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Most textbooks of electromagnetism give comparable weights to the presentation of Maxwell equations in their integral and differential
forms. The same books, when dealing with the Lorentz covariance of the Maxwell equations, limit themselves to the discussion of their
differential forms, and make no reference to their integral forms. Such a gap in the didactic literature is bridged in this paper by explicitly
constructing the latter via the integration of the former, for the source-dependent and source-independent cases, over a four-vector and a
rank-3 tensor hypersurfaces, respectively.
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La mayoŕıa de los textos de electromagnetismo dan pesos comparables a la presentación de las ecuaciones de Maxwell en sus formas
integrales y diferenciales. Los mismos libros, al tratar la covariancia de Lorentz de las ecuaciones de Maxwell, se limitan a la discusión
de sus formas diferenciales, y no hacen referencia a sus formas integrales. Tal laguna en la literatura didáctica se elimina en este artı́culo,
construyendo explı́citamente laśultimas por medio de la integración de las primeras, para los casos dependientes e independientes de las
fuentes, sobre hipersuperficies cuadrivectorial y tensorial de rango 3, respectivamente.
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1. Introduction

Introductory [1–3], intermediate [4, 5], advanced [6–8] and
graduate [9–12] books on electromagnetism usually present
Maxwell equations in their integral forms first, and then make
use of them and of the Gauss and Stoke theorems to ob-
tain their differential forms. The balanced presentation of
both forms at this initial stage can be contrasted with the one
sided discussions of the Lorentz covariant differential forms
of Maxwell equations in the same texts, in which the integral
forms are practically absent. The purpose of this work is to
provide a balance in the study of the Lorentz covariance of
Maxwell equations in both forms, filling in an obvious gap in
the books.

Section 2 contains a brief review of Maxwell equations,
the connections between their integral and differential stan-
dard forms, and their Lorentz covariant differential forms,
with emphasis on their physical contents and the mathemat-
ical arguments to go between their various forms. Section 3
presents the Lorentz covariant integral forms of Maxwell
equations, constructed by integrating the corresponding dif-
ferential forms over a four-vector and a rank-3 tensor hy-
persurfaces for the source-dependent and source-independent
cases, respectively. Section 4 contains a discussion of the ad-
ditional physical insights, including important relativistic ef-
fects, that follow from the connections between the Lorentz
covariant and standard integral forms of Maxwell equations.

2. Maxwell equations in standard and Lorentz
covariant differential forms

Maxwell equations are the mathematical expressions of the
laws of electromagnetism. These laws are described in words

first, and their successive mathematical forms are presented
next.

Gauss electric law: Electric charges are sources of elec-
tric flux.

Ampére-Maxwell law: Electric currents and displace-
ment currents are sources of magnetic circulation.

Gauss magnetic law: There are no magnetic monopoles
as sources of magnetic flux.

Faraday electromagnetic induction law: The time rate of
change of magnetic flux is a source of electric circulation .

The first two laws are identified as the source-dependent
laws and the last two as the source-independent laws. The
former are consistent with the law of conservation of elec-
tric charge, while the latter make the description of the elec-
tromangetic phenomena possible in terms of potentials, as
shown later on.

Now we proceed to express the same laws in the form of
Maxwell equations in the standard integral forms:

∮

S

~E(~r, t) · d~a = 4πQ(t) (1)

∮

C

~B(~r, t) · d~l =
4π

c
I(t) +

1
c

d

dt

∫

S

~E(~r, t) · d~a (2)

∮

S

~B(~r, t) · d~a = 0 (3)

∮

C

~E(~r, t) · d~l = −1
c

d

dt

∫

S

~B(~r, t) · d~a (4)

Here the surface integrals over closed surfacesS of
Eqs. (1) and (3), of the respective electric intensity field~E
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and magnetic induction field~B, correspond to the mathemat-
ical flux integrals. In Eq. (1),Q represents the electric charge
within the volume limited by the closed surface of integra-
tion, while in the magnetic case, Eq. (3), the corresponding
term is zero due to the non existence of magnetic monopoles.
The line integrals over closed curvesC of Eqs. (2) and (4),
correspond to circulation integrals for the respective fields. In
Eq. (2), I represents the intensity of the electric current cross-
ing the open surface limited by the curveC, while the dis-
placement current is associated with the time rate of change
of the electric flux across the same open surface. Similarly,
in Eq. (4), the right hand side dependends on the time rate of
change of the magnetic flux across the open surfaceS lim-
ited by the curveC. Also, the positive signs on the r.h.s. of
Eq. (2) are consistent with Ampere’s “right hand” law deter-
mining the relative direction of the currents and the magnetic
induction field, while the negative sign on the r.h.s. of Eq. (4)
is required by Lenz’s “left hand” law, in order to guarantee
energy conservation

In order to go from the integral forms of Maxwell’s equa-
tions (1)- (4) to the respective differential forms, use is made
of the Gauss and Stokes theorems for any vector fieldV (~r, t):

∮

S

~V (~r, t) · d~a =
∫

V

∇ · ~V (~r, t)dτ (5)

∮

C

~V (~r, t) · d~l =
∫

S

∇× ~V (~r, t) · d~a, (6)

also known as the flux (or divergence) and circulation (or
curl) theorems.

The first one gives the flux integral as a volume integral
of the divergence derivative of the field,∇ · ~V , while the sec-
ond expresses the circulation integral as the surface integral
of the curl derivative of the field,∇× ~V . The point limits of
Eqs. (5) and (6) lead to the geometrical interpretation of such
derivatives:

∇ · ~V = lim
∆τ→0

∮
S

~V (~r, t) · d~a
∆τ

(7)

(∇× ~V ) · n̂ = lim
∆a→0

∮
C

~V (~r, t) · d~l
∆a

(8)

as the flux per unit volume and the circulation per unit area,
respectively.

Therefore, the standard differential forms of Maxwell’s
equations follow immediately from Eqs. (1)- (4) and (7)- (8):

∇ · ~E(~r, t) = 4πρ(~r, t) (9)

∇× ~B(~r, t) =
4π

c
~J(~r, t) +

1
c

∂ ~E(~r, t)
∂t

(10)

∇ · ~B(~r, t) = 0 (11)

∇× ~E(~r, t) = −1
c

∂ ~B(~r, t)
∂t

, (12)

whereρ(~r, t) = ∆Q/∆τ is the electric charge volume den-
sity and~J · n̂ = ∆I/∆a is the electric current density.

When the divergences of both sides of Eq. (10) are eval-
uated, the l.h.s. vanishes, and the divergence of the electric
intensity field on the r.h.s. can be substituted by its value
from Eq. (9) with the final result

∇ · ~J +
∂ρ

∂t
= 0, (13)

which is the continuity equation expressing the conservation
of electric charge.

The solenoidal character of the magnetic induction field
as expressed by Gauss law, Eq. (11), is immediately satisfied
when written as

~B = ∇× ~A (14)

in terms of the vector potential~A. Substitution of Eq. (14)
in (12) allows us, in turn, to write

~E = −∇φ− 1
c

∂ ~A

∂t
(15)

in terms of the scalar potentialφ. Equations (14) and (15) are
solutions of the differential Eqs. (11) and (12), but the poten-
tials ~A andφ are not uniquely defined. We are free to change
them via the so-called gauge transformations:

~A → ~A +∇χ (16)

and

φ → φ− ∂χ

c∂t
, (17)

leaving the force fields~B and ~E with the same values, or
invariant.

The differential equations satisfied by the potentials are
obtained by substituting Eqs. (14) and (15) in the source-
dependent Maxwell’s equations (9) and (10). The resulting
equations,

−∇2φ− 1
c

∂

∂t
(∇ · ~A) = 4πρ (18)

∇(∇ · ~A)−∇2 ~A =
4π

c
~J − 1

c
∇

(
∂φ

∂t

)

− 1
c2

∂2 ~A

∂t2
, (19)

are coupled equations in both potentials. They can be uncou-
pled by choosing the Lorentz gauge

∇ · ~A +
∂φ

c∂t
= 0, (20)

with the result that both potentials obey the inhomogeneous
wave equations

∇2φ− 1
c2

∂2φ

∂t2
= −4πρ (21)

∇2 ~A− 1
c2

∂2 ~A

∂t2
= −4π

c
~J, (22)
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with the electric charge densityρ and the electric current den-
sity ~J as their respective sources. Notice that for the time in-
dependent situations, Eqs. (21) and (22 become the Poisson
equations of electrostatics and magnetostatics, respectively;
while the Lorentz gauge of Eq. (20) reduces to the transverse
gauge.

Now we are in a position to identify the tensorial char-
acteristics of the sources, potentials and force fields under
Lorentz transformations, by writing their respective equa-
tions in obviously covariant forms. The starting point is to
introduce the four-vectorxµ(x, y, z, ict) defining the space-
time position of each event, whereµ = 1, 2, 3, 4. Then
the space-time displacement between two neighboring events
is given by∆xµ(∆x, ∆y, ∆z, ic∆t). Correspondingly, the
space-time rate of change involves the four-vector “direc-
tional” derivative∂/∂xµ(∂/∂x, ∂/∂y, ∂/∂z, ∂/ic∂t). Four-
scalar quantities can be constructed by contracting four-
vectors:

4∑
µ=1

∆xµ∆xµ = ∆x2 + ∆y2 + ∆z2 − c2∆t2 (23)

is the square of space-time interval, and

4∑
µ=1

∂

∂xµ

∂

∂xµ
=

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
− 1

c2

∂2

∂t2
, (24)

is the wave operator or D’Alambertian involved in Eqs. (21)
and (22). Notice the importance of the presence of the imag-
inary unit i in the fourth or time component in the four-
vectors, which translates into the negative sign in Eqs. (23)
and (24), as required by the Minkowski metric. Einstein’s
summation convention consists in dropping the summation
sign in Eqs. (23) and (24) and simply summing the succes-
sive terms over the repeated index asµ = 1, 2, 3, 4; this con-
vention and some symbols are used in the following:

∆xµ∆xµ = (∆σ)2 = −c2(∆τ)2, (25)

where∆σ is the norm of the space-time interval and∆τ is
the proper time, and

∂

∂xµ

∂

∂xµ
= ¤2 = ∇2 − 1

c2

∂2

∂t2
(26)

is the D’Alambertian, the natural space-time extension of the
Laplacian operator.

Einstein’s special relativity principle states that all laws of
physics are valid in any inertial frame of reference. Lorentz
covariance implements this principle by writing the laws of
physics in terms of tensor equations, thus guaranteeing that
they keep the same form when changing from one frame to
another. The implementation for the laws of electromag-
netism is carried out next.

We start out with the conservation of charge, Eq. (13),
in which the presence of the components of∂/∂xµ is recog-
nized. If the zero on the r.h.s. is to be the same in all inertial

frames, the reasonable and simplest assumption is that it is
a scalar, which suggests that the current and charge densities
must be the components of a four-vectorJµ( ~J, icρ). Then
the four-vector form of Eq. (13) becomes

∂Jµ

∂xµ
= 0. (27)

We continue with the Lorentz gauge condition of Eq. (20),
which by the same reasoning of the previous paragraph takes
the form

∂Aµ

∂xµ
= 0, (28)

and allows the identification of the four-vector potential
Aµ( ~A, iφ).

The presence of the D’Alambertian in Eqs. (21) and (22)
had already been pointed out, and they become a single four-
vector equation connecting the four-vector potentials and
sources:

¤2Aµ = −4π

c
Jµ. (29)

Equations (14) and (15) are combined in a single anti-
symmetric second rank tensor equation,

fµν =
∂Aν

∂xµ
− ∂Aµ

∂xν
, (30)

expressing the connection between the force field and the
derivatives of the potentials.

Comparison of the components of Eq. (30), for
µ=1, 2, 3, 4 andν=1, 2, 3, 4, with those of Eqs. (14) and (15)
leads to the identification of the electromagnetic field anti-
symmetric tensor

fµν =




0 Bz −By −iEx

−Bz 0 Bx −iEy

By −Bx 0 −iEz

iEx iEy iEz 0


 , (31)

where the space-space components correspond to the mag-
netic field and the space-time and time-space components
correspond to the electric field.

In turn, the source dependent Maxwell’s equations (9)
and (10) become a single four-vector equation

∂fµν

∂xµ
= −4π

c
Jν (32)

involving the four-divergence of the field tensor.
Similarly, the source-independent Maxwell’s equa-

tions (11) and (12) are combined in a rank-3 tensor equation

∂fµν

∂xλ
+

∂fνλ

∂xµ
+

∂fλµ

∂xν
= 0 (33)

involving the simmetrized combination of four-gradients of
the antisymmetric field tensor.

Rev. Mex. F́ıs. E52 (1) (2006) 84–89



MAXWELL EQUATIONS IN LORENTZ COVARIANT INTEGRAL FORM 87

The reader can verify that Eq. (32) corresponds to Eq. (9)
for ν = 4, and to Eq.(10) forν = 1, 2, 3; and Eq. (33) to
Eq. (11) forλ, µ, ν = P (1, 2, 3), to Eq. (12) for

λ, µ, ν = P (1, 2, 4), P (3, 1, 4)

andP (2, 3, 4), whereP symbolizes the permutations of the
indices, and to the identity0 = 0 for all other combination of
the tensor indices.

Thus the presentation of Maxwell equations in their
standard integral forms, Eqs. (1)-(4), standard differen-
tial forms, Eqs. (9)-(12), and Lorentz covariant differential
forms, Eqs. (32)-(33), is completed.

This section can be concluded by pointing out how we
can go back and forth between the successive forms. While
the steps from the standard integral forms to the standard
differential forms have already been described by using the
bridges of Eqs. (5)-(8), the return trip from Eqs. (9)-(12) to
Eqs. (1) and (4) uses the same bridges after integrating the
divergence Gauss laws over a finite volume, and the curl
Ampere-Maxwell and Faraday’s laws over an open surface.
The steps back and forth between the sets of Eqs. (9)-(12)
and (32)-(33) have already been described in the previous
paragraph.

3. Maxwell equations in Lorentz covariant in-
tegral form

The absence of the Lorentz invariant integral form of
Maxwell equations in the textbooks is intentionally mirrored
in the previous section. Here we simply continue with the
obvious task of constructing such integral forms by integrat-
ing the differential forms of Eqs. (32) and (33) over the ap-
propriate domains. In the process the circle is completed by
showing the connections between the Lorentz covariant and
standard integral forms.

The key elements for the construction are the tensorial na-
tures of the equations to be integrated and of the elements of
integration, which must be properly matched in order to guar-
antee the return to Eqs. (1) and (4). It was already recognized
that Eq. (32) is a four-vector equation and Eq. (33) is a rank-
3 tensor equation. Each of them includes one standard diver-
gence and one standard curl equation, which upon integration
over a three-dimensional volume and a two-dimensional sur-
face, respectively, become the standard flux and circulation
integral forms of the corresponding Maxwell equations. The
elements of integration of the Lorentz covariant differential
Eqs. (32) and (33) must include the volume and surface ele-
ments in the respective standard integral forms.

On the other hand, the choices of elements of in-
tegration in the four-dimensional space time include
a four-vector line elementdxµ, a rank-2 tensor sur-
face elementdxµdxν , a rank-3 tensor hypersurface el-
ement dxλdxµdxν , a four vector hypersurface element
d3xµ(dydzcdt, dxdzcdt, dxdycdt, idxdydz), and a scalar
hypervolume elementd4x = dx1dx2dx3dx4. The need for

integration over both volume and surface elements in the
standard forms automatically excludes the line and surface
elements in the covariant case. From the remaining ele-
ments, the three-dimensional hypersurfaces satisfy the con-
ditions of including the 3-D standard volume and the 2-D
standard surface elements involved in the standard Maxwell
equations (1)-(4). Thus, they are the natural candidates to be
chosen as the domains of integration of Eqs. (32) and (33).

The integration of Eq. (32) over the four-vector hypersur-
face leads to the rank-2 tensor equation

∫
∂fµν

∂xµ
d3xλ = −4π

c

∫
Jνd3xλ. (34)

Let us analyze some of its components in order to iden-
tify those that are connected with Eqs. (1)-(2). We start with
the time-time componentν = 4, λ = 4,

∫ (
∂f14

∂x1
+

∂f24

∂x2
+

∂f34

∂x3
+

∂f44

∂x4

)
d3x4

= −4π

c

∫
J4d

3x4. (35)

When the space-time components of the field-tensor,
Eq. (28), and the explicit forms of the integration element
and the valueJ4 = icρ are used, the result is

∫ ∫ ∫ (
∂Ex

∂x
+

∂Ey

∂y
+

∂Ez

∂z

)
dxdydz

=
4π

c

∫
ρdxdydz, (36)

which is identified as the electric Gauss law of Eq. (1).
Next, we write one of the diagonal space-space compo-

nents of Eq. (31),ν = λ = 1, with the result

−
∫

dt

∫ ∫
(∇× ~B)xdydz +

∫
dt

∫ ∫
∂Ex

c∂t
dydz

= −4π

c

∫
dt

∫ ∫
Jxdydz, (37)

and similarly forν = λ = 2 andν = λ = 3. When the
three diagonal space-space component equations are added,
the integrands of the time integration are connected by the
Ampére-Maxwell law, Eq. (2).

The conclusion is that Eq. (34) corresponds to the
Lorentz covariant integral form of the source-dependent
Maxwell equations, with the identifications of its time-time
component as the Gauss law, Eq. (1), and of the trace of its
space part as the Ampére-Maxwell law, Eq. (2), before the
common time integration in Eq. (37).

Similarly, the integration of Eq. (33) over the rank-3 ten-
sor hypersurface allows us to write the rank-6 tensor equation
∫ ∫ ∫ (

∂fµν

∂xλ
+

∂fνλ

∂xµ
+

∂fλµ

∂xν

)
dxαdxβdxγ = 0. (38)

The only combinations of the tensor indices in the integrand
have already been identified in the paragraph after Eq. (33);
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and the tensor indices of the integration element must match
themα, β, γ = P (λ, µ, ν) in order to connect with the stan-
dard form of the source-independent Maxwell equations (3)
and (4). In fact, the space-space-space component becomes

∫ ∫ ∫ (
∂f23

∂x1
+

∂f31

∂x2
+

∂f12

∂x3

)
dx1dx2dx3 = 0, (39)

and, in terms of the magnetic field components,
∫ ∫ ∫ (

∂Bx

∂x
+

∂By

∂y
+

∂Bz

∂z

)
dxdydz = 0, (40)

which is recognized as the magnetic Gauss law of Eq. (3).
In the same way, the space-space-time components,

P (i, j, 4)P (i, j, 4) of Eq. (38) withi 6= j, lead to the form
∫ ∫ ∫ (

∂fj4

∂xi
+

∂f4i

∂xj
+

∂fij

∂x4

)
dxidxjdx4 = 0. (41)

In turn, by substituting the electric and magnetic field
component, and identifying the integration element of
areadak = dxidxj for (i, j, k) = P (1, 2, 3), as well as
dx4 = icdt, Eqs. (41) become

∫
dt

∫ ∫ [
∂Ej

∂xi
− ∂Ei

∂xj
+

∂Bk

c∂t

]
dxidxj

≡
∫

dt

∫

s

[
(∇× ~E) +

1
c

∂ ~B

∂t

]

k

dak = 0 (42)

The integrands of the time integral in this equation, summed
over the indexk = 1, 2, 3 lead to Faraday’s law of Eq, (4).

Therefore, the Lorentz covariant integral form of the
source-independent Maxwell equations is given by Eq. (38),
in which the space-space-space components correspond to
the magnetic Gauss law, and the space-space-time compo-
nents in the time integrands of Eq. (42) add up to Faraday’s
law, Eq. (4).

4. Discussion

The absence of the Maxwell equations in Lorentz covari-
ant integral form in textbooks of electromagnetism has been
pointed out in Sec. 1, recognizing the need to fill in such a
gap. Section 2 presented the laws of electromagnetism in
the forms of Maxwell equations in their standard integral
[Eqs. (1)-(4)] and differential [Eqs. (9)-(12)] versions, and
also their Lorentz covariant Eqs. (32) and (33), versions,
mirroring the presentation in the text books. In Sec. 3, the
Lorentz covariant integral forms of Maxwell equations (34)
and (38) were constructed by integrating Eqs. (32) and (33)
over the four-vector and rank-3 tensor hypersurface elements,
respectively, completing and balancing the study of the four
different forms.

The remaining discussion complements the connections
between Eqs. (34)-(38) and Eqs. (1)-(4), explaining some
of the mathematics and physics behind them. We call the
reader’s attention to the facts that the steps from Eq. (34) to

Eq. (1) and from Eq. (38) to Eq. (3), related to the electric
and magnetic Gauss laws, are direct, while the steps from
Eq. (34) to Eq. (2) and from Eq. (38) to Eq. (4), related
to the circulation laws of Amṕere-Maxwell and Faraday, in-
volve the summations of the integrands in the respective time
integrations.

We start with the source-dependent Maxwell equa-
tion (34), involving rank-2 tensors. Its diagonal time-
time [Eq. (35)] and space-space [Eq. (37)] components
lead to Eq. (1) and (2) by integrating over the time and
space components of the four-vector hypersurface elements
d3xµ(d~acdt, idV ), respectively, as detailed in Sec. 3. The
3D volume integration in Eq.(36) gives directly the connec-
tion with Eq. (1). In contrast, Eq. (37) involves both the time
integration and one of the components of the 2D surface inte-
gration, thus requiring the comparison of integrands and the
summation over components in order to connect with Eq. (2).

On the other hand, since Eq. (34) is an equality be-
tween rank-2 tensors, the traces of such tensors are scalars
and equal to each other. The traces are obtained by contract-
ing the indicesν=λ in Eq. (34), which is equivalent to sum-
ming Eqs. (37) withν=1, 2, 3 and (36) withν=4. Notice
that, in fact, Eq. (1) involves the electric flux and the electric
charge that are recognized to be Lorentz scalars. In contrast,
the magnetic circulation and its source currents must be inte-
grated over time, as shown by Eq. (37), written as

∫
dt

∮

C

~B · d~l=
∫

dt

[
4π

c

∫

S

~J · d~a+
1
c

d

dt

∫

S

~E · d~a
]
, (43)

in order to show the associated Lorentz scalars, and the con-
nection with Eq. (2). Also, in other words, the time integrated
magnetomotive force around curveC is the linear combina-
tion of the electric charge and the electric flux crossing sur-
faceS.

In the case of the source-independent Maxwell equa-
tions (38), the integrand is a symmetric-antisymmetric rank-3
tensor and the integration element is a symmetric rank-3 ten-
sor. Let us recall that the differential form, Eq. (33) , corre-
sponds to Bianchi’s identity involving the antisymmetric field
tensor, Eq. (31), and the symmetric combination of its gra-
dients. The selection of matching tensor indices in Eq. (38),
to be of the space-space-space and space-space-time for both
setsλ, µ, ν and α, β, γ involves againdV = dxdydz and
dxidxjcdt, Eqs. (39) and (41), respectively. Correspond-
ingly, Eq. (39) connects immediately with (3), but (42) re-
quires the comparison of time integrands and the summation
in order to connect with Eq. (4).

The contraction of indicesλ=α, µ=β, ν=γ in Eq. (38)
also leads to our equality of Lorentz scalars, constructed as
the sum of Eqs. (40) and (42) fork = 1, 2, 3. In fact,the
magnetic flux of Eq. (3) is a scalar too, and the connection
between Eqs. (42) and (4) requires the time integration in-
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volving the scalars
∫

dt

∮

C

~E · d~l =
∫

dt

[
− 1

c

d

dt

∫

S

~B · d~a
]

(44)

which are identified as the time integrated electromotive force
aroundC and the magnetic flux crossingS.

In conclusion, the scalar invariants associated with the
rank-2 tensor equation (34) and the rank-6 tensor equa-
tion (38), contain the standard integral forms of the source-
dependent and source-independent Maxwell equations, re-
spectively; directly for the Gauss laws, and as integrands in

the circulation laws. Upon recognition of the scalar nature of
Eqs. (1) and (43), and Eqs. (3) and (44), their validity for all
inertial frames is established beyond any doubt.

Obviously, Eqs. (34) and (38) have much more mathe-
matical and physical content than Eqs. (1) - (4). This con-
tribution covers only the connections between the respective
integral forms of Maxwell equations, involving only the “di-
agonal” components of the tensor equations, with the distinc-
tion between the time-time and space-space contributions.
The tensors in Eqs. (34) and (38) also have off-diagonal
components, and their analysis may lead to future work and
results.
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