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We discuss some properties of the functibmzz /7 which is (sometimes) indicated by the symbol sincThis function is associated with
problems involving filtering or interpolating functions. Several integrals are presented and a general rule is discussed.
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Algunas propiedades de la fubaisin mz /2 comunmente llamada sing son discutidas. Tal fungn surge en problemas que involucran
funciones de filtro o de interpolam. Algunas integrales son presentadas y una regla gérsedidcutida.

Descriptores: Teorema de los residuos; fudaifiltro; funcion interpoladdn.
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1. Introduction where the integral is interpreted as a normalizatian, the

) ~central ordinate is unity and the total area under the curve is
Several real integrals can be performed by means of inteyisg unity.

grals on the complex plane. The problems which appear another frequently needed function is the square of
in such calculations are associated with two questions: (&gjncy, i.e.

What is the function that must be considered?, and (b) What

is the best (or most convenient) contour, of integration? After Sind (Sin 7r17> 2

choosing the function and determining the contour we pro-
ceed to the calculation using the residue theorem and Jordan
lemma. which represents the pattern of radiation power of a uni-
The accumulation of chance effects and the Gaussian fréormly excited antenna, or the intensity of light in the Fraun-
quency distribution is discussed by Silberstein [1] and Grim-hofer diffraction pattern in a slit.
sey [2], respectively. Some operations involving “white”  The properties associated with sin@are valid for the
noise, for example, the intermodulation distortion, are presquare of sine. More about these functions can be seen
sented by Medhurst and Roberts [3]. in Ref. 4, where the Fourier transform is considered, with
Here we discuss a methodology for evaluating integraldts pictorial representation. Several applications can also be
related to the filtering functions which appear in several probseen in Ref. 5 where information theory is discussed; appli-
lems, for example, in the theory of probability and the Fouriercations to radar are also presented.
transform technique.
This_paper is organized as follows: in_ Sec. 2, we intro-3. Integrals of filtering functions
duce a filtering function known also as an interpolating func-
tion; in Sec. 3, we obtain the integral explicitly, using the Here, we introduced the sincfunction as a function normal-
function siné z, and we present some other integrals involv-ized to unity. The same is true for the square of sinice. its
ing powers of sine. integral is normalized to unity. One might ask if for all pow-
2. Filtering function ers of sincr we have the same result, that i; if their integrals
are also normalized to unitye. if the following results are

The filtering function, also called the interpolating function, Vvalid:
is defined by the quotient o0

/ siné z dz = 1; / sindzdr =1,
—o0

T

sinwx

= since
g >
and obeys the following properties: and so on. The answer to this question is no.
) In this paper we discuss how to calculate a class of inte-
sinc0 = 1 grals involving a power of sing, i.e. integrals of the form

sinck =0 k = nonzero integer
o0

/siandx =1, /sinc’“xd:c
—o0

— 00
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wherek = 1,2, 3,... We have already seen that in the cases = We parameterize the semicircle as follows:
k = 1 andk = 2 the integrals or the areas under the curves
are unitary.

For simplicity, and for pedagogical reasons, we dis-in 0 < 9 < 7 ande > 0, and substituting in Eq.(2), we
cuss the integral involving the function sitaconly, but the obtain
methodology presented is the same for the other cases, with

k =4,5,... Then, to calculate the integral 7 T 6
9 /f(;f)dxzi/{l' flee )}de.
X

z=c€?

1m -
e—0 62e219

o0 ., 3 oo, . 3
/ sinc z dx = / <sm7mc) dac:l / (smx) dz, 0
T T v Using I'Hopital’s theorem, we can write

— 00 — o0 — 00
we firstly consider another convenient integral in the complex i gliz _ 3giz 4 9
plane,i.e. the following integral / sz = =3,
Ay ez 4 As e + As d 1 e
/ 23 ‘ @) and by means of Euler’s relation we obtain two integrals in-
¢ volving trigonometric functions;os x andsin z,
whereA;, A; andAs are constants which will be determined oo
in a convenient way. / cos 3z — 3cosT + Qdm —0
C' is a contour in the complex plane composed of two 3 ’
straight line segments; R < z < —e ande < = < R, where -

r = R(z), and enclosed by two semicirclgs; andC; cen-  which is a well known result because the function under the
tered atz = 0 with radii e and R, respectively. The contour integral is an even function integrated in a symmetric interval,

is oriented in the positive directione. counterclockwise. and
We note that the singularity in= 0 is outside of the con- 0o
tour. We can also note that= 0 can be a pole or aremovable / sin 3z — 3sin Ly
. . . ————dx = —3m7.
singularity, depending on the constants, A, and As. x3

— 00

Then, to evaluate the integral, we require that the sin-
gularity be a removable singularity. Using the residue theFinally, to obtain our integral of the sinefunction, we use

orem [6] with the contour defined above, we can write a relation involving the trigonometric functions of the triple
angle written in terms of sifa: and sincz, i.e.
O
——=dz=0
23 1 . 3 Asind
c P sin 3r = ?SIHC:U —4sinc z,
wheref(z) = A; €% + A, €% + A3. As a result we get and then
S e’} oo 3
x —0 Jc 2 ) a3 8
—oo ' 0 0
wherez = R(z), and we have used the Jordan lemma. Inthis  In the same way, we can show the following results:
expression(, denotes the semicircle centerectat 0 with o
radiuse. /sinc‘*xdx _ 1
g 3
0
T . 115
0
Cy o
. 11
sind zdz = —.
40
Cy 0
//\\ which are the same results that appear in Ref. 7. As a by-
— - - product, we can obtain a result for other filtering functions,
—R —€ 0 +e€ R x
7-292
. 7 _
/SInC T dr = W
FIGURE 1. Contour for integration of Eq. (1). 0
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and and, most important, the area is independent of width

® Therefore, whefl" increases, the functioPr(x — £) be-

. 151 . . L
/smcS rdr = ———. comes like the Dirac delta functioniss.
2-32.5-7
0
1 [sinT(x —

_ S —€) = lim - {Sm@c@}

4. Conclusion Tooom | w—§

In this paper we have pointed out a general methodology fofnd, remembering the property of the Dirac delta function,
evaluating some integrals involving a class of filtering func-
tions, by means of a convenient integration in the complex r
plane. Another way to evaluate this type of integrals is dis- / f(§)d(z — €)dE
cussed and presented by Sofo [8]. ~ o0
For pedagogical reasons, we have calculated explic-

itty only the integral involving sin&z, but the methodol- — lim / f(g)l [SinT(x—S)} dé = f(z)
ogy can be extended to all integer powers of &incwith T—o0 m x—& ’
k=1,2,3.... —eo

_ Unfortunately it was impossible to write a closed eXPres-, .o associate the functioB-(z — ) as a filtering function.
sion for these calculations.
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g y 99 Now, deriving the functionf(z) in relation toz and taking

To calculate constantd,, A, andAs, we first setf(0) = 0
and then we get

A1+A2+A3:0.

tions. z = 0 (singularity), we obtain
Appendix A: Delta function as a filtering func- 34; + Ay = 0.
tion

Then, we have a system for three constadts, A, and As,
but only two equations. This system is an indeterminate sys-
A tem,i.e. it has infinite solutions. For example, takidg = 1,

We consider a functio®r(x — &) defined as

Dp(z—¢) = = / er@=8qy, Ay = —3,andAs = 2 (we can take any one of the infinite so-
2“4 lutions of the indeterminated system), we obtain a solution of
with T > 0 and, finding the integral over, we have this system and then our function can be written as follows:
DT(xfg):l {sinT(x—f)} . f(2) = € — 3¢ + 2.
s x—E&

If we plot the graph oD (z — &) as a function ofc, main-  For example, for the case = 7, we must consider the fol-
tainingé = constant, for example, equal to zero, we note thatowing function:
the width of the curve decreases’@sncreases. Calculating

the area under the curve, we have F(2) =672 —76P* 1 216P1* — 35e¢z+ﬁz4 11422 4+ 90.
T 1 [ sinT@x—¢ 1
/ Dr(z —&)dz = — / R do = — In order to get this result, we must use Bpital’s rule five
—o0 —o0 times.
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