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We argue that the chirotope concept of oriented matroid theory may be found in different scenarios of physics, including classical mechal
guantum mechanics, gauge field thegrgranes formalism, two time physics and Matrix theory. Our observations may motivate the interes
of possible applications of matroid theory in physics.
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Argumentamos que el concepto de chirotope de ldidede matroides orientados se puede encontrar en diferentes escenaiisage f
incluyendo meanica chsica, megnica c@ntica, tedias de campos normados, el formalismagpderanes, fisica de dos tiempos y la téar
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1. Introduction can prepare the mathematical tools which may facilitate its
connection with different scenarios of physics. In particular,
Since Whitney’s work [1], the concept of matroid has been ofwe introduce the definition of an oriented matroid in terms of
much interest to a large number of mathematicians, speciallghirotopes (see Ref. 6, Sec. 3.5). Roughly speaking a chiro-
those working in combinatorial. Technically, this interest istope is a completely antisymmetric object that takes values in
perhaps due to the fact that matroid theory [2] provides a gerthe se{—1, 0, 1}. It has been shown in Ref. 12 that the com-
eralization of both matrix theory and graph theory. However pletely antisymmetric Levi-Civita symbel* ¢ provides us
at some deeply level, it seems that matroid theory may appedyith a particular example of a chirotope. Motivated by this
interesting to mathematicians, among other reasons, becaug@servation, and considering that physicists are more or less
its duality properties. In fact, one of the attractive featuresfamiliar with the symbok* ‘¢, we develop a brief introduc-
of a matroid theory is that every matroid has an associatetion to oriented matroid theory by using the argument that
dual matroid. This duality characteristic refers to any indi-the chirotope concept is in fact a generalization of the sym-
vidual matroid, but matroid theory states stronger theorem aol £*-~**. We hope that with such an introduction some
the level of axiom systems and their consequent theorem@hysicists become interested in the subject.
namely if there is an statement in the matroid theory that has |t is worth mentioning that the concept of matroid has al-
been proved true, then also its dual is true [3]. These duakeady been connected with Chern-Simons theory [13], string
ity propositions play a such on important role that matroidtheory [14], p-branes and Matrix theory [12]. Moreover, a
theory may even be called the duality theory. proposed new theory called gravitoid [15,16] has emerged
It turns out that at present, the original formalism of from the connection between oriented matroid theory, grav-
matroid theory has been generalized in different fronts, inity, and supergravity. Except for the link between matroids,
cluding biased matroids [4], and greedoids [5]. However, itp-branes and Matrix theory which are briefly reviewed here,
seems that one of the most natural extensions is oriented mal these applications of the matroid concept are not ap-
troid theory [6]. In turn, the matroid bundle structure [7-11] proached in this work. Instead, we add new connections such
emerges as a natural extension of oriented matroid theorps the identification of chirotopes with the angular momen-
This final extension provides a very good example of the obtum in both classical and quantum mechanics scenarios. We
servation that two fundamental mathematical subjects whicllso remark the fundamental importance that chirotope con-
have been developed independently, are, sooner or laterept may have in two time physics [17], in electromagnetism,
fused in just one subject; in this case, fiber bundle theory beand Yang-Mills physics.
comes fused with matroid theory leading to matroid bundle | a sense, all these connections are similar to the identi-

structure. fication of tensors in different scenarios of physics. But, of
The central idea of the present work is to call the atten-course, although interesting these identifications still appear
tion of the physicists community about the possible impor-more important to the fact that tensor analysis was eventually
tance that matroid theory may have in different scenarios ofised as a the mathematical basis of a fundamental theory:
physics. For this purpose in Sec. 2 we develop a brief ingeneral relativity. In this case the guide was a new symme-
troduction of oriented matroid theory in such a way that wetry provided by the equivalence principle, namely general co-
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variance. Therefore, the hope is that all these connections dérm, we can say that

matroids with different concepts of physics may eventually o

help to identify a new fundamental theory in which oriented gttt e {~1,0,1}. (3
matroid theory plays a basic role. But, for this to be possible

we need a new symmetry as a guide. Our conjecture is th&in important property of** ¢ is that it has exactly the same
such a fundamental theory is M-theory and that the neede@umber of indices as the dimensidmf the space.

guide symmetry is duality. As it is known, M-theory [18,20]  Another crucial property of the symbel -« is that the
was suggested by various duality symmetries in stringgand Products”¢c71--J4 can be written in terms of a product of
brane theory. One of the interesting aspects is that in orientelfie Kronecker deltas”’ = diag(1,...,1). Specifically, we
matroid theory, duality is also of fundamental importance adlave

ordinary matroid theory (see Ref. [6] Sec. 3.4). In fact, there

is also a theorem that establishes that every oriented matroid €
has associated dual oriented matroid. This is of vital impor-
tance for our conjecture because if we write an action in term
of a given oriented matroid, we automatically assure an ac—éil___idjl,,,jd
tion for the dual oriented matroid, and as a consequence, the

1eld gJ1eJd — 6i1~~~7;d’j1~~.jd7 (4)

gvh erediiadi--Jd is the so called delta generalized symbol;

corresponding partition function must have a manifest dual +1if 4 ...14 is an even permutation gf . . . j4,
symmetry, as seems to be required by M-theory. ={ —1ifi,...iqis an odd permutation of, ... js, (5)
By taking this observation as motivation in this article, 0 otherwise

we put special emphasis in the chirotope concept identifying

it in various scenarios of physics. In Sec. 2, the concept of\n example may help to understand the--*¢-1--i¢ symbol.
oriented matroid is introduced via the chirotope concept. InPAssume thatl is equal2. Then we have**2 and

Sec. 3, the identification of the angular momentum with the
chirotope concept, in both classical and quantum mechan-
ics, is made. In Sec. 4, the connection between chirotopes _ ) )
andp-branes is briefly reviewed. In Sec. 5, we also review From Eq. (4), it follows the antisymmetrized square
briefly the connection between Matrix theory and matroids Pracket property
In Sec. 6, we make some comments about the importance of

the chirotope concept in two time physics. Finally in Sec. 7,

we make some final remarks explaining a possible conne

A ) : =X i16g.1: i [i142.i3] j
tion between the chirotope concept with eIectromagnet|srié\g?c.rr]ifja:)I that for any tensdr™*=*, the objecty+**1 is
and Yang-Mills. : y

gitia iz — giti2,jije — §i1.01 §i2,02 _ §iif2 §i2.01 (6)

ghrliagindal = (. 7

V[ili2‘i3] — Bi(vlllz RCRNES vACIE RN vACTIRG

2. Oriented matroid theory for physicists: a

brief introduction LA A A
with obvious generalization to any dimension. The result (7)

The idea of this section is to give a brief introduction to the . :
. . . ; comes from the fact that any complete antisymmetric ten-
concept of oriented matroid. But instead of following step by
or, with more thani indices must vanish. Indeed, it can

step the traditional mathematical method presented in most
P P ?)e shown that any completely antisymmetric tenBér -

teaching books (see [6] and Refs. there in) of the subjethh r > d must vanish, while for — d. Fii» must be

we shall follow a different route based essentially in tensor
y proportional toe?-%, In other words, up to a factor, the

analysis. symbols®-- is the largest completely antisymmetric tensor
Let us start introducing the completely antisymmetric . .
symbol that one can have i#h dimensions.

Now, we would like to relate the symbef: i with the
gitia 1) chirotope concept of oriented matroid theory. For this pur-
pose, we ask ourselves whether it is possible to have the

which is, more or less, a familiar object in physics. (Here theanalogue of the symbet- for r < d. There is not any

indicesiy, ..., ig run from1 to d). This is a rankd tensor ~ Problem for having completely antisymmetric tensbts -
which values are-1 or —1 depending of even or odd permu- for 7 < d, why then not to consider the analogue=of--i+
tations of for » < d? Let us denote by~ with r < d, this as-
sumed analogue afi1-%. What propertles should we re-
gl2d (2)  quire for the objectrt#r? According to our above discus-

o sion, one may say that' is determined by the proper-
respectively. Moreoverg™ ' takes the value) unless ties (3) and (7). Therefore, we require exactly similar proper-
i1...iq are all different. In a more abstract and compactties for g%, namelys™ i~ is completely antisymmetric
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under interchange of any pair of indices and satisfies the two Let us try to understand the expression (10) in terms

conditions, of a family-set. First note that because the symisol ¢~
o makes sense only in—dimensions the indices . . . i, com-
ot e {-1,0,1} (8)  bination in Xi1--ir corresponds to-—elements subsets of
E = {1,...,d}. This enables to define the family of all
and possibler—elements subsets @f.
irenlir g dr] = 9 An example may help to understand our observations.
g 7 = ) Consider the object
A solution for (9) is provided by S (19)
Bt = et treg g, (10)  we establish that
wherev! is anyr x d matrix over some field”. Other way ijeE=1{1,23) (20)

to write Eq. (10) is
Assume that

Yt = det(v™ ... v'"). (11)
N T = %7, 21
One may prove that (10) implies (9) as follows. Assum- (21)
ing (10), we get that is ©% is an antisymmetric second rank tensor This
o , o . means that the only nonvanishing componentséf are
211.4.[17.231...]7.] _ Eal“'arsbl"'b”l]“ 'U[“'Ujl ,Ujv] 12 13 23 .
ar**Var byt Vb, B, andX=°. From these nonvanishing components of
_cnlunchinblyis il (1) S, we may propose the family-set
But from Eqg. (7), we know that B={{1,2},{1,3},{2,3}}. (22)
car-largbibe] _ (13) Further, suppose we associate to each valiaaivo dimen-
’ sional vectorv(i). This means that the sét can be written
and therefore, we find as
as required. This process can be summarizing by means of the transfor-
Sincedet(v ...v'") can be positive, negative, or zero Mation
we may have a tensef' i satisfying both Egs. (3) and (7) _ ; o4
by setting = Vg, (24)
g — gign¥yiin (15) Wl_t_h. a€ {1,'2}. We can connect’, with an explicit form of
3 if we write
Observe that ifr = d, and v is the identity, then b
i1 oviq  pin i i1enin ¥ = el (25)
oh-ta=gh-td Therefore the tensar' = is a more gen- a’b

eral object tham®--i,

Let us now analyze our results from other perspective
First, instead of saying that the indicés. .., run from1
to d, we shall say that the indices. . . i4 take values in the

The previous considerations proof the possible existence
of an object such as® . In the process of proposing
the objects™ %, we have introduced the séf and the
r—element subset8. It turns out that the paifE, B) plays

setf = {1,...,d}.In other words we set an essential role in the definition of a matroid. But before we
ieig e {1, d). (16) formally deflqe a matro.|d, we would I|I§e to rr_1ake one fur-
ther observation. For this purpose we first notice that Eq. (9)
Now, suppose that to each element Bfwe associate a mMPplies
r—dimensional vectoyv. In other word, we assume the map r
‘ it gdtedr gdatzir g1 Ja—1-i1jat1.dr (26)
i—v(i) =V a7 ;
We shall write the vectov’ asvi, witha € {1,...,7}. With  Therefore, ifoi-irgi1-ir £ 0, the expression (26) means
this notation the map (17) becomes that there existan € {1,2,...,r} such that
i — Ué- (18) giir gdiedr _ gdat2eie gd1-Ja—1-i1Ja 41 Jr (27)
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This proves that Eq. (9) implies Eq. (27) but the converse isupergravity. However, it appears intriguing that in spite

not true. Therefore, the expression (27) defines an object th#éthese interesting properties @t this matroid is not ori-

it is more general than one determined by (9). Let us denotentable.

this more general object by'*-i~. We are ready to formally It can be shown that all bases have the same number of el-

define an oriented matroid (see Ref. 6, Sec. 3.5). ements. The number of elements of a basis is called rank, and
Letr > 1 be an integer, and lef be a finite set (ground we shall denote it by. Thus, the rank of an oriented matroid

set). An oriented matroid\ of rank r is the pair(E, x) is the rank of its underlying matroid.

wherey is a mapping (called chirotopg): £ — {—1,0,1} One of the simplest, but perhaps one of the most im-
which satisfies the following three properties: portant ordinary matroids is the so called uniform matroid
denoted asl, 4, and defined by the paifE, B), where
1) x is notidentically zero E =1{1,...,d}, andB is the collection ofr—element sub-

sets ofE, withr < d.

2) x is completely antisymmetric. With these definitions at hand we can now return to

3) foralliy,...,ir, j1,...,jr € E such that the objects’% and reanalyze i'; in terms of the oriented
matroid concept. The tensef!*? has an associated set
Xty dredr 2, (28) E={1,2,...,d}. Itis not difficult to see that in this case
B is given by{{1,2,...,d}}. This means that the only ba-
There exists an such that sis inB is E itself. Further since™ % satisfies the prop-
erty (7) must also satisfy the condition (29), and therefore we
Yy e dr = ydatzeiry JiJa—1Gijatiegr (29) have discovered that' < is a chirotope, with underlying
matroidU, 4. Thus, our original question whether is it pos-
Let 5 be the set of —elements subsets &f such that sible to have the analogue of the symbbt- for » < d is
o equivalent to ask wether there exist chirotopes-fer d, and
X" #0, oriented matroid theory give us an affirmative answer. An

objecty i satisfying the definition of oriented matroid is
a chirotope that, in fact, generalizes the symddot-#.
A realization of M is a mappingv : E — R" such that

for iy,...,i. € E. Then (29) implies that if, € B, there
existj, € B’ € BsuchthatB—i,)Uj, € B. Thisimportant
property of the elements & defines an ordinary matroid on
E (see Ref. 2, Sec. 1.2). Xil‘“ir s gt — signzil"‘ir7 (30)

Formally, a matroid\/ is a pair(E, B), whereE is a non-
empty finite set, and is a non-empty collection of subsets L = :
of E (called bases) satisfying the following properties: convenience we shall call the symhol:-*~ prechirotope

(B i) no basis properly contains another basis: .Reallzablhty is a very important ;ubject m_onented ma--

(B i) if B; and B, are bases and ifis any element of troid theory an'd deserves to be dlscgssed in some detail.
By, then there is an elementof B, with the property that _However_, in this paper we are more _mterested in a rough
(B, — {b}) U {g} is also a basis. mtro_ducuon to the subject, and for this reason we refer to

the interested redear to Chap. 8 of Ref. 6, where a whole

our considerations every oriented matroid has an asso- discussion of the subject is given. Nevertheless, we need to

ciated underlying matroid/. However the converse is not Make some important remarks. First of all, it turns out that
true, that is, not every ordinary matrald has an associated not all oriented matroids are ree_lllzable. I_n fact, l_t has been
oriented matroid\. In a sense, this can be understood ob-shown that the smallest non-ralizable uniform oriented ma-
serving that Eq. (29) not necessarily implies condition (9). IntT0ids have thér, d)-parameterg3, 9) and(4, 8). It is worth
other words, the condition (29) is less restrictive than (9). ItTentioning that given a uniform matroid. , the orientabil-

is said that an ordinary matroif is orientable if there is an 1Y IS not unique. For instance, there are precisely 2628 (re-
oriented matroidM with an underlying matroid/. There orientations classes of) uniform= 4 oriented matroids with

are many examples of non-oriented matroids, perhaps one gf= 8. Further, precisely 24 of these oriented matroids are

the most interesting is the so called Fano matrbid(see ~ Non-realizables. _ _
Ref. 6, Sec. 6.6). This is a matroid defined on the ground set /A rank preserving weak map conceptis another important
notion in oriented matroid theory. This is a map between two

E={1,2,3,4,5,6,7}, oriented matroidg\1; and M on the same ground s&tand
r1 = ro With the property that every basis &f(5 is a basis

whose bases are all those subsetg @fith three elements ex- of M;. There is an important theorem that establishes that
ceptf1={1,2,3}, fo={5,1,6}, f3={6,4,2}, f1={4,3,5}, every oriented matroid is the weak map image of a uniform
fs =4{4,7,1}, fe = {6,7,3}, andf; = {5,7,2}. Thisma- oriented matroid of the same rank.
troid is realizable over a binary field and is the only minimal  Finally, we should mention that there is a close con-
irregular matroid. Moreover, it has been shown in Refs. 13ection between Grassmann algebra and chirotopes. To
to 16 thatF* is connected with octionions and therefore with understand this connection let us denote hyR" the

foralli,,...,i, € E. Here,X" ¥ is given in Eq. (10). By

M is called the underlying matroid o¥1. According to

Rev. Mex. Fs. E51 (1) (2005) 5-12
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(™)-dimensional real vector space of alternatinfprms on  have a deeper connection betwdeand matroids. First, we
R™. An element® in A,.R™ is said to be decomposable if ~ observe that the formula (34) can also be written as

Y=viAVaA...AN.V,, (32) i = %Eijijk, (35)
for somevy,vy,...,.v, € R™. lItis not difficult to see that where
Eqg. (31) can be written as

1 L = g'p) — alpt. (36)

Y= —'E““”’"eil Neig N o Neg (32) ) B

T Of course,L* and L™ have the same information.
wheree;, , e;,,.. ., e; are one form bases iR™ andX - Let us redefine andp’ in the form
given in Eg. (10). This shows that the prechirotope ' vi=al, vh=p (37)

can be identified with alternating decomposabi®rms. It

is known that the projective variety of decomposable formSUsing this notation the expression (36) becomes

is isomorphic to the Grassmann varietyreflimensional lin-

ear subspaces iR". In turn, the Grassmann variety is the LY = g%yiy] (38)

classifying space for vector bundle structures. Perhaps, re-

lated observations motivate MacPherson [7] to develop thavhere the indices andb take values in the s, 2}. If we

combinatorial differential manifold concept which was the compare the expression (38) with (10), we recognize in (38)

predecessor of the matroid bundle concept [7-11]. This is &he form of a rank-2 prechirotope. This means that the angu-

differentiable manifold in which at each point, an oriented!ar momentum itself is a prechirotope. For a possible gener-

matroidis attached as a fiber. alization to any dimension, the form (38) of the angular mo-
It is appropriate to briefly comment about the origins of mMentum appears more appropriate than the form (35). Thus,

chirotope concept. It seems that the concept of chirotope agur conclusion that the angular momentum is a prechirotope

pears for the first time in 1965 in a paper by Novoa [21] unde@pPPplies to any dimension, not just 3-dimensions.

the name of “n-ordered sets and order completeness”. The The classical Poisson brackets associatelftas

term chirotope was used by Dress [22] in connection with Iy ik il et T

certain chirality structure in organic chemistry. Bokowski (L7, LM} = gLt — 618 4 1S LE — SROLY. (39)

and Shemer [23] apply the chirotope concept in relation witho e of the traditional mechanisms for going from classical
the Steinitz problem. Finally, Las Vergnas [24] used the chi-

: o "“mechanics to quantum mechanics is described by the pre-
rotope concept to construct an alternative definition of Ofi-scription
ented matroid.
Now, the symbols?- is very much used in differ- (A, B} — E[A,B}, (40)
ent contexts of physics, including supergravity adodranes. {
Therefore the question arises whether the chirotope symbgh; any two canonical variabled and B. Therefore, at the
x"*'~ may have similar importance in different scenarios ofquantum level the expression (39) becomes
physics. In the next sections we shall make the observation
that the symbol¥#» is already used in different scenar-  [L¥, L] = i(6% L7' — 6 L% + 69 L* — §7F [11). (41)
ios of physics, but apparently it has not been recognized as a
chirotope. It is well known the importance of this expression in both the
eigenvalues determination and the group analyses of a quan-

. . . tum system. Therefore, the prechirotope propert;‘dfgoes
3. Chirotopes in classical and quantum me- e at the quantum level.

chanics

It is well known that the angular momentud in a 3- 4. Chirotopes and p-branes
dimensional space is one of the most basic concepts in cIaSC— ider th .
sical mechanics. Traditionalll is defined by onsider the action

1 — L
L=7xp. (33) §=3 /d”“ﬁ(v ettty e —T3), (42)
In tensor notation, this expression can be written as where
L' = e z;py. (34) e = g VI (€)L VR E),  (43)

We observe the presence of the symigéf which is a chi-  with
rotope. In fact, thig—symbol appears in any cross product " "
A x B for any two vectorsd and B, in 3 dimensionsWe still Vi (€) = Dqz" (§). (44)

Rev. Mex. Fs. E51 (1) (2005) 5-12
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Herey is alagrange multiplier arif, is a constant measuring which can be derived from the expression (42) by setting
the inertial of the system. It turns out that the action (42) isp = 1. According to the expressions (47), (48) and (49) one
equivalent to the Nambu-Goto type action febranes (see gets

Ref. 12 and Refs there in). One of the important aspects ) )

of (42) is that it makes sense to §&t= 0. In such case, (42) ([&",2"])" =T, 1, (50)

is reduced to the Schild type nyhbrane action [26-27]. . %Nherel is the identity operator. It turns out that the constraint

. ) 50) plays an essential role in Matrix theory. Extending the

1.

:ggg:'tyr'g elzrt pgfly Dﬁiﬂf 2anﬁg0;$iaei: dpl;ec:]'ergfspg]; ;ZeYoneya's idea for strings, Oda [29] (see also Refs. 30 and 31)
property : =0 by me - has shown that it is also possible to construct a Matrix model

matroid bundle concept. The key idea in matroid bundle is_ - e . X

to replace tangent spaces in a differential manifold b ori-Of M-theory from a Schild-type action for membranes. It is
P ing Pa . o Y O clear from our previous analysis of identifying the quantity

ented matroids. This is achieved by considering the linear

) _ ~#¥ with a prechirotope of a given chirotopg”, that these
mapfe i starA i— U C Tye) such thatfe(§) = 0, where developments of Matrix theory can be linked with the ori-
n A 1 is the minimal simplex ofi X 11 containingé € X,

where X is a simplicial complex associated to a differential ented matroid theory.

manifold. Then,fe 11 (starA)° 11, where(starA)® are the

0-simplices ofstarA, is a configuration of vectors i, ., 6. Chirotopes and two time physics
defining an oriented matroid1(¢). One should expect that

the functionf, induces a map Consider the first order lagrangian [17]

1 o
B gt (§), (45) L= g oivlm — H@Y), (51)
where we consider that the ramkof M(¢) isr = p + 1. wheren),,,, is a flat metric whose signature will be determined
Observe that the formula (45) means that the funcfioalso below. Up to total derivative, this lagrangian is equivalent to
induces the map# — V(¢). the first order lagrangian
Our last task is to establish the expression (44). Consider .
the expression L =i'p, — H(z,p), (52)

0 u 3 where
Fop = 92V, (€) = 0V (6)- (46)
ot =, pt=b. (53)
Thus, if the equatiorf’!, = 0 is implemented in (42) as a
constraint then we get the solutidf (§) = 0x# /0£®, where Typically, one choose® asH = A(pp, +m?). For the
x* is, in this context, a gauge function. In this case, one saygiassless case we have
that vX(€) is a pure gauge. Of coursé; andV//(¢) can
be interpreted as field strength and abelian gauge potential, H = Xp"pu)-

respectively.

(54)

From the point of view of the lagrangian (51) in terms of

the coordinates*, this choice is not good enough since the

5. Chirotopes and Matrix theory SL(2, R)—symmetry in the first term of expression (51) is
lost. It turns out that the simplest possible choicefowhich

Some years ago Yoneya [28] showed that it is possible to corfnaintains the symmetr§L(2, R) is

struct a Matrix theory of the Schild type action for strings. 1

The key idea in the Yoneya’s work is to consider the Poisson H = 5/\"'bvf{vz'§nuw (55)

bracket structure

where\® is a Lagrange multipliers. Arbitrary variations of

{at, 2"} = %7’”’» (47) A’ lead to the constraint:v}'n,,, = 0 which means that
fp, =0, 56
where¢ is an auxiliary field. This identification suggests to P Py (56)
replace the Poisson structure by coordinate operators 'z, =0 (57)
1
fa",a"} — <[o", ") (a9
atx, =0. (58)

The next step is to quantize the constraint
The key point in two time physics comes from the observa-
— My, = T2, (49) tion that if,,,, corresponds to just one time, that isyjf, has
&2 b the signature),,, = diag(—1,1,...,1), then from (56)-(58)
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it follows thatp* is parallel toz*, and therefore the angular wherec!, are two bases vectors in a tangent space of a given
momentum manifold. It turns out that the electromagnetic field strength
LH — gl — gy (59) F,, =0,A, — 0,A, becomes

__ .ab ) .
associated with the Lorentz symmetry of (55) should van- Fluy = e 0ueq0vevi, (62)

ish, which is an unlikely result. Thus, if we impose the
condition L*¥ # 0 and the constraints (56)-(58) we find
that the signature of),, should be, at least of the form . I 0t i

= diag(—1,-1,1 1). In other words, only with two using MacDowg -Mansourl ormansm. .
M o0 P . As we mentioned, an interesting aspect of the oriented
times the constraints (56)-(58) are consistent with the require- . . : .

i o matroid theory is that the concept of duality may be imple-

mentL*” = 0. In principle, we can assume that the number . .

. : mented at the quantum level. For instance, an important the-
of times is grater than 2, but then one does not have enoug(?
constraints to eliminate all the possible ghosts.

We recognize in (62) the typical form of a prechirotope (10).
The idea can be generalized to Yang-Mills [32] and gravity

rem in oriented matroid theory assures that

As in Sec. 3, we can rewrite (59) in form (M & Mo)* = M: & M, (63)
v o__ 1 ab v
LA = 5 Va Vs (60) whereM* denotes the dual matroid and ; & M, is the di-

rect sum of two oriented matroidst; and M. If we asso-
ciate the symbolic actionS; and.S, to the two the matroids
e/\/h and M5, respectively; then the corresponding partition
functionsZ; (M) andZ;(M5) should lead to the symmetry

which means thatL#” is a prechirotope. Thus, one of
the conditions for maintaining both the symmefY.(2, R)

and the Lorentz symmetry in the lagrangian (51) is that th
prechirotopel*” must be different from zero, in agreement . 2\ X
with one of the conditions of the definition of oriented ma- £ = # Of the total partition functior = 7, 2».

troids in terms of chirotopes. Therefore, if our starting point  AAnother interesting aspect of duality in oriented matroid
in the formulation of lagrangian (51) is the oriented matroidf[heory is that it may allow an extension in of the Hodge dual-

theory then the two time physics arises in a natural way. |ty._ From the (_)bservation th_at the completely antisymmetric
objecte,, ., is in fact a chirotope associated to the under-

. laying uniform matroidJ,, ,,, corresponding to the ground set
7. Final remarks E ={1,2,...,n} and bases subsBt= {{1,2,...,n}}, it
is natural to ask why not to use other chirotopes to extend the
r?—'|odge duality concept? In Ref. 12 it was suggested the idea
of the object

Besides the connection between matroid theory and Cher
Simons formalism , supergravity, string thegsybranes and
Matrix theory found previously, in this work we have added
new links of matroids with different scenarios of physics such

as classical and gquantum mechanics and two time physics.

All these physical scenarios are so diverse that one wonders

why the matroid subject has passed unnoticed. This has bedyerex*
due, perhaps, to the fact that oriented matroid theory has

evolved putting much emphasis in the equivalence of vari- ~ X#1-Hp1bpzepir = X(B15 wos P15 P2 - Hir)

ous po§§|ple aX|omat|;at|ons. JUSF to mgntlon SOme possis 5 chirotope associated to some oriented matroid of rank
ble definitions of an oriented matroid besides a definition in

: : o : > 1. In Ref. 12 the concept® was called dualoid for
terms of chirotopes, there are equivalent definitions in termg, —.” - p

of circuits, vectors and covectors among others (see Ref. Istinguishing it from the usual Hodge dual concept

for details). As a result, it turns out that most of the material iy ta e o2 SF efiy b1

in matroid theory is dedicated to existence theorems. Part o T+ 1)!5uf...up+12 ! (65)

of our effort in the present work has been to start this sub-

ject with just one definition, and instead of jumping from oneWwhich is a particular case of (64), when= d+1. Itturns out

definition to another we have tried to put the oriented mathat the dualiod may be of some interestpibranes theory

troid concept, and in particular the chirotope concept, in suclfsee Ref. 12 for details).

a way that physicists can make some further computations Recently, it was proposed that every physical quantity

with such concepts. In a sense, our view is that the chirotopts a polyvector (see Ref. 33 and references there in). The

notion may be the main tool for translating concepts frompolyvectors are completely antisymmetric objects in a Clif-

oriented matroid theory to a physical setting and vice versa.ford aggregate. It may be interesting for further research
It is interesting to mention that even electromagnetisnto investigate whether there is any connection between the

seems to admit a chirotope construction. In fact, let us writgpolyvector concept and the chirotope concept.

the electromagnetic gauge potential as [32] Finally, as it was mentioned the Fano matroid is not ori-

entable. But this matroid seems to be connected with octo-

nions and therefore witlh = 11 supergravity. Perhaps this

PR = SRR (64)

~Hr+1 is any completely antisymmetric tensor and

A, = 5“%30/,,6;)7;. (61
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suggests to look for a new type of orientability. Moreover,and other characteristic classes [11]. In turn, Stiefel-Whitney
there are matroids, such as non-Pappus matroid, which arasses are closely related to spinning structures. Thus, there
either realizable and orientable. The natural question is whahust be a matroid/supersymmetry connection and conse-
kind of physical concepts are associated to these type of mauently matroid/M-theory connection.

troids. It is tempting to speculate that there must be physical

concepts of pure combinatorial character in the sense of m
troid theory. On the other hand, it has been proved that ma-
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