0z sin
πx

L

)
e

πz
L (29)

so that the first one vanishes asymptotically asz → ∞, and
the second one does likewise forz → −∞. The vanishing of
the respective divergences requires that

Ba
0x = −Ba

0z (30)

and

Bb
0x = Bb

0z (31)

These conditions also guarantee that the curls of Eqs. (28)
and (29) vanish. The continuity of the normal components of
the field at the source plane, Eq. (26), requires that

Ba
0z = Bb

0z (32)

and

∴ Bb
0x = −Ba

0x (33)

Then the discontinuity of the tangential components of
the field at the source plane determines the value of the un-
known amplitude in terms of the current amplitude:

Ba
0x =

2π

c
K0. (34)

Consequently, Eqs. (28) and (29) take the final forms

~B(x, z ≥ 0) =
2π

c
K0

(
î cos

πx

L
− k̂ sin

πx

L

)
e−

πz
L , (35)

~B(x, z ≤ 0) =
2π

c
K0

(
− î cos

πx

L
− k̂ sin

πx

L

)
e

πz
L , (36)

describing the magnetostatic field produced by the harmonic
current of Eq. (27)

3.2. Hyperbolic cosine distribution of current in the
y − zy − zy − z plane

The stationary current on thex = 0 plane is chosen in they
direction and distributed as a hyperbolic cosine in thez coor-
dinate, so that its linear current density is written as

K̂(x = 0, z) = ĵK0 cosh kz. (37)

The associated magnetic induction field must satisfy the
condition stated and applied in the previous subsections.
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Therefore, its forms in the front and back of the source plane
are

~B(x ≥ 0, z) =
(

îBf
0x sin kx sinh kz

+ k̂Bf
0z cos kx cosh kz

)
, (38)

~B(x ≤ 0, z) =
(

îBb
0x sin kx sinh kz

+ k̂Bb
0z cos kx cosh kz

)
. (39)

The vanishing of their divergences, Eq. (25), demands
that

Bf
0x = −Bf

0z (40)

and

Bb
0x = −Bb

0x. (41)

These conditions also ensure that the curls of Eqs. (38)
and (39) vanish. The normal components of this field vanish
at the source plane, so that Eq. (26) is automatically satis-
fied. The discontinuity of the tangential components of the
field at the source plane, Eq. (24), determines the connection
between the field unknown amplitude and the linear current
amplitude,

Bf
0z = −2π

c
K0. (42)

Therefore, the final explicit forms of the magnetostatic
field become

~B(x ≥ 0, z) =
2π

c
K0

(
î sin kx sinh kz

− k̂ cos kx cosh kz

)
(43)

~B(x ≤ 0, z) =
2π

c
K0

(
− î sin kx sinh kz

+ k̂ cos kx cosh kz

)
(44)

As in the electrostatic case of the previous section, the
limit situations of the current distributions of Eq. (27) for
L → ∞, and of Eq. (37) fork → 0, correspond to the fa-
miliar case of the plane with a uniformly distributed current
producing a uniform magnetic induction field, given by the
respective limits of Eqs. (35) - (36) and (43)-(44).

4. Electromagnetic fields from time-
harmonically-varying currents distributed
harmonically on an infinite plane

Maxwell’s equations in their differential and boundary con-
ditions forms, for time-harmonically-varying sources and

fields,e−iωt with frequencyω

∇ · ~E = 4πρ, (45)

( ~E2 − ~E1) · n̂ = 4πσ (46)

∇× ~B =
4π

c
~J − iω

c
~E, (47)

( ~B2 − ~B1)× n̂ =
4π

c
~K (48)

∇× ~E =
iω

c
~B, (49)

( ~E2 − ~E1)× n̂ = 0 (50)

∇ · ~B = 0, (51)

( ~B2 − ~B1) · n̂ = 0 (52)

correspond to the electric Gauss’s law, the Ampére-Maxwell
law, Faraday’s law, and the magnetic Gauss’s law, respec-
tively. Notice that the boundary condition forms coincide
with their counterparts of Sects. 2 and 3. For sources har-
monically distributed on an infinite plane,ρ(~r) = 0 and
~J(~r) = 0 for all points outside such a plane. Now, the
electric intensity and the magnetic induction fields are both
solenoidal, Eqs. (45) and (51), but the curl of one is pro-
portional to the other, Eqs. (47) and (49). The latter are
coupled first order differential equations, which can be de-
coupled, as shown in the Appendix, becoming Helmholtz’s
equations. Consequently,~E and ~B must be constructed as
solenoidal fields, satisfying Helmholtz equation and the curl
equations (47) and (49), as well as the boundary conditions
of Eqs. (46)-(52). The components of the electric and mag-
netic fields are constructed as the appropriate combinations
of the Helmholtz equation solutions defined by Eqs. (A.12)
and (A.13).

4.1. Cosine distribution of tranverse current in thex− yx− yx− y
plane

The current is chosen to be in thez = 0 plane, in the direc-
tion of they axis, and varying as a cosine in thex coordinate,
so that its linear density

~K(x, y, z = 0, t) = ĵK0 cos
πx

L
e−iωt (53)

has the same space distribution as in Sect. 3A, Eq. (27),
but they are different in their time (in)dependence. The time
harmonic variation of the source is inherited by the fields, as
already incorporated in Eqs. (47) and (49), and the harmonic
space variation of the source selectsk1 = π/L in the solu-
tions of Helmholtz equations, (A.12) and (A.13). The last
equation determines the possible values ofk3:

k2
3 =

ω2

c2
− π2

L2
≷ 0, (54)
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which determine the character of the solutions of Eq. (A.12)
as traveling or evanescent waves, respectively. Here we con-
centrate on the study of the traveling waves. The invariance
of the source under displacements in they direction is also
inherited by the electric and magnetic fields. From the ex-
perience of Sect. 3A we start by proposing the expressions
of the magnetic induction field above and below the source
plane:

~B(x, z≥0)=
(

îBa
0x cos k1x + k̂Ba

0z sin k1x

)
eik3z (55)

~B(x, z≤0)=
(

îBb
0x cos k1x + k̂Bb

0z sin k1x

)
e−ik3z, (56)

as the counterparts of Eqs. (28)-(29). Notice the common
x dependence and the difference in the traveling and decay-
ing exponential functions in thez-coordinate, between the
respective fields. The vanishing of the divergences of both
expressions, Eq. (51), leads to the restrictions on the respec-
tive amplitudes:

~Ba
0xk1 = Ba

0zik3 (57)

~Bb
0xk1 = −Bb

0zik3. (58)

The continuity of the normal components of the magnetic
field at the source plane, Eq. (52), requires that

Ba
0z = Bb

0z. (59)

If follows from Eq. (57)-(59) that the amplitudes in theî
direction are connected as

Bb
0x = −Ba

0x. (60)

Their value is determined by the discontinuity of the tan-
gential components of the field at the source plane, Eq. (48),
as

Ba
0x =

2π

c
K0 (61)

checking along the way the anticipated selection of the value
of k1 by the harmonicity of the source distribution.

Consequently, the final forms of Eqs. (55)- (56) become

~B(x, z≥0)=
2π

c
k0

(
î cos

πx

L
− k̂

iπ

k3L
sin

πx

L

)
eik3z (62)

~B(x, z≤0)=
2π

c
k0

(
− î cos

πx

L

− k̂
iπ

k3L
sin

πx

L

)
e−ik3z (63)

By taking the curl of Eqs. (61) and (62), and using
Eq. (47), the other component of the electromagnetic field
is evaluated as

~E(x, z ≷ 0) = −2π

c
K0ĵ

ω

k3c
cos

πx

L
e±ik3z. (64)

Notice that this electric intensity field is divergenceless,
Eq. (45), has vanishing normal components at the source
plane, Eq. (46), and its tangential components at the source
plane are continuous, Eq. (50). The reader can also check
that its curl reproduces Eqs. (62) and (63), by using Eq. (49).

The time averaged Poynting vector associated with the
electromagnetic field is directly evaluated for both regions
above and below the source plane

〈~S〉± =
c

8π

(
2π

c
K0

)2
ω

k3c

[
î

iπ

k3L
cos

πx

L
sin

πx

L

±k̂cos2 πx

L

]
(65)

The power radiated by each rectangle of the source, with
dimensions∆x = 2L and∆y = 1, is also evaluated:

p =

1∫

0

2L∫

0

[
〈~S〉+ · k̂ − 〈~S〉− · k̂

]
dxdy

=
c

8π

(
2π

c
K0

)2
ω

k3c
2L. (66)

It is also recognized that the imaginary terms in Eqs. (62),
(63) and (65) describe induction effects.

4.2. Cosine distribution of longitudinal current in the
x− yx− yx− y plane

The current in thez = 0 plane is chosen to be in thex direc-
tion, and varying as a cosine in thex coordinate, so that its
linear density is given by

~K(x, y, z = 0) = îK0 cos
πx

L
. (67)

The important difference between the transverse current
of the previous subsection and the longitudinal current under
consideration resides in their vanishing and non-vanishing di-
vergences, respectively.

The latter translates into the presence of a surface charge
distribution as determined from the continuity equation

∇ · ~K +
∂σ

∂t
= 0, (68)

which in the present situation takes the form:

σ(x, y, z = 0) =
i

ω
K0

π

L
sin

πx

L
e−iωt. (69)

From the experiences of Sect. 2, the expressions for the
electric intensity field above and below the source plane are
written as

~E(x, z ≥ 0)=
(

îEa
0x cos

πx

L
+ k̂Ea

0z sin
πx

L

)
eik3z (70)

~E(x, z ≤ 0)=
(

îEb
0x cos

πx

L
+ k̂Eb

0z sin
πx

L

)
e−ik3z (71)
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The divergenceless of these fields, Eq. (45), requires that

Ea
0x

π

L
= Ea

0zik3 (72)

Eb
0x

π

L
= −Eb

0zik3. (73)

The continuity of its tangential components, Eq. (50),
leads to

Ea
0x = Eb

0x (74)

As a consequence of Eqs, (72)- (74),

Eb
0z = −Ea

0z (75)

Then the discontinuity of its normal components, Eq. (46),
determines the value of the corresponding amplitude,

Ea
0z = 2π σ0 =

2πiπ

ωL
K0 (76)

using the surface charge amplitude of Eq. (69), and corrobo-
rating the choice ofk1 = π/L.

Correspondingly, the final forms of Eqs. (70) and (71)
become

~E(x, z ≥ 0) =
2π

ω
K0

[
− îk3 cos

πx

L

+ k̂
iπ

L
sin

πx

L

]
eik3z (77)

~E(x, z ≤ 0) =
2π

ω
K0

[
− îk3 cos

πx

L

− k̂
iπ

L
sin

πx

L

]
e−ik3z (78)

Their curls lead to the other component of the electromag-
netic field, via Eq. (49), with the result

~B(x, z ≷ 0) = ∓ĵ
2π

c
K0 cos

πx

L
e±ik3z (79)

It is obvious that this magnetic induction field is diver-
genceless, Eq. (51), its components normal to the source
plane vanish, Eq. (52), and its tangential components are dis-
continuous, Eq. (48), and consistent with the current source
of Eq. (67). Again, the reader can check that its curl repro-
duces Eqs. (77)- (78), via Eq. (47).

Now the time averaged Poynting vector becomes

〈~S〉± =
c

8π

(
2π

c
K0

)2
c

ω

[
î
iπ

L
sin

πx

L
cos

πx

L

±k̂k3 cos2
πx

L

]
(80)

Correspondingly, the power radiated by each periodic
rectangle of the source plane is given by

p =
c

8π

(
2π

c
K0

)2
k3c

ω
2L. (81)

The limit situations whenL → ∞ for the sources in
Eq. (53) and (66) correspond to the familiar uniform cur-
rent distributions on the plane. The corresponding plane
wave electromagnetic fields are also obtained as the limits
of Eqs. (62)- (64) and (77)- (79), respectively.

Although, the solutions studied in this section correspond
to traveling waves, they can be easily converted into evanes-
cent wave solutions through analytic continuation. This is ac-
complished by the substitution ofk3 by ik3, in Eqs. (55)- (56)
and (70)- (71), and subsequent ones, going from positive to
negative values ofk2

3 in Eq. Eqs. (54).

5. Discussion

The cosine distributions of the sources of the electro-
static, magnetostatic and electromagnetic fields constructed
in Sects. 2-4, respectively, were chosen to ensure that the cor-
responding two-dimensional systems reduce to the familiar
one-dimensional systems with uniform source distributions
on the plane, asL → ∞ or k → 0. The examples are meant
to be illustrative, but the methods are general and can be ap-
plied equally to sine distributions.

The common features shared by the electrostatic, magne-
tostatic and electromagnetic systems studied in Sects. 2-4 are
successively: harmonic sources on a plane; two dimensional,
divergenceless, curlless, and therefore harmonic electrostatic
and magnetostatic fields; two dimensional, divergenceless,
traveling wave electromagnetic fields; the harmonicity of the
field is determined by the harmonicity of the source.

The static limit of the systems of Sect. 4 is obtained as
ω → 0. In such a limit, Helmholtz Eq. Eqs. (A.11) re-
duces to Laplace Eq. (A.3), andk2

3 = −k2
1 in Eq. (A.13),

so that their respective solutions Eq. (A.12)→ (A.4). Trav-
eling wave solutions are excluded and only evanescent wave
solutions can be constructed. Specifically, fork3 → (iπ/L),
Eqs. (62)-(63) reduce to Eqs. (35)-(36), while the electric
intensity field in Eq. (64) vanishes, reproducing the magne-
tostatic situation of Sec. 3. Similarly, the reader can obtain
the electrostatic limit of Eqs. (77)-(78), the electric intensity
field produced by the sine distributed charge of Eq. (69), and
the vanishing magnetic induction field, Eq. (79).

It can also be pointed out that the electrostatic, magne-
tostatic and electromagnetic fields of Sects. 2-4 were con-
structed directly as solutions of the respective Maxwell equa-
tions. The usual route of using the electrostatic, magnetic
vector, and scalar and vector potentials, respectively, has been
bypassed. Of course, such a route could also be followed.
From the route already covered in this work, it is also possi-
ble to identify the respective potentials:

φ(x, z ≷ 0) = 2πσ0
L

π
cos

πx

L
e±

πz
L (82)

φ(x ≷ 0, z) =
2πσ0

k
sin kx cosh kz (83)
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leading to the electrostatic fields of Sec. 2,

~A(x, z ≷ 0) = ĵ
2π

c
K0

L

π
cos

πx

L
e∓

πz
L (84)

~A(x ≷ 0, z) = ∓ĵ
2π

c
K0

1
k

sin kx cosh kz (85)

leading to the magnetostatic fields of Sec. 3, and

~A(x, z ≷ 0, t) = ĵ
2π

c
K0

i

k3
cos

πx

L
e±ik3z−iωt (86)

~A(x, z ≷ 0, t) = −i
2πc

ω2
k0

[
− îk3 cos

πx

L

± k̂
iπ

L
sin

πx

L

]
e±ik3z−iωt (87)

leading to the electromagnetic fields of Sec. 4. Notice the
continuity of all the potentials and one of their derivatives,
and the discontinuities of their other derivative, at the source
plane. The latter are in correspondence with the normal com-
ponents of the electric intensity field, Eq. (46), and the tan-
gential components of the magnetic induction field, Eq. (48).

A Appendix

The first order differential equations of electrostatics, Eqs. (1)
and (3), lead to Poisson’s equation by taking the curl of
Eq. (3) and using Eq. (1):

∇× (∇× ~E) = ∇(∇ · ~E)−∇2 ~E = 0 (A.1)

∴ ∇2 ~E = 4π∇ρ. (A.2)

For ρ = 0, Eq. (A.2) becomes the Laplace equation and~E
must be a harmonic function.

The solutions of Laplace’s equation in two dimensions,
needed in Sec. 2 and 3,

(
∂2

∂x2
+

∂2

∂z2

)
f(x, z) = 0 (A.3)

have the general separable form:

f(x, z) = (A cos kx + B sin kx)(ce−kz + Dekz) (A.4)

These forms determine the choices of harmonic distributions
of the sources on the plane, and also the corresponding elec-
trostatic and magnetostatic fields. Also notice that for a given
solutionf(x, z), its partial derivatives with respect tox and
to z are also harmonic functions.

The first order differential equations of magnetostatics,
Eqs. (23) and (25), also lead to Poisson’s equation for the

magnetic induction field, by taking the curl of Eq. (23) and
using Eq. (25):

∇× (∇× ~B) = ∇(∇ · ~B)−∇2 ~B =
4π

c
∇× ~J (A.5)

∴ ∇2 ~B = −4π

c
∇× ~J (A.6)

For ~J = 0, Eq. (A.11) becomes the Laplace equation and~B
must be a harmonic function.

The Maxwell curl equations (47) and (49) are coupled
first order differential equations, which can be decoupled by
taking the curl of each one of them, and using them once
more as well as Eqs. (45) and (51), with the end results that
both ~E and ~B satisfy Helmholtz’s equations:

∇× (∇× ~B) = ∇(∇ · ~B)−∇2 ~B

=
4π

c
∇× ~J − iω

c
∇× ~E

=
4π

c
∇× ~J +

ω2

c2
~B (A.7)

∴
(
∇2 +

ω2

c2

)
~B = −4π

c
∇× ~J (A.8)

∇× (∇× ~E) = ∇(∇ · ~E)−∇2 ~E

=
iω

c
∇× ~B

=
iω

c

(
4π

c
~J − iω

c
~E

)
(A.9)

∴
(
∇2 +

ω2

c2

)
~E = 4π∇ρ− iω4π

c2
~J (A.10)

For ρ = 0 and ~J = 0 Eqs. (A.8) and (A.10) become the
homogeneous Helmholtz equation.

The solutions of Helmoltz equation in two dimensions,
needed in Sect. 5,

(
∂2

∂x2
+

∂2

∂z2
+

ω2

c2

)
g(x, z) = 0 (A.11)

have the general separable form

g(x, z) = (A cos k1x + B sin k1x)

×(Ceik3z + De−ik3z) (A.12)

where

k2
1 + k2

3 =
ω2

c2
(A.13)

For a given solutiong(x, z), its partial derivatives with
respect tox andz are also solutions of Helmholtz’s equation.
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