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Most textbooks of electromagnetism give comparable weights to the presentation of Maxwell equations in their integral and differential
forms. The same books, when dealing with the Lorentz covariance of the Maxwell equations, limit themselves to the discussion of their
differential forms, and make no reference to their integral forms. Such a gap in the didactic literature is bridged in this paper by explicitly
constructing the latter via the integration of the former, for the source-dependent and source-independent cases, over a four-vector and a
rank-3 tensor hypersurfaces, respectively.

Keywords: Electromagnetismo; Maxwell equations; integral and differential forms; standard and Lorentz-covariant forms.

La mayoia de los textos de electromagnetismo dan pesos comparables a la présetitatas ecuaciones de Maxwell en sus formas
integrales y diferenciales. Los mismos libros, al tratar la covariancia de Lorentz de las ecuaciones de Maxwell, se limitan &la discusi
de sus formas diferenciales, y no hacen referencia a sus formas integrales. Tal laguna en la litezatira si@delimina en este fulo,
construyendo exfditamente lagiltimas por medio de la integrdei de las primeras, para los casos dependientes e independientes de las
fuentes, sobre hipersuperficies cuadrivectorial y tensorial de rango 3, respectivamente.

Descriptores: Electromgnetismo; ecuaciones de Maxwell; formas integrales y diferenciales; forraadagst covariantes de Lorentz.
PACS: 41.20; 03.30+p

1. Introduction first, and their successive mathematical forms are presented
next.

Introductory [1-3], intermediate [4, 5], advanced [6-8] and  Gauss electric law: Electric charges are sources of elec-
graduate [9-12] books on electromagnetism usually presemfic flux.

Maxwell equations in their integral forms first, and then make Ampére-Maxwell law: Electric currents and displace-
use of them and of the Gauss and Stoke theorems t0 Olnent currents are sources of magnetic circulation.

tain their differential forms. The balanced presentation of  55uss magnetic law: There are no magnetic monopoles
both forms at this initial stage can be contrasted with the ongg gqyrces of magnetic flux.

sided discussions of the Lorentz covariant differential forms Faraday electromagnetic induction law: The time rate of

of Maxwell equations in the same texts, in which the integralohange of magnetic flux is a source of electric circulation .

forms are practically absent. The purpose of this work is 0 g first two laws are identified as the source-dependent

provide a balance in the study of the Lorentz covariance ofy.s and the last two as the source-independent laws. The

Maxwell equations in both forms, filling in an obvious gap in ¢, mer are consistent with the law of conservation of elec-
the books. tric charge, while the latter make the description of the elec-

Section 2 contains a brief review of Maxwell equations, yomangetic phenomena possible in terms of potentials, as
the connections between their integral and differential stangpown later on.

dard forms, and their Lorentz covariant differential forms, Now we proceed to express the same laws in the form of

with emphasis on their physical contents and the mathemajyovel| equations in the standard integral forms:
ical arguments to go between their various forms. Section 3

presents the Lorentz covariant integral forms of Maxwell — L
equations, constructed by integrating the corresponding dif- . E(r,t) - dd = 4mQ(t) @
ferential forms over a four-vector and a rank-3 tensor hy- s

persurfaces for the source-dependent and source-independent o - 4m 1d o .
cases, respectively. Section 4 contains a discussion of the ad- %B(T’ t)-di=——I(t) + cdt /E(T’ t)-da (2)
ditional physical insights, including important relativistic ef- c S

fects, that follow from the connections between the Lorentz

covariant and standard integral forms of Maxwell equations. B(rt)-da =0 @)

2. Maxwell equations in standard and Lorentz
covariant differential forms

E(Ft)-dl=—-== [ B(7t)- 4
(7 t) - dl it /s (7, t) - da (4)

57{
j{ - 1d = .
c

Maxwell equations are the mathematical expressions of the Here the surface integrals over closed surfasesf
laws of electromagnetism. These laws are described in wordsgs. (1) and (3), of the respective electric intensity fiéld
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and magnetic induction fielf, correspond to the mathemat- wherep(7, ) = AQ/Ar is the electric charge volume den-
ical flux integrals. In Eq. (1)) represents the electric charge sity andJ - i = AI/Aa is the electric current density.

within the volume limited by the closed surface of integra-  When the divergences of both sides of Eqg. (10) are eval-
tion, while in the magnetic case, Eq. (3), the correspondingiated, the l.h.s. vanishes, and the divergence of the electric
term is zero due to the non existence of magnetic monopoleitensity field on the r.h.s. can be substituted by its value
The line integrals over closed curvésof Eqgs. (2) and (4), from Eq. (9) with the final result

correspond to circulation integrals for the respective fields. In .9

Eq. (2), | represents the intensity of the electric current cross- V-J+ T 0, (13)

ing the open surface limited by the curgg while the dis- o o ; ) .
g\e(hlch is the continuity equation expressing the conservation

placement current is associated with the time rate of chan _
of the electric flux across the same open surface. Similarl;f?f electric Cha’ge- o ) )

in Eq. (4), the right hand side dependends on the time rate of The solenoidal character of the mgg_netlc mducuon flel_d
change of the magnetic flux across the open surfatien- as expre;sed by Gauss law, Eq. (11), is immediately satisfied
ited by the curveC. Also, the positive signs on the r.h.s. of When written as

Eq. (2) are consistent with Ampere’s “right hand” law deter- B=VxA (14)
mining the relative direction of the currents and the magnetic .

induction field, while the negative sign on the r.h.s. of Eq. (4)in terms of the vector potential. Substitution of Eq. (14)

is required by Lenz’s “left hand” law, in order to guaranteein (12) allows us, in turn, to write

energy conservation . 104

In order to go from the integral forms of Maxwell’'s equa- E=-V¢—-—— (15)
tions (1)- (4) to the respective differential forms, use is made ) c ot )
of the Gauss and Stokes theorems for any vector Figigj¢): N terms of the scalar potential Equations (14) and (15) are

solutions of the differential Egs. (11) and (12), but the poten-

‘7(;’ H-di= [ V- V‘(F, t)dr ) tials A gndqs are not uniquely defined. We_are Tree to change
| them via the so-called gauge transformations:
S \%4
. - - A— A+ Vyx (16)
V(Ft)-dl= | VxV(F1)-da, 6
FE = [V ®
c S
Ox 17
also known as the flux (or divergence) and circulation (or ¢$—¢- cot’ (17)

curl) theorems. . , ~ o
) : . . . leaving the force fieldsB and E with the same values, or
The first one gives the flux integral as a volume integral.

. o ; > . invariant.
of the divergence derllvat|ve. of Fhe field,- V, while the sec The differential equations satisfied by the potentials are
ond expresses the circulation integral as the surface Integr%btained by substituting Egs. (14) and (15) in the source-
of the curl derivative of the fieldy x V. The point limits of y g =as.

Egs. (5) and (6) lead to the geometrical interpretation of Sucﬁlependent Maxwell's equations (9) and (10). The resulting

derivatives: equations,
19 -
N 2
. V(7 t) - da —Vip———(V-A)=dmp (18)
V-V = lim M 7) c ot
AT—0 AT N g o AT - 1 ad)
S V(V-A)— VA= —J—--V|—
. fc V(7 t) - dl ¢ ¢ ot
(VxV) n= lim “=——-—"— (8)
Aa—0 Aa 1 82A’
as the flux per unit volume and the circulation per unit area, o (19)
respectively. are coupled equations in both potentials. They can be uncou-
Thel’efore, the standard differential forms of Maxwell’s p|ed by Choosing the Lorentz gauge
equations follow immediately from Egs. (1)- (4) and (7)- (8): 96
. V- A+— =0, (20)
V- E(7 1) = dmp(7, 1) ) ol
A oF with the result that both potentials obey the inhomogeneous
., - 1 7 .
V x B(7t) = —~ J(7t) + - Eg;t) (10) Wave equations
C &
. 1 0%
V- B(7t) =0 (11) Vi 55 = 4 (21)
Lo 1 9B(F, t) or 1024 4m .
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with the electric charge densityand the electric current den- frames, the reasonable and simplest assumption is that it is
sity J as their respective sources. Notice that for the time ina scalar, which suggests that the current and charge densities
dependent situations, Egs. (21) and (22 become the Poissomust be the components of a four-vect))(J, icp). Then
equations of electrostatics and magnetostatics, respectivelthe four-vector form of Eq. (13) becomes
while the Lorentz gauge of Eq. (20) reduces to the transverse

0J,
gauge. i _
Now we are in a position to identify the tensorial char- Dy

acteristics of the sources, potentials and force fields unde‘}‘ve continue with the Lorentz gauge condition of Eq. (20)

Lorentz transformations, by writing their respective equasypich by the same reasoning of the previous paragraph takes
tions in obviously covariant forms. The starting point is to

0. 27)

the form
introduce the four-vectat,,(z, y, z, ict) defining the space-
time position of each event, whege = 1,2,3,4. Then A, —0 (28)
the space-time displacement between two neighboring events Oz, ’

is given by Az, (Az, Ay, Az, icAt). Correspondingly, the . . .
spgce-tim)é rg{‘e( o;c’chghg:7ii1ilolges the fopur-vectgo)r/ wgirec2nd allows the identification of the four-vector potential
tional” derivatived/dz,,(9/dz, /9y, /=, 8 Jicdt). Four- Au(ﬁ;“ﬁ)- e D Alambertian 21 and (22
scalar quantities can be constructed by contracting four- The presence o the D’Alambertian in Egs. (21) an (22)
vectors: had already been pointed out, and they become a single four-
vector equation connecting the four-vector potentials and

4 sources:

> AwyAzy, = Ax® + Ay + A7 - PAP (29) A
p=1 24, = —%JM. (29)

is the square of space-time interval, and . . . . .
a P Equations (14) and (15) are combined in a single anti-

LI ! 92 92 92 1 62 symmetric second rank tensor equation,
Zfl Oz, Oz,  Ox? * 0y? N (24) 04, 0A,
h fuw =55 = 5 (30)
Z ox,

is the wave operator or D’Alambertian involved in Egs. (21)

and (22). Notice the importance of the presence of the imagexpressing the connection between the force field and the
inary units in the fourth or time component in the four- derivatives of the potentials.

vectors, which translates into the negative sign in Egs. (23) Comparison of the components of Eg. (30), for
and (24), as required by the Minkowski metric. Einstein’su=1,2, 3,4 andv=1, 2, 3, 4, with those of Egs. (14) and (15)
summation convention consists in dropping the summatioeads to the identification of the electromagnetic field anti-
sign in Egs. (23) and (24) and simply summing the successymmetric tensor

sive terms over the repeated indexas 1, 2, 3, 4; this con-

vention and some symbols are used in the following: 0 B. -By, -—ik,

-B. 0 B, -iE,

wy = . s 31
Az, Az, = (Ac)? = -2 (A7), (25) 5 B, B, 0 —iFE. (31)
iE, iE, iE, 0
where Ao is the norm of the space-time interval aid is
the proper time, and where the space-space components correspond to the mag-
netic field and the space-time and time-space components
09 2 _v2 iﬁ (26) correspond to the electric field.
or, 0x, c2 Ot2 In turn, the source dependent Maxwell's equations (9)

_ ) ) ) and (10) become a single four-vector equation
is the D’Alambertian, the natural space-time extension of the

Laplacian operator. Ofuw _ an J (32)
Einstein’s special relativity principle states that all laws of Oz, ¢’

physics are valid in any inertial frame of reference. Lorentz, ing the four-di ¢ the field

covariance implements this principle by writing the laws of VO \_/ln?tle OL;]r' |vergenc_eg the dle tensor. I

physics in terms of tensor equations, thus guaranteeing that Similarly, the source-indepen ent Maxwell's equa-

they keep the same form when changing from one frame tfjons (11) and (12) are combined in a rank-3 tensor equation

anqther_. Thg implementation for the laws of electromag- f s Ofox . Ofrs

netism is carried out next. N i v 0 (33)
We start out with the conservation of charge, Eq. (13), a Y

in which the presence of the component®)¢bz,, is recog-  involving the simmetrized combination of four-gradients of

nized. If the zero on the r.h.s. is to be the same in all inertiathe antisymmetric field tensor.
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The reader can verify that Eq. (32) corresponds to Eq. (9)ntegration over both volume and surface elements in the
for v = 4, and to Eq.(10) for = 1,2,3; and Eq. (33) to standard forms automatically excludes the line and surface

Eq. (11) for\, u, v = P(1,2,3), to Eq. (12) for elements in the covariant case. From the remaining ele-
ments, the three-dimensional hypersurfaces satisfy the con-
A v = P(1,2,4), P(3,1,4) ditions of including the 3-D standard volume and the 2-D

] ) standard surface elements involved in the standard Maxwell
and P(2,3,4), where P symbolizes the permutations of the ¢qyations (1)-(4). Thus, they are the natural candidates to be
indices, and to the identity = 0 for all other combination of  .,5sen as the domains of integration of Egs. (32) and (33).

the tensor indices. . _ _ ~ Theintegration of Eq. (32) over the four-vector hypersur-
Thus the presentation of Maxwell equations in theirsyce jeads to the rank-2 tensor equation

standard integral forms, Eqgs. (1)-(4), standard differen-
tial forms, Eqgs. (9)-(12), and Lorentz covariant differential Of v Py = LA [ &Py, (34)
forms, Eqs. (32)-(33), is completed. Oz, v

This section can be concluded by pointing out how We etus analyze some of its components in order to iden-

: ﬁfy those that are connected with Egs. (1)-(2). We start with
the steps from the standard integral forms to the standar e time-time component = 4, \ = 4,

differential forms have already been described by using the
bridges of Egs. (5)-(8), the return trip from Egs. (9)-(12) to Ofia  Ofos  Ofsa  Ofsa\
Egs. (1) and (4) uses the same bridges after integrating the / < 1, T O t O3 T 14 )d T4

divergence Gauss laws over a finite volume, and the curl 4

Ampere-Maxwell and Faraday’s laws over an open surface. =7 / Jad3xy. (35)
The steps back and forth between the sets of Eqgs. (9)-(12) ¢

and (32)-(33) have already been described in the previoug/hen the space-time components of the field-tensor,

paragraph. Eq. (28), and the explicit forms of the integration element
and the valueJ, = icp are used, the result is
3. Maxwell equations in Lorentz covariant in- 0FE, OE, OE,
t + 2+ dxdydz
egral form oxr Oy = 0Oz
The absence.of t.he Lorentz invgrignt iqtegral fqrm of — r / pdzdydz, (36)
Maxwell equations in the textbooks is intentionally mirrored ¢

in the previous section. Here we simply continue with the\yhich is identified as the electric Gauss law of Eq. (1).

obvious task of constructing such integral forms by integrat-  Next, we write one of the diagonal space-space compo-
ing the differential forms of Eqs. (32) and (33) over the ap-pents of Eq. (31)y = A = 1, with the result

propriate domains. In the process the circle is completed by
showing the connections between the Lorentz covariant and_ dt//(v y E)Idydz+/dt// OE, dyd
standard integral forms. cot

The key elements for the construction are the tensorial na- A7
tures of the equations to be integrated and of the elements of - T /dt / / Jodydz, (37)
integration, which must be properly matched in order to guar-
antee the return to Egs. (1) and (4). It was already recognize@dnd similarly forv = A = 2 andv = A = 3. When the
that Eq. (32) is a four-vector equation and Eq. (33) is a rankihree diagonal space-space component equations are addec
3 tensor equation. Each of them includes one standard diveft€ integrands of the time integration are connected by the
gence and one standard curl equation, which upon integratiofmpeére-Maxwell law, Eq. (2).
over a three-dimensional volume and a two-dimensional sur- The conclusion is that Eq. (34) corresponds to the
face, respectively, become the standard flux and circulatiokOrentz covariant integral form of the source-dependent
integra| forms of the Corresponding Maxwell equations' TheNla.XWE” equations, with the identifications of its time-time
elements of integration of the Lorentz covariant differentialCOmponent as the Gauss law, Eq. (1), and of the trace of its
Egs. (32) and (33) must include the volume and surface elesPace part as the Arepe-Maxwell law, Eq. (2), before the
ments in the respective standard integral forms. common time integration in Eq. (37).

tegration in the four-dimensional space time includeSOr hypersurface allows us to write the rank-6 tensor equation

a four-vector line elemenidz,, a rank-2 tensor sur- 9 9 9
fuu fu/\ f)\p,
face elementdx,dx,, a rank-3 tensor hypersurface el- +

_|_
ement dxydz,dx,, a four vector hypersurface element 0z Oy Oz
d®z, (dydzcdt, drdzcdt, dzdycdt, idzdydz), and a scalar  The only combinations of the tensor indices in the integrand
hypervolume elemeni*z = dx,dzodrsdr,. The need for  have already been identified in the paragraph after Eq. (33);

)dart(,édxgda:7 =0. (38)
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and the tensor indices of the integration element must matckq. (1) and from Eq. (38) to Eq. (3), related to the electric
thema, 8, = P(A, i, v) in order to connect with the stan- and magnetic Gauss laws, are direct, while the steps from
dard form of the source-independent Maxwell equations (3Eq. (34) to Eq. (2) and from Eq. (38) to Eq. (4), related
and (4). In fact, the space-space-space component become® the circulation laws of Am@re-Maxwell and Faraday, in-
volve the summations of the integrands in the respective time

///(3f23 +%f31 +8f12>dx1dx2dx3=(), (39) integrations.

8I1 €To Bxg .
We start with the source-dependent Maxwell equa-
and, in terms of the magnetic field components, tion (34), involving rank-2 tensors. Its diagonal time-
OB 9B OB time [Eq. (35)] and space-space [Eq. (37)] components
///( T+ 4+ z)dmdydz =0, (40) lead to Eq. (1) and (2) by integrating over the time and
Oz Oy 0z space components of the four-vector hypersurface elements
which is recognized as the magnetic Gauss law of Eq. (3). d’z,(ddcdt,idV'), respectively, as detailed in Sec. 3. The
In the same way, the space-space-time component§P volume integration in Eq.(36) gives directly the connec-
P(i,5,4)P(i, j,4) of Eq. (38) withi # j, lead to the form tion with Eq. (1). In contrast, Eq. (37) involves both the time
integration and one of the components of the 2D surface inte-
// <3fj4 n 0 fai n 8fij>dm‘dm dry = 0. (41) gration, thus requiring the comparison of integrands and the
dz;  Oxj;  Oxy B summation over components in order to connect with Eq. (2).

In turn, by substituting the electric and magnetic field On the other hand, since Eq. (34) is an equality be-
component, and identifying the integration element oftween rank-2 tensors, the traces of such tensors are scalars
areaday, = dx;dz; for (i,j,k) = P(1,2,3), as well as and equal to each other. The traces are obtained by contract-

dxy4 = icdt, EQs. (41) become ing the indices/=\ in Eq. (34), which is equivalent to sum-
ming Egs. (37) withv=1,2,3 and (36) withv=4. Notice
/dt// {3]5]‘ _9E: | aBk}daﬂidw that, in fact, Eq. (1) involves the electric flux and the electric
Oz;  Ox; cot ’ charge that are recognized to be Lorentz scalars. In contrast,

the magnetic circulation and its source currents must be inte-

. 108
= /dt/ {(V x E) + C%J dar, =0 (42) grated over time, as shown by Eq. (37), written as
s k

The integrands of the time integral in this equation, summed oL dr [ - 1d [ -
over the index: = 1,2, 3 lead to Faraday’s law of Eq, (4). /dt]{B : dl:/dt[c/J : d67+2£ /E : da} (43)

Therefore, the Lorentz covariant integral form of the c S 5
source-independent Maxwell equations is given by Eq. (38),

in which the space-space-space components correspond iFPorder to show the associated Lorentz scalars, and the con-

the magnetic Gagss law, and the space-space-time ComPﬁéction with Eqg. (2). Also, in other words, the time integrated
nents in the time integrands of Eq. (42) add up to I:aradawlﬁwagnetomotive force around cur¢egis the linear combina-

law, Eq. (4). tion of the electric charge and the electric flux crossing sur-
facesS.

4. Discussion In the case of the source-independent Maxwell equa-

tions (38), the integrand is a symmetric-antisymmetric rank-3

The absence of the Maxwell equations in Lorentz covari Jthe X | i . 3
ant integral form in textbooks of electromagnetism has beeffnSOr and the integration e-ement_ls a symmetric ran-3 ten-
sor. Let us recall that the differential form, Eq. (33) , corre-

pointed out in Sec. 1, recognizing the need to fill in such a . o S . : g
gap. Section 2 presented the laws of electromagnetism ijponds to Bianchi's identity involving the antisymmetric field

the forms of Maxwell equations in their standard integraltensor’ Eq. (31), and the symmetric combination of its gra-

[Egs. (1)-(4)] and differential [Eqs. (9)-(12)] versions, and dients. The selection of matching tensor indices in Eq. (38),

also their Lorentz covariant Egs. (32) and (33), versions!© be of the space-space-space and space-space-time for both

mirroring the presentation in the text books. In Sec. 3, th 39 d vely G d
Lorentz covariant integral forms of Maxwell equations (34) “*i4%;cdt, EGS. (39) and (41), respectively. Correspond-
gly, Eq. (39) connects immediately with (3), but (42) re-

and (38) were constructed by integrating Egs. (32) and (33) © h ) time | q dth i
over the four-vector and rank-3 tensor hypersurface element ,'“"reSt e comparison of time integrands and the summation

respectively, completing and balancing the study of the fout" order to connect with Eq. (4).
different forms. The contraction of indiced=a«, u=p, v== in Eq. (38)

The remaining discussion complements the connectionalso leads to our equality of Lorentz scalars, constructed as
between Eqgs. (34)-(38) and Egs. (1)-(4), explaining soméhe sum of Egs. (40) and (42) fér = 1,2,3. In fact,the
of the mathematics and physics behind them. We call thenagnetic flux of Eqg. (3) is a scalar too, and the connection
reader’s attention to the facts that the steps from Eq. (34) tbetween Egs. (42) and (4) requires the time integration in-

etsA, u, v and o, 8,~ involves againdV = dxdydz and
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volving the scalars the circulation laws. Upon recognition of the scalar nature of
Egs. (1) and (43), and Egs. (3) and (44), their validity for all
/dt%]ﬁdfz /dt{— li/g . d@} (44)  inertial frames is established beyond any doubt.

4 cdt Obviously, Egs. (34) and (38) have much more mathe-
matical and physical content than Egs. (1) - (4). This con-
which are identified as the time integrated electromotive forceribution covers only the connections between the respective
aroundC' and the magnetic flux crossirig integral forms of Maxwell equations, involving only the “di-

In conclusion, the scalar invariants associated with theagonal” components of the tensor equations, with the distinc-
rank-2 tensor equation (34) and the rank-6 tensor equdion between the time-time and space-space contributions.
tion (38), contain the standard integral forms of the sourceThe tensors in Eqs. (34) and (38) also have off-diagonal
dependent and source-independent Maxwell equations, reemponents, and their analysis may lead to future work and
spectively; directly for the Gauss laws, and as integrands imesults.
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