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The fields produced by Bessel-Fourier distributions of static electric charges on an infinite plane are constructed by integrating the differential
equations for the electrostatic potential and the electric intensity field, subject to the boundary conditions at the source plane. Similarly, the
fields produced by Bessel-Fourier distributions of stationary electric currents on an infinite plane are constructed via the integration of the
differential equations for the potential and the magnetic induction field, subject to the corresponding boundary conditions.

Keywords: Bessel-Fourier distributed sources; static electric charges and intensity fields; stationary electric currents and magnetic induction
fields.

Los campos producidos por distribuciones de Bessel-Fourier de caegérsoals en un plano infinito se construyen integrando las ecuaciones
diferenciales para el potencial electé@tsto y el campo de intensidaceetrica, sujetos a las condiciones de frontera en el plano de la fuente.
Similarmente, se construyen los campos producidos por corrieiesiehs estacionarias en un plano infinito, por medio de la intégraci

de las ecuaciones diferenciales para el potencial magagtosy el campo de indudmh magrética, sujetos a las condiciones de frontera
correspondientes.

Descriptores: Distribuciones de Bessel-Fourier de fuentes; cargasieas y campo de intensidadetricas; corrientes ettricas estacionar-
ias y campos de indudm magética.

PACS: 41.20.Cv; 41.20.Gz

1. Introduction nite straight wire carrying a stationary electric current, which

Some electrostatic and magnetostatic configurations, bas#és used by Oersted in his discovery that the electric cur-
on simple geometries and source distributions, are studietent reorients a magnetic compass needle. @mgormu-
in introductory courses, illustrating the concepts and laws ofated his right-hand rule to define the relative directions of
electrostatics and magnetostatics, respectively, and some #fe current and the needle: if the extended thumb represents
their applications [1,2]. The simplest and starting situation inthe current direction, the fingers curling around the thumb in-
electrostatics involves a point charge, with its Coulomb radiadicate the direction in which the needle is oriented at each
and inverse-distance electrostatic potential field. Throughtposition. Ampere also formulated his circulation law: the
the superposition principle, other geometries with uniformcirculation of the magnetic induction field around a curve C
charge distributions and their respective fields are identifiedS proportional to the electric current intensity crossing the
For a uniformly charged infinite straight line: radial and surface S of which C is the perimeter. The magnetic induc-
inverse-distance electric intensity field, and logarithm-of-the tion field for the straight wire geometry is inversely propor-
distance electrostatic potential. For a uniformly charged intional to the distance, and its lines are coaxial circles. The
finite plane: normal and uniform electric intensity field and reader’s attention is called to recognizing the difference in di-
linear-in-the-distance electrostatic potential. The respectivéections of the field lines, and the same distance dependence
equipotential surfaces are concentric spheres, coaxial cylir?f the field magnitudes, for the same straight line geometry
ders, and parallel planes. For a uniformly charged sphericdh the electrostatic and magnetostatic cases. Again, by the
surface, the electric intensity field is Coulombic outside andapplication of the superposition principle, other geometries
vanishes inside. Similarly, for a uniformly charged cylindri- with uniform electric current distributions and their respec-
cal surface, the electric intensity field vanishes inside, and i§ve magnetic induction fields can be established. For an in-
radial and inverse-distance outside. The superposition of thénite straight circular cylinder with a stationary uniformly
fields of two concentric spheres, two coaxial cylinders, anddistributed current moving along its straight generatrices, the
two parallel planes with equal charges of opposite signs lead®agnetic induction field vanishes inside, and coincides out-
to the vanishing of the fields outside, and their confinemenside with that of the same total current moving along its axis.
inside the respective capacitors, for which the ratio of charg&or the samenfinite cylinder with a solenoidal winding, a
to potential difference, arapacitancecan be calculated. stationary, uniformly-distributed current produces a magnetic
In magnetostatics, the magnetic point charge situatioftduction field, which is uniform and along the axial direc-
does not exist. The simplest situation corresponds tofan tion inside, and vanishes outside. For an infinite plane with a
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uniformly distributed current, the magnetic induction field is and boundary condition forms:

uniform, parallel to the plane, and perpendicular to the direc- .,

tion of the current. The electrostatic and magnetostatic fields V- E=dmp @)
fqr thg ple'mes.with uniform sources share the uniformity, and (E2 B 51) f = dro, @)
differ in directions.

The reader may ask if the simple and familiar situationswherep is the volume charge density,is the surface charge
just described can be modified in a simple way in order tadensity, and is a unit vector normal to the boundary surface.
generate other easy-to-understand and interesting situatiofi$ie conservative nature of the electrostatic field is expressed
of electrostatics and magnetostatics. The answer is yes, atty the corresponding equations:
isillustrated in the textbooks at the higher levels [3-7], specif- -
ically via the multipole expansions of the respective potential VxE=0 @)
fields. However, most of the presentations in the books are (By— B)xh=0. )
limited to the fields outside a region where the sources are
located, ignoring the fact that the fields inside are already Integration of Eq. (3) is accomplished by introducing the
present in the same expansion, and that there are geometriggéctrostatic potential7):
and physical connections between the inner and outer fields. .

This was the motivation for writing the articMultipole Ex- E=-V¢. (5)
ansions Inside and Outsid8]. Other harmonic expansions - . .

i% two dimensions in circu(ﬂla]r, elliptic, and parabglic cylin- Sl,!bsutunon of Eq. .(5) into Eq. (1) leads to the Poisson

drical coordinates [9-12], and in three dimensions in circu-equatlon for the potential,

lar cylindrical, parabolic, and spheroidal coordinates [13,14], V2 = —dmp. (6)

in toroidal coordinates [15-18], and in bispherical coordi-

nates [19,20] have been studied by our group in connection For the situation of charge distributed in an infinite plane,

with the analysis of different electric, magnetic, and elec-the volume density vanishes and Egs. (1) and (6) become

tronic devices.

In a recent work, harmonic static charge and stationary V-E=0 Y
current distributions in planes were assumed to be of the cir- V3¢ =0. (8)
cular and hyperbolic cosine types in one of the Cartesian co-
ordinates, and the corresponding electrostatic and magneto- Consequently, the electric intensity field must be
static fields were constructed [21]. In this contribution, thesolenoidal, Eq. (7), and irrotational, Eq. (3); while the poten-
harmonic source distributions on the planes are chosen tél must be harmonic, Eq. (8).
be of the Bessel-Fourier type, in circular cylindrical coor- ~ The separability and integrability of Eq. (8) in circular
dinates. The changes from [21] to this work in the type ofcylindrical coordinates lead to the harmonic solutions
distribution and in the coordinates translate also into changes
in the dimensionality of the associated fields from two to O, . 2) = [AmJm(5p) + B Nin (15p)]
three. There is also a change at the didactic and mathemati- (¢, cosme + Dy, sinm][Eme ™" + Epne™] (9)
cal levels, requiring the use of Bessel radial functions instead
of the (co)sine functions in the Cartesian coordinate. Secin terms of radial Bessel functions, angular (co)sine func-
tion 2 presents the construction of the electrostatic potentidions, and longitudinal exponential functions, with separation
and electric intensity fields from the assumed Bessel-Fouriegonstantss andm = 0, 1,2, 3, ... [22].
static charge distributions in a plane. Section 3 illustrates The Bessel-Fourier surface charge distributions in the
the corresponding construction of the magnetostatic potential = 0 plane
and magnetic induction fields for the Bessel-Fourier distribu-

tions of the stationary electric current in a plane. Section 4 oc = 00Jm(kp) cosme (10)

contains a description of the results of the previous sections, o5 = 00Jm(kp) sinme (11)

including a comparison of the respective fields, and also their

connections with other systems. determine the values of the parameters and coefficients in
Eqg. (9).

Specifically, for the charge distribution of Eq. (10), the

2. Construction of the electrostatic poten- .
potential becomes

tial and electric intensity fields for Bessel-
Fourier distributed static charges on an in- pc(p, ¢,z 2 0) = ¢oJm(kp) cosmpe™™  (12)

finite plane 6c(py 2 < 0) = doJu(rp) cosmpe™  (13)

The electric intensity field:(7) is connected with its electro-  exhibiting its harmonic nature inherited from the source, its
static charge sources via Gauss’s law in differential equatioeontinuity atz = 0, and its vanishing fofz| — cc.
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Then the electric intensity field follows directly from the 3.
substitution of Egs. (12) and (13) into Eq. (5):

Ec(p, ¢,z > 0) = —g [pr), (kp) cosmep

Construction of the magnetic potential and
magnetic induction fields for Bessel-Fourier
distributed stationary currents on an infi-
nite plane

The magnetic induction fieI@(F) is connected with its sta-
tionary electric current sources by Agmg’s law in its differ-
ential equation and boundary condition forms:

— @TJm(lip) sinmep — kkJp (rp) cos m(p] e "% (14)
p

Ec(p, .2 < 0) = —¢q [prJ], (kp) cos mep

. A1 -
_ @%Jm(np) sinmep + ki (1p) cos mcp] e (15) VX B= ?J (21)
L At -
(By—B)xi=—RK (22)
c

Notice that the tangential components of the field at the o ) L
source plane; = 0, are continuous, so that Eq. (4) is satis- Where.J is the current per unit area atd is the current per

fied, while the normal components in thalirection exhibit Uit length. The non-existence of magnetic monopoles is ex-
a discontinuity which, via Egs. (2) and (10), determines thePressed by the magnetic Gauss law in its differential equation

value of¢y:

2Ky = 4moy. (16)

For the charge distribution of Eq. (13), the final results

are directly written, for the potential:

2mog

bs(psp,2 > 0) = ——J(kp) sinmep e "* (17)

2mog

¢s(p,p,2 <0) = I (kp) sinmep e (18)

KR

and for the electric intensity field:

Es(p, ¢,z > 0) = 2r0q [—pJ!., (kp) sinmep
- @mM cos mp + kJom (1p) sin mcp} e "% (19)
Kp
Es(p, i,z <0) = 2r0q [—pJ., (kp) sinme

T ; -
_ @mﬂ cosmp — kJp (rp) sin mw} e (20)
Kp

and boundary condition forms:

V-B=0 (23)

(By — By) -7 =0. (24)

The solenoidal character of the magnetic induction field,
Eq. (23), allows its expression as the curl of the magneto-

static vector potential(7):
B =V x A(P). (25)

Substitution of this expression into Eq. (21) leads to the
equation satisfied by the potential

o Ar o
VX(VXA)Z—WJ

c

V(V-A)— VA= %f. (26)
By using the transverse gauge,
V-A=0,
equation (26) reduces to Poisson’s equation
V24 = —%ﬁf. (27)

For the current sources distributed on the plane 0,
the current density outside the plane vanishes; 0. Then,

The familiar case of the uniformly charged plane fol- the magnetic induction field becomes irrotational, and the po-

lows from Eq. (10) for the limit situation whem — 0 and
m = 0, taking into account the fact thal(kp — 0) — 1,

Jy(kp — 0) — 0 ande™™* — 1 F kz. Then, the potential
in Egs. (12) and (13) becomes linear in the distance from the
source plane, and the field in Egs. (14) and (15) becomes uni-

tential satisfies Laplace’s equation, since Egs. (21) and (27)

reduce to
VxB=0 (28)

VA =0. (29)

form and normal to the source plane. with the discontinuity

4mog associated with Gauss’s law, Eq. (2).

The source distributions in Egs. (19) and (11) for a cho-
sen value ofn = 1,2, 3,.. ., share the same form and differ

The stationary electric currents on the source plane are
chosen as the linear density distributions of the Bessel-
Fourier types:

only in their relative orientations. The same properties are KC = I,V x [k.J,, (rp) cos my]
naturally inherited by the potentials and the electric intensity

fields, as follows from the comparisons of Eqs. (12)-(13) vs

(17)-(18) and (14)-(15) vs (19)-(20).

=1 —ﬁme (kp) sinmy — @rJ. (kp) cosmep| (30)
p
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and, in addition, the derivative of the zero-order Bessel func-
~c . ] tion is replaced by its value in terms of the first-order Bessel
m = LoV X [k (rp) sinme] function [22]. Then, the magnetostatic potential also be-
m comes circular, Egs. (32) and (36),
A ~ ! .
= Iy | p— Jm(kp) cosme — $rJ, (kp)sinmep| . (31)

p - 271
: . : : AY 20) = Z=2prJ}(rp)e T
The harmonic magnetostatic potential, solutions of 0 (p,0,220) CK Prdo(kp)e
Eq. (29), share the Bessel-Fourier character of the sources. only . s
In the case of Eq. (30) we consider the potential above and I @J1(kp)e™". (40)

below the source plane:
And the magnetic induction field does not have any cir-

ic c
Ay (pspyz 2 0) = Ay cular components, Egs. (34) and (35):
m
X | —p—Jm(kp) sinmp—@rJ), (kp) cosmep | e (32 = 27l
[ P Tm(sip) sin mep—riy, (1ip) w} (32) BS (9.0, 220) = 200
el _ 4C .
A (prp,2 < 0) = Ay X [:Fﬁ/iJl(/ip) — krJo(kp) sin mgo} et (41)
m . ~ / Kz
% [_pme(Kp) sinmp—grJy, (1p) cos m@} . (39) Of course, the case. = 0 in Eq. (31) gives a vanishing
hich i lenoidal and i €0 charge distribution. For the other valuesrof=1,2,3, ...,
w I'CI:'h IS S0 enotl_ a gn t_conf_lnlléo_usit C dwhen th i the corresponding charge distributions, Egs. (30)-(31), mag-
tial f € Tﬁgne Ic mt_uc lon fie blstqt talg_e tWEen 256 .po ®Metostatic potentials, Egs. (32), (33), (36) and (37), and mag-
lal from these equations are substituted into Bq. (25):  aic induction fields, Egs. (34), (35), (36) and (38), have the

BC(p, 0,2 > 0) = AC jk [ prJ., (kp) cos mep same shapes and differ in orientations.

.m . 7 —Kz

—|—<p; Im (kp) sinme + kxJy, (kp) cos map] e (34) 4. Discussion
By (p, ¢,z < 0) = AS ok [pr), (Kp) cos mep Both elements, the geometrical region and the harmonic-

m ) ity of the sources of electrostatic and magnetostatic fields,
—@—Jm(kp) sinmep + kkJp, (kp) cos m@] e"” (35)  are important for the construction or identification of the re-

P spective potential and force fields, which inherit the corre-
Notice now that the normal components of the magnetiagsponding harmonicity, as illustrated by the references in the

induction fields at = 0 are continuous, Eq. (24) far = k;  Introduction. Specifically, the well-known textbook exam-
while its tangential components are discontinuous and proples of spheres, cylinders and planes with uniformly sur-
portional to the linear current density, Eq. (30), consistenface distributed sources, corresponding to the lowest har-

with Eq. (22) and determining the value 4f; : monicity, have equipotential surfaces with the respective ge-
A ometries and straight field lines. The higher harmonicity
—QHAoCm = ?I@ (36)  sources, potential and force fields are the natural extensions

o of those simplest examples. For other geometries, the sur-
~ For the current distribution of Eq. (31), the correspond-gace source distribution with lowest harmonicity is no longer
ing magnetic potential and magnetic induction fields take thg,niform [9-20].
final forms: The harmonic distribution of sources in a plane was cho-
s (p, 0, 220) = _2mly /’)@J (1p) cos mp sen to be of cosine types ip one qutesi_an cgordinate in

mAD ¥ < cK p " Ref. 21, and of Bessel-Fourier types in this article. Natu-
L ] Thz rally, the differences between the Cartesian and circular har-

= Prdp (kp) cosmyple (37)  monicities of the sources are inherited by the respective po-
2rly . . ., . tential and force fields, as a comparison of Secs. 2 and 3
[FpT i (kp) sinmep of both works show. The only common case corresponds
m A to the uniformly charged plane, associated with the lowest

Fo—Jm(kp) cosmp + ki, (kp) sinme| eT"* (38)  harmonicitiesk — 0 in [21], andm = 0, & — 0, as dis-

P cussed at the end of the respective Secs. 2. Another differ-

It is instructive to analyze the purely Bessel= 0 dis-  ence between [21] and this work is in the method of solution:
tribution in Eq. (30), which becomes tangential to concentricin the Cartesian two-dimensional case, the force fields were
circles: constructed directly as solenoidal and irrotational with their
~c - A components subject to the respective boundary conditions;

Ko = —loprJy(rp) = loprJi(rp), (39 inthe present circular cylindrical three-dimensional case, the

B’ri(p7<p7zzo) = - cK
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potentials were constructed first borrowing the harmonicityber distributions on an infinite plane, has also been investi-
of the sources, then the solenoidal and irrotational characteyated using circular, elliptic, and parabolic cylindrical coor-
of the force fields is guaranteed, and the boundary conditionginates, respectively. It is recognized that the corresponding
are applied to determining the magnitude parameter for thelectromagnetic radiation fields correspond to the respective
potential, Eq. (36). Propagation Invariant Optical Fields [23]. Their static limits

In Ref. 21 the electromagnetic fields associated withcorrespond to the Bessel-Fourier cases studied here, and to
time-harmonically-varying currents distributed harmonically the respective harmonic sources, potentials, and force fields
on an infinite plane were constructed. The correspondingn elliptic and parabolic geometries.
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