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The Maxwell equations for the spherical components of the electromagnetic fields outside sources do not separate into equations for
component alone. We show, however, that general solutions can be obtained by separation of variables in the case of azimuthal symr
Boundary conditions are easier to apply to these solutions, and their forms highlight the similarities and differences between the electric
magnetic cases in both time-independent and time-dependent situations. Instructive examples of direct calculation of electric and mag
fields from localized charge and current distributions are presented.
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Las ecuaciones de Maxwell para las componentésieat de campos electroma&gicos en regiones libres de fuentes no son separables en
ecuaciones para cada una de sus componentes. Se muestra, sin embargo, que soluciones generales pueden ser obtenidas ¢®r sepa
variables en el caso de la simatazimutal. Las condiciones de borde sadiles de aplicar para estas soluciones, y sus formas destacan las
similitudes y diferencias entre los caso8attico y mag#tico, tanto para las situaciones independientes del tiempo como para las de tiemp
dependientes. Se presentan ejemplos instructivosaltellos directos de camposeetricos y magaticos producidos por distribuciones
localizadas de cargas y corrientes.

Descriptores: Ecuaciones de Maxwell; coordenadaseeisfas; campos ettrico y magetico; problemas con condiciones de borde.

PACS: 03.50.De; 41.20.Cv; 41.20.Gz

1. Introduction fields satisfy the homogeneous vector wave equations
2
The Maxwell equations for the electromagnetic field vectors, V2E — e O°E _ 0,
expressed in the International System of Units (SI), are [1] ot
2
2
0B VB — ey 5 =0, (4)
V-D=p = VxE=-T-, ot?
oD which are obtained from Egs. (1) and (2) for regions free of
V-B =0, VxH=J+ —, (1) charge and current by combining the two curl equations and
ot making use of the divergence equations together with the vec-

where the source termsandJ describe the densities of elec- tor identity

tric charge and current, respectively. For a linear, isotropic 2/ \ _ N
mediumD andH are connected with the basic fielllsand V) = VIV ) = V(). ©)

B by the constitutive relations Changes in the electromagnetic fields propagate with speed
v=1/\/eu.
D=¢E, H=B/u, () Without any loss of generality, we may consider only har-

monic time dependence for sources and fields:
wheree and i are the permittivity and permeability of the 4 ,
medium, respectively. p(r,t) = p(r)e= ™, I(r,t) = IJ(r)e ™!,
The boundary conditions for fields at a boundary surface E(r,t) = E(r)e~™!, B(r,t)=B(r)e ™, (6)
between two different media are [2]
where the real part of each expression is implied. Equa-
n- (D; — D) = pg, nx(E; — Eg) =0, tion (4) then becomes time-independent:

n-(B; —Bj3) =0, nx(H; —Hy) =Jg, (3) VZE+ K E=0, V’B+k’B=0, (7

wherepg andJ s denote the surface charge and current denwherek? = euw?. These are vector Helmholtz equations
sities, respectively, and the normal unit vectoiis drawn  for transverse fields having zero divergence. Their solutions
from the second into the first region. The interior and exteriorsubject to arbitrary boundary conditions are considered more
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complicated than those of the corresponding scalar equdhe electric and magnetic cases in both time-independent
tions, since only in Cartesian coordinates the Laplacian ofnd time-dependent situations. The approach shows that
a vector field is the vector sum of the Laplacian of its sepaboundary-value problems can be solved for the electric and
rated components. For spherical coordinates, as for any otheragnetic vector fields directly, and that the process involves
curvilinear coordinate system, we are faced with a highlythe same kind of mathematics as the usual approach of solv-
complicated set of three simultaneous equations, each equigg for potentials. This material in this work may be used in
tion involving all three components of the vector field. This a beginning graduate course in classical electromagnetism or
complication is well known and general techniques for solv-mathematical methods for physicists. It is organized as fol-
ing these equations have been developed, based on a dyatevs. In Sec. 2, we describe the method for the static case
Green'’s function which transforms the boundary conditionsshowing how the mathematical complications of solving the
and source densities into the vector solution [3]. We shallector field equations are easily overcome by means of sepa-
show, however, that in the case of spherical boundary condration of variables. In Sec. 3, we extend the method to discuss
tions with azimuthal symmetry, the solution can be obtainedhe case of time-varying fields. Concluding remarks are given
more conveniently by means of separation of variables. Sevn Sec. 4.
eral applications of physical interest can then be treated in
this simplified way, so av0|d|_ng the dyadl_c method [4]. 2 Static fields

Actually, the usual technique for solving boundary-value

problems introduces the electromagnetic potentials as intefor steady-state electric and magnetic phenomena, the fields
mediary field quantities. These are defined by [5] outside sources satisfy the vector Laplace equations

B = VxA, E:_vqs_aa;?, (8) VZE=0, V’B=0, (13)
with the subsidiary Lorentz condition yvhere only transvgrse components with zero divergence are
involved. Supposing all the charge and current are on the

[ bounding surfaces, solutions in different regions can be con-

ot nected through the boundary conditions indicated in Eq. (3).
It is then found that these potentials satisfy the inhomoge:r_?j detr)nons;rate thle featubrles of tht(; tre_atmtintl, we f'rS: con-
neous wave equations sider boundary-value problems with azimuthal symmetry in

electrostatics. The solution of stationary current problems in

VA +eu 0. 9)

5 9%¢ p magnetostatics is mathematically identical.
Vio—en oo =—0 Combining the expressions fo¥x(VxE) = 0 and
92A V - E = 0 in spherical coordinates and assuming no
VZA —eu 2 = —ud, (10)  y-dependence, we find using Eq. (5) that the components of
t the electric fieldE,. and Ey satisfy the equations
which together with the Lorentz condition form a set of equa- L 92
tions equivalent to the Maxwell equations. The boundary (VQE),.:—Q—2(7“2E,,)
conditions for the potentials may be deduced from Eq. (3). 2 or
For fields that vary with an angular frequencyi.e. . 1 0 (SmaaE,,> 0, (14)
it it r2sin 6 00 00
o(r,t) = ¢(r)e ™", A(r,t) = A(r)e ™", (11)
2@, _ ! 0? 5 19°E, 15
we get equations that do not depend on time in regions free (V7E)p = ;ﬁ(r o) — roroo 0. (15)
of charge and current: Equation (14) is fot,. alone, whereas Eq. (15) involves both
V26 4+ k% ¢ =0 components. There is also a separated equatioB for
2
VA + k2 A =0, 12) oy 19" oy, 1 0
(V°E), r Or? (rEp) + r2sin6 00
which are like those in Eq. (7) for the electric and magnetic _ 0E, 1
induction fields, so that in general we also confront, for the X (Sm9 50 > T aaggle =0 (16

vector potential, the mathematical complexities mentioned

above for the electromagnetic fields. In this paper, however, we will not be concerned about those
The purpose of this paper is to get general solutions ofylindrical symmetry cases where only thecomponent of

the electromagnetic vector equations in spherical coordinate§e vector field is nonzero because a scalar technique of sepa-

with azimuthal symmetry using separation of variables inration of variables is already known to obtain the solution [6].

spite of having equations that mix field components. Bound-  Using the transverse condition

ary conditions are easier to apply to these solutions, and 1 1 9

their forms highlight the similarities and differences between V- E = —5 E(TQET) t @(Sin 0 Eg) =0, (17)
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where azimuthal symmetry is assumed, Eqg. (14) implies  make the difference, implying in particular thiat = 0 in
o OE the series expansion of Eqg. (23) in magnetostatics; this being
E(TEQ) — 8€T =0, (18)  primarily related to the absence of magnetic monopoles.

o ) ) To illustrate the use of the above formulas, we consider
which is consistent with Eq. (15). Thus, to obtdipfrom . he simple example of the electric field due to a ring of radius

we can consider either Eq. (17) or Eq. (18). These equationg yith total charge uniformly distributed and lying in the
correspond to choosing a gauge when this method is appliedl , pjane. It is usually solved through the scalar potential

to the vector potential. method by using the result of the potential along thexis

Now, in order to solve Eq. (14) foE,, we refer to the  piained from Coulomb’s law [7]. The surface charge density
method of separation of variables and write the product formy, .. — , |ocalized ap = /2, is written as

u(r)
E.(r,0) = —* P(9), 19
(0= "2 PO) 49 ps(a.) = 32 bcos 0), @7)
which leads to the following separated differential equations: ma
Pu nln+1) vyhlch may be expanded using the well-known Legendre se-
— — ———u =0, (20) ries
dr? 72 < op 41
n
1 d,. dP d(cos 0) = Z P, (0) P, (cos ), (28)
- - = 2
Sin0d9(81n9d9)+n(n+l)P 0, (21) oy
wheren(n + 1) is the separation constant. The solution ofwith P, (0) given by
Eq. (20) is )
n -1)" !
u(r) = qr"t! 4 — (22) P2n+1(0) =0, p2n(0) — M (29)

227z(n!)2
wherea andb are arbitrary constants. Equation (21) is the
Legendre equation of orderand the only solution which is  Taking into account the cylindrical symmetry of the system,
single valued, finite and continuous over the whole intervaland the requirement that the series solutions in Egs. (23)-(25)
corresponds to the Legendre polynomial(cos #), n being  have to be finite at the origin, vanish at infinity and satisfy the
restricted to positive integer values. Thus the general solutioboundary conditions of Eq. (3) at= « for all values of the
for E, is anglef, namely,Ey continuous at = a and E,. discontinu-
0o ous atr = q, it is straightforwardly found that the spherical
E.(r,0) = Z (anrn—l =+ bn ) P, (cos 6). (23)  components of the electric field are

n+2
n=0 et
The simplest way of solving Eq. (17) fdty is to use the E.(r,0) = Q Z P,,(0) P,(cos 0)
series expansion Ameor? =
o0 a n
Bo(r,0) = 3 val(r) S Pu(cos 0),  (24) (1) (7)o r>a
de
n=0 X (30)
. . . rynt+1
wherew, (r) are functions to be determined. By replacing -n (—) ,r<a
Egs. (23) and (24) into Eq. (17), it is found that “
a b 1
vp(r) = =t o 1 (25) .
1 n+2
A Ep(r.0) = ——22>" P,(0) Pl(cos 0)
for n > 1 with a, = 0; this null factor in Eg. (23) means dmeor —
the absence of static field terms of thé- type, which are in
reality typical of radiative fields as shown below. Clearly, the ( a )” S
solutions given in Egs. (23), (24) and (25) satisfy Eq. (18). ) e
The coefficientsa,, and b,, are to be determined from the X " (31)
boundary conditions. For completeness, we include here the (f)" . r<a
well-behaved general solution of Eq. (16): a
> Lody \ d andE, = 0, where P} (cos §) = (d/df) P,(cos 6) is an
Ey(r,0) = Z (Cnr + ,,.n+1> @Pn(cos 0).  (26)  associated Legendre function. Note in particular that the co-
n=0 efficientb, in Eq. (23) become®)/4re, for r > a, as ex-

Thus, Egs. (23)-(26) formally give all three components ofpected. Also, the discontinuity of theh component of2,.
the electric field. The same type of equations applies in magin Eq. (30) atr = a is connected according to Eg. (3) with
netostatics. However, the boundary conditions of Eq. (3) willthe corresponding component of the surface charge density
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ps obtained from Egs. (27) and (28), exhibiting the unity of is applied to the angular component of the magnetic induc-
the multipole expansions of fields and sources (see Ref. 8).tion field in Eqgs. (24)-(25), as opposed to the correspond-
To clarify the application of the formulas in the case of ing inhomogeneous boundary condition acting on the radial
magnetostatics and also compare with electrostatics, we cocemponent of the electric field in Eq. (23). The fields in
sider next the magnetic analog of the above example, that i§gs. (35)-(36) are usually obtained through the vector po-
the magnetic induction field from a circular current loop of tential method by using the expression of the magnetic in-
radiusa lying in the z-y plane and carrying a constant cur- duction field along the:-axis calculated from the Biot and
rent. The surface current density en= a can be written  Savart law [6]. An alternative technique is mere integration
as of the vector potential [9]. Our treatment has the advantage of
Js(a,0,0) = I 5(COS 0) @, (32) introducing a considerable simplification on the procedure of

applying the boundary conditions on the magnetic induction
where for the delta function is now convenient to use the exfig|q directly.

pan5|on

oo

d(cos §) = T;J % P, (0) Py (cos 6), (33)

3. Time-varying fields

By using Egs. (1), (2), and (6) it is seen that outside sources

which follows from the completeness relation for the spher-he fields are related by
ical harmonics after multiplication by~ and integration

overy. The values fo?}(0) are E= ﬁ VxB, (37)
) . (=1)"*t1(2n 4 1)! so that we only need to solve Eq. (7) Br Alternatively, we
Py (0) =0, P3pp4(0) = 921 (nl)2 : 34)  can solve foi, and obtairB through the expression
Because of the cylindrical symmetry of the systesg, = 0. B=— L VvV xE. (38)
By requiring that the field be finite at the origin, vanish at in- w
finity and satisfy the boundary conditions of Eq. (3yat @,  In the following, we choose to deal with the Helmholtz equa-

the series solutions in Egs. (23)-(25) for the magnetic casgon for the magnetic induction field. The reason is to ex-
lead to the following radial and angular components of thehibit similarities and differences with the static case treated

magnetic induction field: in Sec. 2.
) oo In the case of spherical boundary surfaces with azimuthal
B,(r.0) = _pola ZPﬁ(O) Py (cos 6) s.ymme_try, theB,. anng compo_nents of the magnetic induc-
2r3 = tion satisfy the following equations:
a\n—1 9 9 1 02 1
X (35)
0 0B,
r\nt2 J— szr = 39
() or<e Xae( 69)* 0 (9)
1 92 16%B,
prola? (VEB)o o+ K2Ba = 252 B0) = 25,59
By(r,0) = =2 PL(0) P}(cos 6
o(r,6) 2r3 LZO feos ) + k2 By = 0. (40)
1 (a)" L N Similarly, for the B, component we would have the equation
— r a
n+1\r ’ 9 9 1 0? 1 0
X (36) (V"B + KBy = — o5 (rBe) + 5555
1 n+2
-\~ , T <a 8B 1 2
n (a) X (81119 50 ) 72sin29B(P +k*B, =0. (41)

Note that, as anticipated for magnetostatic problems, the co-
efficientb, in Eq. (23) is equal to zero. Also, as expected, These are analogous to Egs. (14), (15) and (16) in connection
the discontinuity of theith component ofB, in Eq. (36) at with the vector Laplace equation. In order to solve Eq. (39)
r = ais connected according to Eq. (3) with the corresponde let ()

ing component of the surface current densiky, obtained B.(r,0) = AU P(9), (42)

from Eqgs. (32) and (33). Another characteristic difference "
with the electrostatic analog is that the coefficiétjt0) ap-
pears instead of,, (0). This can be traced to the fact that d’; 2 dj { n(n + 1)} i

whereupon separation yields

-

the inhomogeneous boundary condition, as given by Eq. (3), a2 T odr =0, (43)

r2
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and Eq. (21), where the constai(tn + 1) is the separation andB, = 0, where the upper line holds fer > « and the
parameter. Equation (43) is the spherical Bessel equation déwer line forr < a. As noted above, the coefficieat in
ordern with variablekr. Therefore, the general solution for Eq. (44) indeed vanishes. Also, the discontinuity of tiie
B, is component ofBy in Eq. (50) atr = a is connected, accord-
. ) ing to Eq. (3), with thenth component of the surface cur-
B.(r,0) =Y [anj”(kr) +b, n”(kr)] P, (cos 0). (44)  rentdensityJs, obtained from Egs. (48) and (33). A char-
r r acteristic difference between this time-varying problem and
eﬁhe corresponding static case is the appearance of the spheri-
cal Bessel functions, which are solutions of the radial part of
the Helmholtz equation in spherical coordinates. Using their
limiting values [10], it can be seen that fbr— 0 the static

n=0
Depending on boundary conditions, the spherical Hank

functionshﬁ}’Q) instead of the spherical Bessel functigins
n, may be used. FaBy we again write

s d results in Eqgs. (35) and (36) are obtained, as mathematically
Bo(r,0) = Z wn () @P”(COS 9), (45)  and physically expected. On the other hand, the radiative part
n=0 of the external magnetic induction field, which decreases as
and useV - B = 0 to obtain now 1/r, is given by
wn = —— L k)] Lk >, (4n + 3)(2n — 1)!
"l Dr dr = Hedoh iy A 4 8)(20 — 1)
( : ) . B(r,0,t) 0 o © 7;) Fnl(n + 1]
Tt o (46) % jant1(ka) PL . (cos 6). (51)

forn > 1with a, = b, = 0. The other coefficients, andb, |, e dipole approximationka < 1, this becomes the ra-

are determined so that the boundary conditions for the VeCtQfjatiye magnetic induction field from an oscillating magnetic
field are exactly satisfied. In the case of thg component, dipole of magnetic moment1 = ra21l.3:
= g

the general solution is

o k2 ei(kr—wt)
d = Ho¥ (5 A
By (r,0)= Z [enjn (kr)+dpng, (kr)] @Pn(cos 0). (47) B(r,?) 4 (Fxm) & r (52)
n=0

The magnetic induction field in Egs. (49) and (50) can be seen
The same type of equations applies for the electric field. g pe just that which is obtained with the more arduous tech-
As an example, we shall consider the problem of the magnique of a dyadic Green'’s function expanded in vector spher-
netic induction field from a currert= I.e™**inacircular  jcal harmonics and applied to the vector potential, which, by
loop of radiusa lying in thez-y plane. Itis the time-varying  symmetry, only has the-component different from zero [3].
version of the case solved in Sec. 2. The surface density Cuis we have shown, a direct calculation of the electromagnetic
rentonr = ais then field with - and#-components is more simplified if separa-

I, ) tion of variables is used.
Is(a,0,p.t) = = d(cos 6) =g, (ag) oo Ol

which can be expanded using Eq. (33). The complete serieg, Conclusion

solution of the Helmholtz equation for the magnetic induction

field, which is finite at the origin, represents outgoing waved-or spherical coordinate systems, the Maxwell equations out-
at infinity and satisfies the boundary conditions of Eq. (3) atside sources lead to coupled equations involving all three

r = a, becomes components of the electromagnetic fields. In general, the
. statement is that one cannot separate spherical components of
B Holoka i 1 the Maxwell equations, and extensive techniques for solving
T(r,@,t) = 7176 Z(2n+ ].)P,,L(O) !

the vector equations have been developed which introduce

n=0

, (1) vector spherical harmonics and use dyadic methods. We have

Jn(ka) hy (kr) shown, however, that separation of variables is still possible
X Py (cos 0) (49)  in the case of azimuthal symmetry, and so general solutions

Jn(kr) h{D (ka) for each component of the electromagnetic vector fields were
obtained. We have illustrated the use of these formulas with

polok?a on+1 _, direct calculations of electric and magnetic induction fields
By(r,0,t) = —i 5 ¢ Z n(n+ 1) 2 (0) from localized charge and current distributions, without in-
n=0 volving the electromagnetic potentials. Boundary conditions
jn(ka) {hﬁ,,l_)l(k:r) _n hgll)(k,r)} are easier tc_) apply to thgse solutions, and their formg high-
L kr light the similarities and differences between the electric and
X P (cos 0) (50)

@ n magnetic cases in both time-independent and time-dependent
hn” (ka) [jn—1(k7”) - jn(kﬂ”)} situations. Finally, we remark that in cylindrical coordinates,
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