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Computational study of forced oscillations in a membrane
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The solution of the model for small forced oscillations in membranes is described. The cases of rectangular, circular and also elliptical
membranes are discussed. A simple computer animation example is provided using the MAPLE software package. The evolution of the first
vibrational mode for a circular membrane is presented. The results obtained are useful for the understanding of membrane oscillations in
different applications. Also, the method could be used as a help in teaching.
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La solucíon del modelo para oscilaciones forzadas pequeñas en una membrana es descrita. Los casos para membranas rectangulares, circu-
lares y eĺıpticas son discutidos. Un ejemplo simple de animación computacional es presentado usando el paquete de software MAPLE. La
evolucíon del primer modo vibracional para una membrana circular es presentada. Los resultados obtenidos sonútiles para el entendimiento
de oscilaciones en membranas, en diferentes aplicaciones. Además, el ḿetodo pudiera ser de ayuda en la enseñanza.

Descriptores: Membrana; modos de oscilación forzados; simulación computacional.
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1. Introduction

The study of free oscillations in membranes is a classi-
cal problem, widely discussed in most of the mathematical
physics textbooks [1] and in many papers [2,3]. However,
the study of oscillation modes in a membrane under an ex-
ternal force is a much more complex problem, rarely treated
in most textbooks. This is due, in part, to the fact this many
interesting applications of that kind of problem leads to an-
alytical solutions too difficult to be obtained and in most of
the cases impossible; only recently has it been possible to
take advantage of computational tools for obtaining numeri-
cal solutions.

Recently, some works have been published concerning
the oscillation modes in a circular membrane under an exter-
nal force. The problem of the oscillation of an elastic circu-
lar membrane under a pressure difference has been discussed
both theoretically and experimentally by Olivaet al. [4].
Also, a computer algebra study is shown in Ref. 3 for a force
applied to a circular membrane.

On the other hand, the oscillations in an elliptical mem-
brane are described by the Mathieu functions [2,5,6].

In this paper the forced oscillation solutions for rectan-
gular, circular and also elliptical membranes are discussed.
Also, a simple computer animation using the MAPLE soft-
ware package is provided for a circular membrane.

The solutions obtained can be used for describing differ-
ent physical systems. In particular, we want to emphasize
that the understanding of forced oscillations in an elliptical
membrane could be applied to simulate the oscillations of

the tympanum under external sound pressure. For example,
in Refs. 7-8 are described some experiments designed to de-
tect the vibrations of the tympanum, by measuring either the
magnetic flux changes of a permanent magnet or the reflected
light by a mirror attached to the tympanic membrane. In these
cases, both the magnet and the mirror act as external charges
on the membrane, which must be taken into account for a
better understanding of the oscillation modes.

In Secs. 2 and 3, we present a discussion of the model
for the small forced oscillations of a membrane and the vari-
able separation method, respectively. In section 4 are shown
the solutions of the non-homogeneous wave equations, to de-
scribe the vibrations of rectangular, circular, and also ellipti-
cal membranes. Finally, section 5 is concerned to the numer-
ical simulations with the vibrational modes of a membrane.

2. Model for the forced oscillations of a mem-
brane

Consider a membrane, of constant densityρ, whose thickness
can be neglected with respect to its size.

Suppose that, besides the membrane occupies an open
set Ω ⊂ <2with contour ∂Ω of class C1 and it be-
gins to vibrate under the action of a vertical charge, say
(x1, x2) → p (x1, x2).

Now take a small regionG0 ⊂ Ω with contour∂G0 of
classC1, and letG be the corresponding portion of the mem-
brane, that is,G is the graph ofx → u (x, t) restricted toG0.
Also, consider a curveΓ which is the bounding ofG. Thus



COMPUTATIONAL STUDY OF FORCED OSCILLATIONS IN A MEMBRANE 103

tensionT acts at a pointP ∈ Γ and it is tangent toG and
normal toΓ.

Let τ be the unitary vector ofT andn the normal unitary
vector exterior toG in P . Also, considere the unitary vector
tangent toΓ in P . Then, we find that

τ = e× n. (1)

In order to calculate the vertical component ofT in
P ∈ Γ, consider a parametrization ofΓ0 such that

P0 (s) ≡ (x1 (s) , x2 (s)) s ∈ I ⊂ R.

Hence, the normal unitary vector exterior to∂G0 is given
by

u =

(
x
′
2,−x

′
1

)
√

x
′2
1 + x

′2
2

, (2)

whereP
′
0 (s) ≡

(
x
′
1 (s) , x

′
2 (s)

)
is tangent toΓ0.

Also, consider the parametrization ofΓ

P (s) = (P0 (s) , x3 (s)) ,

wherex3 (s) = u (x1 (s) , x2 (s) , t). Then, the unitary vec-
tor e tangent toΓ is given by

e =

(
x
′
1, x

′
2, x

′
3

)
√

x
′2
1 + x

′2
2 + x

′2
3

=

(
P
′
0, Du · P ′

0

)
√∥∥P

′
0

∥∥2 +
∣∣Du · P ′

0

∣∣2
,

whereDu denotes the gradient ofu, and the normal unitary
vector exterior to G in points ofΓ is

n =
(Du,−1)√
1 + ‖Du‖2

.

Therefore, from Eq. (1) we get

τ = det




i j k

x
′
1 x

′
2 x

′
3

ux1 ux2 −1


 1

J
,

where

J =
√

1 + ‖Du‖2
√∥∥P

′
0

∥∥2 +
∣∣Du · P ′

0

∣∣2. (3)

Thus,

Jτ · k = −
(
x
′
2,−x

′
1

)
·Du

= −
√

x
′2
1 + x

′2
2 ·Du · ν. (4)

This last expression is obtained from Eq. (2), whereν is nor-
mal to∂G0, that is,ν · P ′

0 = 0.
On the other hand, ifβ = cos θ, whereθ is the angle

between the vectorsDu andP
′
0, we have

Du · P ′
0 = ‖Du‖

∥∥∥P
′
0

∥∥∥β. (5)

Then, substituting Eq. (5) into Eqs. (3) and (4), we have

τ · k=− Du · ν
Jβ

, Jβ=
√

1 + ‖Du‖2
√

1 + β2 ‖Du‖2.

It can be seen that

1 + |β| ‖Du‖2 ≤ Jβ ≤ 1 + ‖Du‖2 , (6)

where the inequality on the left side of Eq. (6) is obtained
from the Cauchy-Schwarz inequality

1 + |β| ‖Du‖2 = 〈(1, ‖Du‖) , (1, |β| ‖Du‖)〉 ≤ Jβ .

Then, because|β| ≤ 1, the inequality on the right side of
Eq. (6) is obtained. Hence, considering that the vibrations
are only in the direction ofu, normal to the rest position of
the membrane, and from Eq. (6), we find that

T · k ≈ −T0Du · ν.

Now, let us write the instant equilibrium equation of the
portionGof the membrane. Assume that the vertical charges
in G are given by

−
∫

G0

p(x, t)dx,

and the vertical contribution of tensionT is

−
∫

∂G0

T0Du · νdσ,

wheredσ is the measurement along the curve∂G0. For an
accelerationutt, from Newton’s law the force is

∫

G0

ρuttdx.

Therefore,∀t ∈ < and∀G0 ⊂ Ω, we have
∫

G0

ρuttdx =
∫

∂G0

T0Du · νdσ +
∫

G0

p(x, t)dx.

Then, by using Green’s theorem
∫

∂G0

T0Du · νdσ =
∫

G0

T0div(Du)dx,

we have
∫

G0

[ρutt − T0div(Du)− p] dx = 0,

and becauseG0 is arbitrary, we find

utt − c2∇2u = f in Ω×<, (7)

where

c2 =
T0

ρ
and f =

p

ρ
.
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Here, the initial conditions are given by

u(x, 0) = ϕ0(x) x ∈ Ω (8)

and
ut(x, 0) = ϕ1(x) x ∈ Ω (9)

and the boundary condition is

u(x, t) = 0 x ∈ ∂Ω. (10)

So, we find that Eqs. (7) and (8) model the small forced
oscillations of a membrane.

3. The variable separation method

ConsiderΩ a domain in the<2 plane, and∂Ω its contour. Let
L2 (Ω) be the integrable square function space inΩ, that is

ϕ ∈ L2 (Ω) , if
∫

Ω

|ϕ (x, y)|2 dxdy〈+∞.

In L2 (Ω), the inner product of two functionsϕ andψ can
be defined as

〈ϕ,ψ〉 =
∫

Ω

ϕ (x, y)ψ (x, y) dxdy (11)

and the norm of a function

‖ϕ‖ = 〈ϕ,ψ〉1/2 =
(∫

Ω

|ϕ (x, y)|2 dxdy

)1/2
. (12)

Now consider the initial and boundary value prob-
lem (IBVP)

∂2u

∂t2
= c2∇u, (x, y, t) ∈ Ω× [0,+∞)

u (x, y, 0) = ϕ0 (x, y)

and

∂u

∂t
(x, y, 0) = ϕ1 (x, y) , (x, y) ∈ Ω

u (x, y, t) = 0, (x, y, t) ∈ ∂Ω× [0, +∞) .

Hereuis a function in the variables(x, y, t) and∇2udenotes
the Laplacian ofu on the variables(x, y)

∇2u =
∂2u

∂x2
+

∂2u

∂y2
. (13)

For simplicity we assume thatc = 1. The operator∇2

has a complete set of orthogonal eigenfunctionsΨj (x, y),
j = 1, 2, . . . that correspond to the eigenvalues

(−λ2
j

)
such

that thelimj→+∞λ2
j = +∞. Also, orthogonality of the sys-

tem means that〈Ψi,Ψj〉 = 0 for i 6= j. Hence, the fact that
the system is a complete set means that ifϕ ∈ L2 (Ω), then

ϕ (x, y) =
∞∑

j=1

cjΨj (x, y), (14)

where

cj=
1

‖Ψj‖2
〈ϕ,Ψj〉= 1

‖Ψj‖2
∫

Ω

ϕ0 (x, y) Ψj (x, y) dxdy.

Hence, the functionvj (t)Ψj (x, y) satisfies the wave
equation∂2u/∂t2 = ∇2u if and only if

..
v
j
(t) + λ2

jvj (t) = 0, (15)

that is

vj (t) = aj cosλjt + bj sin λjt.

Thus, the solution to the IBVP can be written as

u (x, y, t) =
∞∑

j=1

(aj cos λjt + bj sin λjt)Ψj (x, y), (16)

whereaj andbj are determined by the initial conditions

aj =
1

‖Ψj‖2
〈ϕ0, Ψj〉 =

1
‖Ψj‖2

∫

Ω

ϕ0 (x, y)Ψj (x, y) dxdy

and

bj=
1

‖Ψj‖2
〈ϕ1,Ψj〉= 1

λj

1
‖Ψj‖2

∫

Ω

ϕ1 (x, y)Ψj (x, y) dxdy.

The method described above is known as either thevari-
able separation methodor theFourier method.

3.1. The non-homogeneous equation

The variable separation method described above can be used
to solve the non-homogeneous equation

∂2u

∂t2
= ∇2u + q (x, y, t) , (17)

whose solution is expressed as

u (x, y, t) =
∞∑

j=1

vj (t) Ψj (x, y).

The functionsvj (t) are determined by the equation

..
v
j
(t) + λ2

jvj (t) = wj (t) , (18)

where

wj (t) =
1

‖Ψj‖2
∫

Ω

q (x, y, t)Ψj (x, y) dxdy

and the initial conditions being

vj (0) =
1

‖Ψj‖2
∫

Ω

ϕ0 (x, y)Ψj (x, y) dxdy
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and

.
v
j
(0) =

1
λj

1
‖Ψj‖2

∫

Ω

ϕ1 (x, y)Ψj (x, y) dxdy.

The function vj (t) is obtained as follows. Consider
Gj (t) as the solution of the homogeneous equation

..

G
j

(t) + λ2
jGj (t) = 0, (19)

with conditionsGj (0) = 0 and
.

G
j

(0) = 1. From here it is

obtained that

vj (t) = vj (0) cos (λjt)

+

.
v
j
(0)

λj
sin (λjt) +

t∫

0

Gj (t− s) qj (s) ds. (20)

Then, Eq. (19) can be easily solved as

Gj (t) =
1
λj

sin (λjt) . (21)

4. Solutions of the non-homogeneous wave
equation

The method described is now employed to solve the wave
equation for the case in which a term corresponding to a force
applied to a small area of the membrane is introduced. Three
different cases are discussed.

4.1. Rectangular membrane

First, consider the case of a rectangular membrane. The non-
homogeneous wave equation in this case can be written as

v2

(
∂2z

∂x2
+

∂2z

∂y2

)
+ q (x, y, t) =

∂2z

∂t2
, (22)

whereq (x, y, t) is the external force per mass unit applied on
the membrane.

From the variable separation method described earlier,
the solution to Eq. (22) has the form

z(x, y, t) =
∞∑

m=1

∞∑
n=1

umn (t) ψmn (x, y), (23)

where, after some algebra, we can obtain

umn (t) = umn (0) cos λmnvt +

•
u

mn
(0)

λmn
sin λmnvt

+

t∫

0

wmn (s)
λmn

sin λmnvsds, (24)

umn (0) =
∫

Ω

f (x, y)ψmn (x, y) dxdy, (25)

•
u

mn
(0) =

1
λmn

∫

Ω

g (x, y) ψmn (x, y) dxdy, (26)

wmn (s) =
∫

D

q (x, y, s)
v2

ψmn (x, y) dxdy (27)

and
ψmn (x, y) =

2√
ab

sin
mπ

a
x sin

nπ

b
y, (28)

where the functionsf (x, y) andg (x, y) correspond to the
deformation and initial velocity, respectively.

On the other hand, it is not difficult to demonstrate that
the oscillation modes for a rectangular membrane with sides
a, b, under an external chargeM , are given by Ref. 9.

p2
nm=P 2

nm


1−4M

ab

b∫

0

a∫

0

1
ρ

sin2 nπx

a
sin2 mπy

b
dxdy


 , (29)

whereρ is the membrane density.

4.2. Circular membrane

The second case considered is a circular membrane. The non-
homogeneous wave equation has the form

v2∇2z + q (r, θ, t) =
∂2z

∂t2
, (30)

whereq (r, θ, t) is the external force per mass unit. The wave
propagation velocity is given byv2 = T/ρ, whereT is the
tension on the membrane andρ is its density.

A solution of the formZ = (r, θ, t) = R (r) Θ (θ)T (t),
subject to the conditionsZ (b, θ, t) = 0, Z (r, θ, 0) = f (r, θ)
y Zt (r, θ, 0) = g (r, θ), is proposed.

The general solution for Eq. (30) is

Z (r, θ, t) =
∞∑

n=0

∞∑

k=1

[Unk (t)Φnk (r, θ) + Vnk (t)Ψnk (r, θ)],

(31)
where

Φnk (r, θ) =

√
2
π

1
bJn+1 (unk)

Jn

(unk

b
r
)

cos (nθ) (32)

and

Ψnk (r, θ) =

√
2
π

1
bJn+1 (unk)

Jn

(unk

b
r
)

sin (nθ) . (33)
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On the other hand, the functionsUnk (t) are given by

Unk (t) = Unk (0) cos vλnkt +

•
U
nk

(0)

λnk
sin vλnkt

+

t∫

0

wnk(s)
λnk

sin vλnksds, (34)

where

Unk (0) =
∫

Ω

f (r, θ)Φnk (r, θ) rdrdθ, (35)

•
U
nk

(0) =
1

λnk

∫

Ω

g (r, θ)Φnk (r, θ) rdrdθ (36)

and
wnk (s) =

∫

D

q (r, θ, s)Φnk (r, θ) rdrdθ. (37)

Similarly, the functionsVnk (t) are given by

Vnk (t) = Vnk (0) cos vλnkt +

•
V
nk

(0)

λnk
sin vλnkt

+

t∫

0

wnk(s)
λnk

sin vλnksds, (38)

where

Vnk (0) =
∫

Ω

f (r, θ) Ψnk (r, θ) rdrdθ, (39)

•
V
nk

(0) =
1

λnk

∫

Ω

g (r, θ)Ψnk (r, θ) rdrdθ (40)

and
wnk (s) =

∫

D

q (r, θ, s)Ψnk (r, θ) rdrdθ. (41)

Also, the oscillation modes for a circular membrane with
radiusa vibrating under an external chargeM , are given by

p2
k = λ2

kc2

[
1− M

ρπa2

J2
0 (λkr′)

J2
1 (λka)

]
. (42)

4.3. Elliptical membrane

The third case analyzed corresponds to an elliptical mem-
brane. The Mathieu equation is used for the analysis of this
problem. Different notations appear in the literature for the
Mathieu equation. Here, the notation we used has the form

2c2

ρ2 (cosh 2u− cos 2v)

(
∂2z

∂u2
+

∂2z

∂v2

)

+q (u, v, t) =
∂2z

∂t2
. (43)

The solution is expressed in terms of the Mathieu func-
tions

z (u, v, t) =
∑

Φ (t)ψmn (u, v), (44)

where

ψm,n (u, v) = cer (v, q)Cer (v, q) + ser (u, q)Ser (u, q) ,

(45)

Φ(t) = Φ (0) cos ωt +
•
Φ(0)
λmn

sin ωt

+

t∫

0

wmn (s)
λmn

sin ωsds, (46)

Φ (0) =
∫

Ω

f (u, v)ψmn (u, v) dΩ, (47)

•
Φ (0) =

1
λmn

∫

Ω

g (u, v)ψmn (u, v) dΩ (48)

and

wmn (s) =
∫

q (u, v, s)
c2

ψmn (u, v) dΩ. (49)

5. Computational simulation

Just as a guide, a piece of MAPLE code for the simulation of
the vibrational modes of a circular membrane under an exter-
nal force, is presented next.

The case analyzed corresponds to a circular membrane
with massm, densityρ, and radiusb, where an external
forcew0 acts on a circular region of radiuse, with b À e.

> #Define a compact notation for Bessel J function and its zeroes
> alias(J=BesselJ,j=BesselJZeros):
> #Define relevant constants and the function omega
> b:=0.5: c:=sqrt(T/rho): rho:=1.2: T:=w0: m:=0.007: M:=0.02: e:=0.08: r1:=(b/2)-e: r2:=r1+2*e: g:=981: w0:=M*g: f:=r- >r:
theta0:=arctan(e/(r1+e));
> omega:=n- >k(n)*c;
> k:=n- >j(0,n)/b;
> #Evalue constants of integration
> A:=evalf(Int(r*f(r)*J(0,j(0,1)*r/b),r=0..b));
B:=evalf(Int(r*J(0,j(0,1)*r/b),r=0..e));
> #Define the function z to plot in cylindrical coordinates
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> z1:=n->((4*J(0,omega(n)*r/c))/(b 2*J(1,omega(n)*b/c) 2))*(A*cos(omega(n)*t)+(w0*B/(m*j(0,1) 2*c 2))*(cos(omega(n)*t)-1)
*(Heaviside(r-r1)*Heaviside(r2-r)*Heaviside(theta0-theta)));

> #Plot the animation for each node of vibration (n)
> with(plots):
> animate3d([r,theta,z1(1)], r=0..b, theta=0..2*Pi,
> t=0..2*Pi/omega(1), coords=cylindrical,frames=50);

Figure 1 shows the evolution of the first vibrational mode
for a circular membrane. It can be seen that the oscillations in
the region under an external charge have much higher ampli-
tudes than the other parts. The animation for other different
modes is easily performed by substituting in the last two lines
of the code the functionsz1(1) andomega(1) by z1(n) and
omega(n), respectively.

FIGURE 1. Evolution of the first vibrational mode for a circular
membrane under an external force, obtained using a MAPLE code.

Finally, for the cases of both rectangular and elliptical
membranes, the only changes needed in the numerical code
are the corresponding coordinate systems.

6. Conclusions

The theoretical solutions of the non-homogeneous wave
equations for membranes of three different shapes, that is,
rectangular, circular, and elliptical, have been considered.
Also, a simple numerical simulation using a MAPLE code
has been provided to study the vibrational modes of a circu-
lar membrane under an applied external force. The numeri-
cal code developed can be easily adapted for studying mem-
branes of different shapes. The results obtained could be use-
ful for the understanding of the oscillations of membranes in
different applications, especially to analyze experimental re-
sults recorded by adding a charge on the membrane. Also,
the method could be used as a help in teaching.
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