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Computational study of forced oscillations in a membrane
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The solution of the model for small forced oscillations in membranes is described. The cases of rectangular, circular and also elliptical
membranes are discussed. A simple computer animation example is provided using the MAPLE software package. The evolution of the first
vibrational mode for a circular membrane is presented. The results obtained are useful for the understanding of membrane oscillations in
different applications. Also, the method could be used as a help in teaching.
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La solucbn del modelo para oscilaciones forzadas pégsen una membrana es descrita. Los casos para membranas rectangulares, circu-
lares y elpticas son discutidos. Un ejemplo simple de animacomputacional es presentado usando el paquete de software MAPLE. La
evolucbn del primer modo vibracional para una membrana circular es presentada. Los resultados obtefiiles parma el entendimiento

de oscilaciones en membranas, en diferentes aplicaciones.&dehmétodo pudiera ser de ayuda en la érasea.

Descriptores: Membrana; modos de osciléci forzados; simuladn computacional.

PACS: 01.55; 02.70

1. Introduction the tympanum under external sound pressure. For example,
in Refs. 7-8 are described some experiments designed to de-
The study of free oscillations in membranes is a classitect the vibrations of the tympanum, by measuring either the
cal problem, widely discussed in most of the mathematicamagnetic flux changes of a permanent magnet or the reflected
physics textbooks [1] and in many papers [2,3]. Howeverljight by a mirror attached to the tympanic membrane. In these
the study of oscillation modes in a membrane under an exeases, both the magnet and the mirror act as external charges
ternal force is a much more complex problem, rarely treate@n the membrane, which must be taken into account for a
in most textbooks. This is due, in part, to the fact this manybetter understanding of the oscillation modes.
interesting applications of that kind of prOblem leads to an- In Secs. 2 and 3, we present a discussion of the model
alytical solutions too difficult to be obtained and in most of for the small forced oscillations of a membrane and the vari-
the cases impossible; only recently has it been possible tgple separation method, respectively. In section 4 are shown
take advantage of Computational tools for Obtaining numeri-the solutions of the non_homogeneous wave equationS, to de-
cal solutions. scribe the vibrations of rectangular, circular, and also ellipti-

Recently, some works have been published concerningal membranes. Finally, section 5 is concerned to the numer-
the oscillation modes in a circular membrane under an extefical simulations with the vibrational modes of a membrane.
nal force. The problem of the oscillation of an elastic circu-
lar membrane under a pressure difference has been discussed
both theoretically and experimentally by Olit al. [4]. 2. Model for the forced oscillations of a mem-
Also, a computer algebra study is shown in Ref. 3 for a force brane
applied to a circular membrane.

On the other hand, the oscillations in an elliptical mem-Consider a membrane, of constant dengjtywhose thickness
brane are described by the Mathieu functions [2,5,6]. can be neglected with respect to its size.

In this paper the forced oscillation solutions for rectan-  Suppose that, besides the membrane occupies an open
gular, circular and also elliptical membranes are discussediet Q@ C R2with contour 9Q of class C' and it be-
Also, a simple computer animation using the MAPLE soft-gins to vibrate under the action of a vertical charge, say
ware package is provided for a circular membrane. (x1,22) — p(x71,22).

The solutions obtained can be used for describing differ- Now take a small regiod:, C 2 with contourdG of
ent physical systems. In particular, we want to emphasizelassC', and letG be the corresponding portion of the mem-
that the understanding of forced oscillations in an ellipticalbrane, that isZ is the graph of: — u (z, t) restricted taG.
membrane could be applied to simulate the oscillations oflso, consider a curv& which is the bounding ofs. Thus
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tensionT acts at a poinf® € I'" and it is tangent t@> and
normal toI'.

Let 7 be the unitary vector of andn the normal unitary
vector exterior ta&7 in P. Also, consideke the unitary vector

tangent td” in P. Then, we find that
T=exn. (1)

In order to calculate the vertical component Bfin
P €T, consider a parametrization Bf such that

Py (s) = (21 (s) 22 ()

Hence, the normal unitary vector exteriord& is given

by
(2. —01)
/56112 ¥ ;13'22’

whereP, (s) = (xl (s),xy (s)) is tangent td,
Also, consider the parametrization bf

P(s)=(Po(s),z3(s)),

sel CR.

)

u =

wherezs (s) = u(z1 (s),z2 (s),t). Then, the unitary vec-

tor etangent td” is given by

(xll, acl2, x;)) (P(;, Du - P(;)

e= =
VaP+af+af i

2 4 |Du-Py*

whereDu denotes the gradient af, and the normal unitary

vector exterior to G in points df is
Du, -1

S (Du-1)

1+ || Dul?

Therefore, from Eqg. (1) we get

i ik )

T =det x,l 33/2 xé =,

J
Uy, Ug, —1
where
! 2 ’ 2
J =1+ 1D\ | PP + | Du- B 3)
Thus,

Jr-k=— (ac;,—x/l) - Du

=—\/z2+ 22 Du-v. 4)

This last expression is obtained from Eq. (2), wheis nor-
mal todG), thatis,v - Py = 0.

On the other hand, iB = cos#, whered is the angle

between the vectoBu and P, we have

Du- Py = |Dull | B[ 5 5)

Then, substituting Eq. (5) into Egs. (3) and (4), we have

Du-v
Js

It can be seen that

k= . Js=\/1+ [Dul*y/1+ 8 | Dul®.

L+ (8] | Dull?® < Jg < 1+ || Dul?, (6)

where the inequality on the left side of Eq. (6) is obtained
from the Cauchy-Schwarz inequality

L+ Bl 1Dul* = (L, | Dul)), (1, 18] | Dul)) < Jp.

Then, becausgs| < 1, the inequality on the right side of
Eq. (6) is obtained. Hence, considering that the vibrations
are only in the direction ofi, normal to the rest position of
the membrane, and from Eq. (6), we find that

T-ka —-TyDu-v.

Now, let us write the instant equilibrium equation of the
portion Gof the membrane. Assume that the vertical charges

in G are given by
- [ .ty

Go
and the vertical contribution of tensidnis
— / ToDu - vdo,
Gy

wheredo is the measurement along the cud@,. For an

acceleration;;, from Newton’s law the force is

/ puydr.

Go
Thereforeyt € i andvVG, C 2, we have
/puttdx = / ToDu - vdo + /p(a:, t)dx.
Go 6G0 G[)
Then, by using Green’s theorem
/ ToDu - vdo = /TodiU(Du)da:,
G0 Go
we have
/ [puy — Todiv(Du) — p]dz =0,
Go
and becausé, is arbitrary, we find
uy — V2 u = f inQ x N, @)

where

T
=22 and f="L.
p p
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Here, the initial conditions are given by where
_ 1 1
U(Iao) _@0($) z € (8) Cji=—yg <<p’\:[l]> :72/@(] (x7y) \Ilj (1-7y) d;pdy
[l (5]

and Q

u(z,0) = pi(z) € ©) Hence, the function; (t) ¥, (z,y) satisfies the wave
and the boundary condition is equationd?u/ot? = V2 if and only if

u(z,t) =0 =z € oN. (10) ¥ (t) + Ajv; (t) =0, (15)

J
So, we find that Egs. (7) and (8) model the small forced
. that is
oscillations of a membrane.
v; (t) = aj cos \jt + b; sin Ajt.

3. The variable separation method . .
Thus, the solution to the IBVP can be written as

Consider2 a domain in thék? plane, and)2 its contour. Let oo
L? (Q) be the integrable square function spac@irthat is (z,y,t Z ajcos \jt + b sin \;t) U; (2,y), (16)
j=1

per?@. 1 [lomy) dedylaoo | N
wherea; andb; are determined by the initial conditions

In L? (2), the inner product of two functionsandycan ~ , _ 1, 1 / )T (1) dod
be defined as AT 3 (vo, ¥j) = T2k (z,y) ¥ (z,y) dedy

<%w:4wmwwmwmw 1) and

. 1 1 1
and the norm of a function bji=—— <</)1,\1/j>:r 5 /<p1( ) VU, (2, y) dedy.
5 (95| 3 1]l
1
_ 9 _ 2
ol = (p,9) 2 = (/Q lp (2, )] dmdy) : (12) The method described above is known as eitherére

) o able separation methoor the Fourier method
Now consider the initial and boundary value prob-

lem (IBVP) 3.1. The non-homogeneous equation
2
877; = 2Vu, (z,y,t) € Q x [0,+00) The variable separation method described above can be used
ot to solve the non-homogeneous equation
u(x7y70):<p0 (xvy) 82
U o2
and ﬁ_v U+Q(‘ray7t)a (17)
a . .
81; (z,9,0) = o1 (2,y), (2,y) € Q whose solution is expressed as
U(I’7y,t) :07 (I',y,t) GaQX [07+OO) SL’ y, ZUJ
Hereuis a function in the variablegr, y, t) andV2udenotes
the Laplacian of: on the variablegz, y) The functionsy; (¢) are determined by the equation
%u  O%u . 2
For simplicity we assume that= 1. The operato’/>  where
has a complete set of orthogonal eigenfuncti@ngz, y), 1
j = 1,2,... that correspond to the eigenvalugs)?) such w; (t) = T /q(%y,t) U, (z,y) dedy
J

that thelszéJroo)\ = +o0. Also, orthogonality of the sys-
tem means tha(t\IJZ, ;) = 0fori # j. Hence, the fact that — " .
the systemis a complete set means thatdf L? (Q2), then and the initial conditions being

- chqjj (z,y), (14) v; (0) = H‘ij||2 !500 (z,y) V; (z,y) dedy

Jj=1
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and where, after some algebra, we can obtain
()=~ ! / (2,9) ¥, (,y) dad ) (0) cos A e
v =3 L1,y T,y)axray. Umn, = Umn COS AT + S1 AV
7 A )P Amn
[ 0o (5)
The functionwv; (t) is obtained as follows. Consider + / . S A v, (24)
G, (t) as the solution of the homogeneous equation 0
o i 0) = [ £ @5 (0, dady, (25)
G () +A2G; (1) =0, (19) J
J
o 1
. . . L u (O) = Ao (lE y) wmn (Ivy) dlﬁdy, (26)
with conditionsG; (0) = 0 andG (0) = 1. From here it is mn
J
obtained that
Wi ( / 985y (2,y) dody (27)
v; (t) = v; (0) cos (A;1) b
v (0) ! and 2 . mm . nrw (28)
L sin(A\t) + / G, (t—s)q;(s)ds.  (20) Ymn (2,9) = —=sin Zmasin 25y,
’ 0 where the functions (z,y) andg (x,y) correspond to the
deformation and initial velocity, respectively.
Then, Eqg. (19) can be easily solved as On the other hand, it is not difficult to demonstrate that

the oscillation modes for a rectangular membrane with sides
a, b, under an external charg\é, are given by Ref. 9.

4. Solutions of the non-homogeneous wave wherep is the membrane density.
equation

1 sin (A;t) . (21)

Gj (1) y

4.2. Circular membrane

The method described is now employed to solve the wav&he second case considered is a circular membrane. The non-
equation for the case in which a term corresponding to a forceomogeneous wave equation has the form
applied to a small area of the membrane is introduced. Three e
different cases are discussed. v*V22 +q(r,0,t) = 875;’

whereq (r, 0, t) is the external force per mass unit. The wave
propagation velocity is given by> = T'/p, whereT is the
tension on the membrane apdk its density.

(30)

4.1. Rectangular membrane

A solution of the formZ = (r,6,t) = R(r)© () T (t),
First, consider the case of a rectangular membrane. The nogypject to the conditiong (b,0,t) =0, Z (r,0,0) = f(r,0)
homogeneous wave equation in this case can be written as y, 7, (r,0,0) = g (r,0), is proposed.
The general solution for Eq. (30) is
0%z 0%z 0%z
-4z Y t) = =, 22
! (ax2+a2>+q(” )= o @D o Z Unie () @ (1,0) + Viggo (£) Wy (1, 0)],
n=0%k :1
(31)

whereq (z, y, t) is the external force per mass unit applied on
the membrane.

From the variable separation method described earlier, ¢, (1 6) = \/5 1 7. (%r) cos (nf) (32)
the solution to Eq. (22) has the form 7 bJnt1 (Unk) b

where

and

(2,9.1) Z Zun )bmn (@,9), (23w, (r,0) = \/Eljn (%’%) sin (nf) . (33)

m=1n=1 7Tan+1 (unk)
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On the other hand, the functiohs,; (¢) are given by 4.3. Elliptical membrane
[} (0) The third case analyzed corresponds to an elliptical mem-
Upi: (£) = Un (0) cos vApit + S sin vt brane. The Mathieu equation is used for the analysis of this
Ank problem. Different notations appear in the literature for the
t (s) Mathieu equation. Here, the notation we used has the form
WniS) .
+ / W sin v, sds, (34) 92 i ) ﬁ
p? (cosh2u — cos2v) \ Ou? ~ Ov?
where 922
+q (u,v,t) = 2 (43)
Unr (0) = / f(r,0) Pk (r,0) rdrdo, (35)
@ The solution is expressed in terms of the Mathieu func-
. 1 tions
U (0 z—/g r,0) O (r,0) rdrdf (36)
nk( ) Ank (r:6) o (1) (u,v,t) Z@ ) Yo, (u,v), (44)
and where
wp (8) = /q (r,0,5) @i (r,0) rdrdo. (37) Yrnm (u,v) = ce, (v,q) Cey (v,q) + se, (u, q) Ser (u,q)
D
Similarly, the functiond/,,;; (¢) are given by (45)
vV (0) B o(0)
Vik (t) = Vo (O) CoS VAnit + nl;\ sin v Ap it ® (t) =9 (0) coswh+ mn st
t nk . (
Wmn (S
+ / Wk (5) sin v Apxsds, (38) + / Amn sinwsds, (46)
)\nk 0
0
where /f U, V) Yy (u,v) dS2, (47)
Q
Var (0) = /f (r,0) Uy (r,0) rdrdd, (39) R
) 20 =1 (9w @ade @)
. 1 mn a
= — 0) U,k (r,0) rdrdd 40
VO =1 [0 @0
Winn (8) = / Mwmn (u,v) dQQ. (49)
and c

Wy (8) = /q (r,0,5) W (r,0) rdrdf. (41)
S 5. Computational simulation

Also, the oscillation modes for a circular membrane with

radiusa vibrating under an external chardé, are given by Just as a guide, a piece of MAPLE code for the simulation of

the vibrational modes of a circular membrane under an exter-
) ) M J2 (At nal force, is presented next.

Pe = Akc” |1 = pra2 J27(/\ka) : (42) The case analyzed corresponds to a circular membrane

! with massm, density p, and radiusb, where an external

| forcew0 acts on a circular region of radieswith b > e.

> #Define a compact notation for Bessel J function and its zeroes
> alias(J=BesselJ,j=BesselJZeros):

> #Define relevant constants and the function omega

> b:=0.5: c:=sqrt(T/rho): rho:=1.2: T:=w0: m:=0.007: M:=0.02: e:=0.08: r1:=(b/2)-e: r2:=r1+2*e: g:=981: w0:=M*g: f:=r- >r:
thetaO:=arctan(e/(r1+e));

> omega:=n- >k(n)*c;

> k:=n->j(0,n)/b;

> #Evalue constants of integration

> A:=evalf(Int(r*f(r)*3(0,j(0,1)*r/b),r=0..b));
B:=evalf(Int(r*J(0,j(0,1)*r/b),r=0..e));

> #Define the function z to plot in cylindrical coordinates
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> z1:=n->((4*J(0,omega(n)*r/c))/(b 2*J(1,omega(n)*b/c) 2))*(A*cos(omega(n)*t)+(w0*B/(m*j(0,1) 2*c 2))*(cos(omega(n)*t)-1)

> #Plot the animation for each node of vibration (n)
> with(plots):

> animate3d([r,theta,z1(1)], r=0..b, theta=0..2*Pi,

> t=0..2*Pi/lomega(1l), coords=cylindrical,frames=50);

Figure 1 shows the evolution of the first vibrational mode

*(Heaviside(r-r1)*Heaviside(r2-r)*Heaviside(thetaO-theta)));

for a circular membrane. It can be seen that the oscillations in Finally, for the cases of both rectangular and elliptical
the region under an external charge have much higher amplimembranes, the only changes needed in the numerical code
tudes than the other parts. The animation for other differenare the corresponding coordinate systems.

modes is easily performed by substituting in the last two lines

of the code the functions1(1l) andomeg4l) by z1(r) and
omegdn), respectively.

FIGURE 1. Evolution of the first vibrational mode for a circular

6. Conclusions

The theoretical solutions of the non-homogeneous wave
equations for membranes of three different shapes, that is,
rectangular, circular, and elliptical, have been considered.
Also, a simple numerical simulation using a MAPLE code
has been provided to study the vibrational modes of a circu-
lar membrane under an applied external force. The numeri-
cal code developed can be easily adapted for studying mem-
branes of different shapes. The results obtained could be use-
ful for the understanding of the oscillations of membranes in
different applications, especially to analyze experimental re-
sults recorded by adding a charge on the membrane. Also,
the method could be used as a help in teaching.
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