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The static uniform electric charge distribution, the stationary and time-harmonically-varying uniform electric current distributions, on infinite
planes, are known to produce uniform electrostatic, uniform magnetostatic and plane wave electromagnetic fields around the respective
sources, since the introductory course of electricity and magnetism. This paper presents some natural extensions of these familiar systems
for harmonically distributed sources on the planes, which can be assimilated in the electromagnetic theory course.

Keywords: Harmonic sources in planes; electrostatic; magnetostatic and electromagnetic radiation fields.

Desde el curso introductorio de electricidad y magnetismo sdiariaee las distribuciones uniformes en planos infinitos, de caggérieh

eshtica y de corrientes ettricas estacionarias y variables amtamente en el tiempo, producen campos eleéttioss uniformes, campos
magnetositicos uniformes y campos electromatjnos en ondas planas en la vecindad de las respectivas fuentes. Este trabajo presenta
algunas extensiones naturales de esos sistemas familiares para fuentes distribdidesiauente sobre los planos, las cuales pueden ser
asimiladas en el curso de témelectromagética.

Descriptores: Fuentes arinicas en planos; campos electatigios; magnetoaticos y de radiadin electromagética.

PACS: 41.20.Cv, 41.20.Gz, 41.20.Jb

1. Introduction The rest of the article is organized as follows. Section 2
covers the electrostatic case for circular and hyperbolic co-

Some of the simplest electrostatic, magnetostatic and ele&ine charge distributions in one of the cartesian coordinates
tromagnetic field configurations and their sources, covered! the source plane. Section 3 covers the magnetostatic case
in the electricity and magnetism introductory course [1], arefor stationary transverse currents with circular and hyperbolic
briefly discussed in this paragraph in order to motivate thecosine distributions in one of the cartesian coordinates in the
study of some of their natural extensions to be developed igource plane. Section 4 covers the electromagnetic case for
the present work. The uniform electric intensity field associ-time-harmonically-varying, transverse and longitudinal cur-
ated with a static uniformly distributed electric charge on an'eénts with a cosine distribution in one of the cartesian coor-
infinite plane can be evaluated from Coulomb’s law and thedinates in the source plane. Section 5 consists of a discus-
superposition principle, or by a direct application of Gauss'ssion of the results for each specific situation, the connections
law. The uniform magnetic induction field associated withamong them, and some points of didactic interest. The Ap-
a stationary uniformly distributed electric current on an infi- Pendix contains some results on the Laplace and Helmholtz
nite plane can be evaluated from the field of a line of currenduations and their solutions, which are relevant for the con-
and the superposition principle, or by a direct application ofstruction of the fields in Secs. 2-4.

Ampere’s law. The plane wave electromagnetic field associ-

ated with a time-harmonically-varying uniformly distributed " . .
electric current in an infinitey plar)(e ?:an be e\)/aluated fromz' E_IeCtrOStatIC fields from hajrmonlca”y dis-
Maxwell's equations in the differential and boundary con-  tributed charges on an infinite plane

dition forms. The common feature of uniform distributions , o : .

of the sources on the respective planes is translated into t{&2Uss's law inits differential and boundary conditions forms,
uniform nature of the electrostatic and magnetostatic fields, V. F—dr )
and into the propagation in the directions perpendicular to the =T
plane of the plane wave electromagnetic fields. (Ey — Ey) -7 = 4dno )

The geometry and the distribution of the sources in the
systems discussed in the previous paragraph make the respestablishes the connections between the volume charge den-
tive problems become one-dimensional, and thereby amongjty p and the electric intensity field at any point in space,
the simplest and most didactic. This article presents somand between the surface charge densign a boundary sur-
natural extensions of these familiar situations, keeping théace and the components of the field normal to such a surface,
sources on infinite planes, but changing their distributiongespectively.
from uniform to harmonic, leading to exact and easy to con- The conservative nature of the electrostatic field is de-
struct electrostatic, magnetostatic and electromagnetic fieldscribed by the corresponding differential and boundary con-
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ditions forms: Finally, the discontinuity of the normal components,
= Eq. (3), defines their value in terms of the surface charge den-
VXxE=0 C) sity amplitude,

(By —E) xn=0 4) ES. = 2moy. (12)

expressing the curlless character of the electric intensity field, . . I
and the continuity of its tangential components at the bound- In conclusion, the harmaonic elgctrostanc field produced
ary surface, respectively. by the source of Eg. (5) takes the final forms:

For the static electric charges distributed harmonicallyon N AN
an infinite planep(7) = 0 for all points outside the plane. E(z,z > 0) = 2mog (l S —— k cos L>e ©(13)
Then the electric intensity field can be constructed as a diver-
genceless, Eq. (1), and curlless, Eq. (3), field, with discon- 7, - < 0) = 270, (Z sin =X _ k cos ”)eﬁ (14)
tinuous normal components, Eq. (2), and continuous tangen- L L
tial components, Eq. (4), at the source plane. As shown i
the Appendix, Eq. (1) and (3), are equivalent to the Laplac
equation in the situation under discussion, and therefore the

electric intensity field must be a harmonic function deter-the static charge on the = 0 plane is chosen to have a

g.z. Hyperbolic cosine distribution of charge in the y-z
plane

mined by the harmonicity of the source. hyperbolic cosine distribution
2.1. Circular cosine distribution of charge in the x-y o(z =0,y,2) = ogcoshkz (15)
plane

along the z-axis, and independent of theoordinate. The
The static charge on the= 0 plane is assumed to have the reader can recognize that such a distribution corresponds to
distribution defined by its surface charge density the choiceC = D in Eqg. (A.4). The same arguments used in
Sect. 2.1 lead to propose the expressions for the field in front

T
o(z,y,2=0) = oo cos I (5) " and in back of the source plane:

which is cosenoidal with a perid2lL in the z direction, and = _apnf S f .
independent of thg coordinate. The latter makes the prob- Elw 20,2) = iBy, cos ku cosh kz + kE, sin ka Smh(lfg)
lem become two dimensional. The electrostatic field depends

only on thez and z coordinates, and its components must E(z < 0, z) = iEY, cos kx cosh kz + kEY, sin kz sinh kz
be harmonic functions of the types of Eq. (A.4). The har- 17)
monicity of the source, Eq. (5), selects the value- 7/L

in Eq. (A.4). It is necessary to write the electrostatic field
E(z, z) distinguishing between its forms above and below
the source plane: El = El, (18)

Again, the divergenceless condition on the electric field
leads to the restrictions on the amplitudes

E(z,z>0) = (iEgl sin % + kEZ, cos 775) e”T (6) Eb, = E}.. (19)

. N T . 12\ ne These conditions, in turn, ensure that the field is curlless.

E(z,2<0) = <ZE8T sin — + kEj, cos L> e, (7)  The tangential components of the field vanish at the source
plane, guaranteeing that Eq. (4) is satisfied. The discontinu-

ensuring their correct asymptotic behavior for— oo and ity of the normal components, Eq. (2), leads to

z — —oo, respectively. The divergenceless condition of

Eqg. (1) translates into the restrictions on the amplitudes in E(J); = —E}, = 2m0y (20)

Egs. (6) and (7):
as. (©) % Therefore, the electrostatic field is given by the final ex-

Eg, = Eg. (8)  pression:

—

and E(x >0,2) =27m0g

b b . N

Eow = ~Eos- ©) X (z cos kxz cosh kz + k sin kx sinh kz) (21)
The reader can check that the curlless condition, Eq. (3), _

is also satisfied. Then the continuity of the tangential compo- E(z < 0, 2) = 2moy

nents, Eq. (4), requires that

X (—i cos kx cosh kz — k sin kx sinh kz) . (22)
Eg, = Eg, (10)

b . This section can be concluded by noticing that the limit
- By, = —Eq.. (11)  situations of both alternative harmonic sources, Eq.(5) for
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L — oo, and Eq. (15) fork — oo, correspond to the fa- chosen as
miliar situation of the uniformly charged plane, for which the
electrostatic field is also uniform as expressed by the limits 7 o, zzo)—(Eng cos % 4 kBg, sin ”)67 (28)
of Egs. (13)-(14) and (21)-(22), respectively. L L

. . B z,y, 2<0)=(1Bg cos@ + kBR. sin m)eﬂf 29
3. Magnetostatic fields from stationary cur- (4, 2<0) ( 00 L =" L (29)

rents harmonically distributed on an infi-

i so that the first one vanishes asymptoticallygas> oo, and
nite plane

the second one does likewise for~ —oco. The vanishing of

Ampére’s law in its differential and boundary condition the respective divergences requires that

forms,
B(()la; = _Bgz (30)
o 41 -
VxB=—1], 23
x c (23) and
(By— By) xin= TR (24)
2 1) xXn= -, B}, = B}, (31)

give the connections between the surface current der:fsity These conditions also guarantee that the curls of Egs. (28)

and the magnetic induction field at any pointin space, and anq (29) vanish. The continuity of the normal components of
between the linear current densiy on a boundary surface ihe field at the source plane, Eq. (26), requires that
and the components of the field tangential to the surface, re-

spectively. BS, = B} (32)
The non-existence of magnetic monopoles is expressed ? ?

by Gauss’s law for the magnetic induction field in its differ- ;4

ential and boundary condition forms,

- Bb, = —Bg, (33)

V-B (25)
A

0
0, (26) Then the discontinuity of the tangential components of
the field at the source plane determines the value of the un-

reflecting the solenoidal character of the field, and the contiknown amplitude in terms of the current amplitude:
nuity of its normal components at the boundary surface, re-
spectively. o 27

For the stationary electric currents distributed harmoni- Boo =~ Ko (34)
cally on an infinite plane/(7) = 0 for all points outside the
plane. Therefore the magnetic induction field must be curl-
less, Eqg. (23), and solenoidal, Eq. (25), just as it happened 9
with the electrostatic field in the previous section. However, B(z,z > 0) = K, (Z cos ° _hsin m) e~ T, (35)
Eg. (24) shows that the magnetic induction field must have ¢ L L
discontinuous tangential components, while its normal com- _, o7 . T . . Tr\ ==
ponents are continuous, Eq. (26). Nevertheless, the magneticB(xa z<0) = ?Ko ( —icos — - k sin L) e, (36)
induction field must also be a harmonic function determined
by the harmonicity of the source. describing the magnetostatic field produced by the harmonic
current of Eq. (27)

(B; — By) -

Consequently, Egs. (28) and (29) take the final forms

3.1. Circular distribution of current in the x — y plane

A stationary current in thg direction and cosenoidally dis- 3.2. Hyperbolic cosine distribution of current in the
tributed in thex coordinate on the = 0 plane, y — z plane

K(z,y,z=0) = jK,cos E, (27)  The stationary current on the= 0 plane is chosen in thg
L direction and distributed as a hyperbolic cosine inttoeor-

has a period2L and is independent of thg coordinate. dinate, so that its linear current density is written as

The magnetic induction field associated with such a source

depends on the and = coordinates, is divergenceless and K(x=0,2) = jKocosh kz. (37)
curlless, and consequently its components must be harmonic
functions of the type of Eq. (A.4) witk = x/L. The ex- The associated magnetic induction field must satisfy the

pressions of the field above and below the source plane aedndition stated and applied in the previous subsections.
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Therefore, its forms in the front and back of the source plandields,e~** with frequencyw

are .
. ; V- E =A4mp, (45)
B(x>0,z2) = (ing sin kx sinh kz . .
(EQ—El) -n =4rno (46)
+ l%B({Z cos kx cosh kz), (38) V x B = 4ij_ Zﬁﬁ7 (47)
(& C

>3 “ b . . = = N 4’/T —
B(xz <0,z) = | 1B}, sinkx sinh kz (Ba— By) xn= ?K (48)
. VxB=“5 49
+ kBY, cos kx cosh k;z) (39) x B =-"F, (49)
The vanishing of their divergences, Eq. (25), demands (B2 — Ey) x =0 (50)
that V-B=0, (51)
B{, = -Bj, (40) (Ba—By) -2 =0 (52)

and .
correspond to the electric Gauss’s law, the AmgMaxwell

BSI =B} (41) law, Faraday’s law, and the magnetic Gauss’s law, respec-
N tively. Notice that the boundary condition forms coincide
These conditions also ensure that the curls of Eqs. (38)th their counterparts of Sects. 2 and 3. For sources har-
and (39) vanish. The normal components of this field Va”'sr?nonically distributed on an infinite plang() = 0 and
a}t the source plane,_so that Eq. (26)_ is automatically satisj(F) — 0 for all points outside such a plane. Now, the
fied. The discontinuity of the tangential components of theg|ectric intensity and the magnetic induction fields are both
field at the source plane, Eq. (24), determines the connectiofy|engpidal, Egs. (45) and (51), but the curl of one is pro-
between the field unknown amplitude and the linear Curre”bortional to the other, Egs. (47) and (49). The latter are
amplitude, coupled first order differential equations, which can be de-
§_2m coupled, as shown in the Appendix, becoming Helmholtz’s
By. = _?KO‘ (42) equations. Consequently and B must be constructed as
solenoidal fields, satisfying Helmholtz equation and the curl
equations (47) and (49), as well as the boundary conditions
of Egs. (46)-(52). The components of the electric and mag-
g(x >0,2) = Q—WKO (Z sin k2 sinh ks netic fields are constru_cted as Fhe appr.opriate combinations
of the Helmholtz equation solutions defined by Egs. (A.12)
and (A.13).

Therefore, the final explicit forms of the magnetostatic
field become

— k cos kx cosh kz> (43)

o 4.1. Cosine distribution of tranverse currentinthezx — y
B(x<0,z2) = K0< —isin kx sinh kz plane
C

. The current is chosen to be in the= 0 plane, in the direc-
+ k cos kx cosh kz) (44)  tion of they axis, and varying as a cosine in theoordinate,

. . . _ so that its linear density
As in the electrostatic case of the previous section, the

limit situations of the current distributions of Eq. (27) for % _ _ 3 ML _jwt
L — oo, and of Eq. (37) fork — 0, correspond to the fa- K(wy,z=0,1) = jKo cos 7=e (53)
miliar case of the plane with a uniformly distributed current
producing a uniform magnetic induction field, given by the
respective limits of Egs. (35) - (36) and (43)-(44).

has the same space distribution as in Sect. 3A, Eq. (27),
but they are different in their time (in)dependence. The time
harmonic variation of the source is inherited by the fields, as
already incorporated in Egs. (47) and (49), and the harmonic
4. Electromagnetic  fields from  time- space variation of the source selekts= 7 /L in the solu-

harmonically-varying currents distributed tions of Helmholtz equations, (A.12) and (A.13). The last

harmonically on an infinite plane equation determines the possible values-of
Maxwell’s equations in their differential and boundary con- B2 — w? 7 >0
ditions forms, for time-harmonically-varying sources and ¢z L2
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which determine the character of the solutions of Eq. (A.12) Notice that this electric intensity field is divergenceless,
as traveling or evanescent waves, respectively. Here we coieq. (45), has vanishing normal components at the source
centrate on the study of the traveling waves. The invariancelane, Eq. (46), and its tangential components at the source
of the source under displacements in thdirection is also  plane are continuous, Eg. (50). The reader can also check
inherited by the electric and magnetic fields. From the exthat its curl reproduces Eqgs. (62) and (63), by using Eq. (49).
perience of Sect. 3A we start by proposing the expressions The time averaged Poynting vector associated with the
of the magnetic induction field above and below the sourceslectromagnetic field is directly evaluated for both regions

plane: above and below the source plane
2
= 2 - . ik = 27 w [+ 4w mx L
B(z,2>0)=|( 1B, coskix + kB{, sink x) eh:*  (5B) S ¢ —K T i
( ) ( 0 0 1 (S)+ = % ) T i 57 cos — sin T
B(z, 2<0)= (%ng cos ki + kBS, sin kw) e~z (56) +Ecos? 71'Lx] (65)

as the counterparts of Egs. (28)-(29). Notice the common  The power radiated by each rectangle of the source, with
x dependence and the difference in the traveling and decayimensionsAz — 21 andAy = 1, is also evaluated:

ing exponential functions in the-coordinate, between the

respective fields. The vanishing of the divergences of both !
expressions, Eq. (51), leads to the restrictions on the respec- p= //
tive amplitudes: 0 0

Ha _ pa 2
B, k1 = By, iks (57) - < (%K,J) “or. (66)

Bb ki = —B?iks. (58)
Itis also recognized that the imaginary terms in Egs. (62),
The continuity of the normal components of the magnetic(63) and (65) describe induction effects.
field at the source plane, Eg. (52), requires that
4.2. Cosine distribution of longitudinal current in the

B§, = By.. (59) z — y plane
_ Iffollows from Eq. (57)-(59) that the amplitudes in the  The current in the = 0 plane is chosen to be in thedirec-
direction are connected as tion, and varying as a cosine in thecoordinate, so that its

linear density is given b

S A T
Their value is determined by the discontinuity of the tan- K(@,y,z=0) =K cos L (67)

gential components of the field at the source plane, Eq. (48), The important difference between the transverse current

as of the previous subsection and the longitudinal current under
a 27 consideration resides in their vanishing and non-vanishing di-
By, = — Ko (61) .
c vergences, respectively.

checking along the way the anticipated selection of the value The latter translates into the presence of a surface charge
of k, by the harmonicity of the source distribution. distribution as determined from the continuity equation

Consequently, the final forms of Eqgs. (55)- (56) become .
V- K+ 9o _ =0, (68)
B' >0 2 k T ]; s iksz (62) 8t
(@, 220)= e ZCOST ksL f € which in the present situation takes the form:
s 2 A T ) s T _;
< e -9 —_— ’ = = — — g1 —_— 7%’)t.
B(z,2<0) . k:0< veos o(x,y,z=0) wKOL sin —e (69)

From the experiences of Sect. 2, the expressions for the
electric intensity field above and below the source plane are
written as

A T T
— k— sin = —iksz 63
Fal S0 L> (63)

By taking the curl of Egs. (61) and (62), and using
Eq. (47), the other component of the electromagnetic field £, » > 0)= (ZEOI cos 2% 4 B2, sin x)eum (70)
is evaluated as L L
27 s W :i:zksz

0):——[(0]—005 e

kac L (64) E(x, z2<0)= (zEOx cos —- g kEY, sin 7;) —iksz (71)
3C

E(z,z

a\%

Rev. Mex. 5. 50 (2) (2004) 132-139



ELECTROSTATIC, MAGNETOSTATIC AND ELECTROMAGNETIC FIELDS FOR HARMONICALLY DISTRIBUTED... 137

The divergenceless of these fields, Eq. (45), requires that The limit situations when, — oo for the sources in
Eq. (53) and (66) correspond to the familiar uniform cur-

a ™ a . . . .
Eo. 7 = Eo-tks (72)  rent distributions on the plane. The corresponding plane
x wave electromagnetic fields are also obtained as the limits
Eé’xz = —Ey.iks. (73)  of Egs. (62)- (64) and (77)- (79), respectively.

Th Uity of i il e 50 Although, the solutions studied in this section correspond
€ continuity of its tangential components, Eqg. ( )'to traveling waves, they can be easily converted into evanes-

leads to cent wave solutions through analytic continuation. This is ac-
Ea — Eb (74) complished by the substitution &f by iks, in Egs. (55)- (56)
0r 0x and (70)- (71), and subsequent ones, going from positive to
As a consequence of Egs, (72)- (74), negative values of? in Eq. Egs. (54).
Ej, = —Ej, (75)

Then the discontinuity of its normal components, Eq. (46),2- Discussion
determines the value of the corresponding amplitude,
The cosine distributions of the sources of the electro-

2mim K, (76)  static, magnetostatic and electromagnetic fields constructed

a __ —
Ef, =21 09 =

wlL in Sects. 2-4, respectively, were chosen to ensure that the cor-
using the surface charge amplitude of Eq. (69), and corrobaresponding two-dimensional systems reduce to the familiar
rating the choice ok; = w/L. one-dimensional systems with uniform source distributions
Correspondingly, the final forms of Egs. (70) and (71)on the plane, a& — oo or k — 0. The examples are meant
become to be illustrative, but the methods are general and can be ap-
- o . o plied equally to sine distributions.
E(z,z2>0) = UKO [ — iks cos T The common features shared by the electrostatic, magne-

tostatic and electromagnetic systems studied in Sects. 2-4 are

AT TX | g, successively: harmonic sources on a plane; two dimensional,
+ k—sin — |e (77) . X .
L L divergenceless, curlless, and therefore harmonic electrostatic
o - and magnetostatic fields; two dimensional, divergenceless,
E(z,z<0)=—Kj [ — ik cos T traveling wave electromagnetic fields; the harmonicity of the
w field is determined by the harmonicity of the source.
B ]%ij sin T o—iksz (78) The static limit of the systems of Sect. 4 is obtained as
L L w — 0. In such a limit, Helmholtz Eq. Egs. (A.11) re-

. duces to Laplace Eq. (A.3), and = —k? in Eq. (A.13),
The_lr _curls I_ead to the ot_her component of the electromag-so that their respective solutions Eq. (A.12)(A.4). Trav-
netic field, via Eq. (49), with the result . '

eling wave solutions are excluded and only evanescent wave
solutions can be constructed. Specifically, fgr— (ix/L),
Egs. (62)-(63) reduce to Egs. (35)-(36), while the electric

It is obvious that this magnetic induction field is diver- intensity field in Eq. (64) vanishes, reproducing the magne-

genceless, Eq. (51), its components normal to the SourCtﬁstatic situation of Sec. 3. Similarly, the reader can obtain
plane vani,sh, Eq. (525' and its tangential components are dii%;e electrostatic limit of Egs. (77)-(78), the electric intensity

t

—

~2 )
B(z,z20) = :Fj—WKO cos Lllxeﬂk?’z (79)
c

continuous, Eq. (48), and consistent with the current sourc eld prqdu_ced by the .Sir.]e dist_ribut_ed charge of Eq. (69), and
of Eq. (67). Again, the reader can check that its curl repro- e vanishing magnetic induction field, Eq. (79).

duces Egs. (77)- (78), via Eq. (47). It can also be pointed out that the electrostatic, magne-

Now the time averaged Poynting vector becomes tostatic and electromagnetic fields of Sects. 2-4 were con-

structed directly as solutions of the respective Maxwell equa-

gy, - ¢ 2r 23 AT X g tions. The usual route of using the electrostatic, magnetic
(S)e = gr\ ¢ 0 T T % T vector, and scalar and vector potentials, respectively, has been

bypassed. Of course, such a route could also be followed.
:|:i€]€3 cos? m] (80) From the route already covered in this work, it is also possi-
L ble to identify the respective potentials:
Correspondingly, the power radiated by each periodic

rectangle of the source plane is given by (x,z = 0) = 27700£ cos X AT (82)
c (2w % ksc o 9 "
= 73 ™o .

P=3gr (CKO) w 2L (81) dlx=0,2) = p O sin k cosh kz (83)
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leading to the electrostatic fields of Sec. 2, magnetic induction field, by taking the curl of Eq. (23) and
using Eq. (25):
(84) - - 9= 4w -
x(VxB)=V(V-B)-V B:?VXJ (A.5)
- N 1
Az 20,2) = :Fj2—7rK07 sin kx cosh kz (85) . An .
c 'k L VPB=-Tvux] (A.6)
C
leading to the magnetostatic fields of Sec. 3, and . .
ForJ = 0, Eq. (A.11) becomes the Laplace equation &hd

Az, 2 2 0,1) = jQ—WKO% cos T eizkgz wt (86)  Must be a harmonic function.

ks The Maxwell curl equations (47) and (49) are coupled
. e . . first order differential equations, which can be decoupled by
Az, 2 2 0,t) = —lwfko { — tk3 cos T taking the curl of each one of them, and using them once

more as well as Egs. (45) and (51), with the end results that

+ k— sin

AT T :|€:i:zk3z “t (g7) both £ and B satisfy Helmholtz’s equations:
L

Vx(VxB)=V(V-B)-VB
leading to the electromagnetic fields of Sec. 4. Notice the A iw .
continuity of all the potentials and one of their derivatives, =—_—_VxJ—-—=-VxE
and the discontinuities of their other derivative, at the source ¢ ¢
plane. The latter are in correspondence with the normal com-
ponents of the electric intensity field, Eq. (46), and the tan-

4 LW
~IVxJ+ZB (A7)
C C

gential components of the magnetic induction field, Eq. (48). D2\ - A .
<v2 + 2)3 = VxJ (A.8)
C C
A Appendix V x (Vx E)=V(V-E) - VE
The first order differential equations of electrostatics, Egs. (1) — L‘*’v « B

and (3), lead to Poisson’s equation by taking the curl of

Eq. (3) and using Eq. (1): <4ﬂf— E) (A.9)
C

c

Vx(VxE)=V(V-E)-VE=0 (A1)
- : V2 S\ B arv, - WAy A.10
V2E = 4nVp. (A.2) = t g |JE=4rVp——3 (A.10)
Forp = 0, Eq. (A.2) becomes the Laplace equation dnd Forp =0 andJ = 0 Egs. (A.8) and (A.10) become the
must be a harmonic function. homogeneous Helmholtz equation.
The solutions of Laplace’s equation in two dimensions, ~ The solutions of Helmoltz equation in two dimensions,
needed in Sec. 2 and 3, needed in Sect. 5,
P o KA _

have the general separable form: have the general separable form

g(x,z) = (Acoskix + Bsink;x)
x (Ce*s* 4 De~k32) (A.12)

f(z,2) = (Acoskx 4+ Bsinkz)(ce " + De*)  (A.4)

These forms determine the choices of harmonic distributions
of the sources on the plane, and also the corresponding elesgthere
trostatic and magnetostatic fields. Also notice that for a given 9
solution f(x, z), its partial derivatives with respect toand k2 + k3 =
to z are also harmonic functions.

The first order differential equations of magnetostatics, For a given solutiory(z, z), its partial derivatives with
Egs. (23) and (25), also lead to Poisson’s equation for theespect tar andz are also solutions of Helmholtz's equation.

= (A.13)
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