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The fields produced by Bessel-Fourier distributions of static electric charges on an infinite plane are constructed by integrating the differential
equations for the electrostatic potential and the electric intensity field, subject to the boundary conditions at the source plane. Similarly, the
fields produced by Bessel-Fourier distributions of stationary electric currents on an infinite plane are constructed via the integration of the
differential equations for the potential and the magnetic induction field, subject to the corresponding boundary conditions.

Keywords: Bessel-Fourier distributed sources; static electric charges and intensity fields; stationary electric currents and magnetic induction
fields.

Los campos producidos por distribuciones de Bessel-Fourier de cargas eléctricas en un plano infinito se construyen integrando las ecuaciones
diferenciales para el potencial electrostático y el campo de intensidad eléctrica, sujetos a las condiciones de frontera en el plano de la fuente.
Similarmente, se construyen los campos producidos por corrientes eléctricas estacionarias en un plano infinito, por medio de la integración
de las ecuaciones diferenciales para el potencial magnetostático y el campo de inducción magńetica, sujetos a las condiciones de frontera
correspondientes.

Descriptores: Distribuciones de Bessel-Fourier de fuentes; cargas estáticas y campo de intensidad eléctricas; corrientes eléctricas estacionar-
ias y campos de inducción magńetica.

PACS: 41.20.Cv; 41.20.Gz

1. Introduction
Some electrostatic and magnetostatic configurations, based
on simple geometries and source distributions, are studied
in introductory courses, illustrating the concepts and laws of
electrostatics and magnetostatics, respectively, and some of
their applications [1,2]. The simplest and starting situation in
electrostatics involves a point charge, with its Coulomb radial
and inverse-distance electrostatic potential field. Through
the superposition principle, other geometries with uniform
charge distributions and their respective fields are identified.
For a uniformly charged infinite straight line: radial and
inverse-distance electric intensity field, and logarithm-of-the-
distance electrostatic potential. For a uniformly charged in-
finite plane: normal and uniform electric intensity field and
linear-in-the-distance electrostatic potential. The respective
equipotential surfaces are concentric spheres, coaxial cylin-
ders, and parallel planes. For a uniformly charged spherical
surface, the electric intensity field is Coulombic outside and
vanishes inside. Similarly, for a uniformly charged cylindri-
cal surface, the electric intensity field vanishes inside, and is
radial and inverse-distance outside. The superposition of the
fields of two concentric spheres, two coaxial cylinders, and
two parallel planes with equal charges of opposite signs leads
to the vanishing of the fields outside, and their confinement
inside the respective capacitors, for which the ratio of charge
to potential difference, orcapacitance, can be calculated.

In magnetostatics, the magnetic point charge situation
does not exist. The simplest situation corresponds to aninfi-

nitestraight wire carrying a stationary electric current, which
was used by Oersted in his discovery that the electric cur-
rent reorients a magnetic compass needle. Ampère formu-
lated his right-hand rule to define the relative directions of
the current and the needle: if the extended thumb represents
the current direction, the fingers curling around the thumb in-
dicate the direction in which the needle is oriented at each
position. Amp̀ere also formulated his circulation law: the
circulation of the magnetic induction field around a curve C
is proportional to the electric current intensity crossing the
surface S of which C is the perimeter. The magnetic induc-
tion field for the straight wire geometry is inversely propor-
tional to the distance, and its lines are coaxial circles. The
reader’s attention is called to recognizing the difference in di-
rections of the field lines, and the same distance dependence
of the field magnitudes, for the same straight line geometry
in the electrostatic and magnetostatic cases. Again, by the
application of the superposition principle, other geometries
with uniform electric current distributions and their respec-
tive magnetic induction fields can be established. For an in-
finite straight circular cylinder with a stationary uniformly
distributed current moving along its straight generatrices, the
magnetic induction field vanishes inside, and coincides out-
side with that of the same total current moving along its axis.
For the sameinfinite cylinder with a solenoidal winding, a
stationary, uniformly-distributed current produces a magnetic
induction field, which is uniform and along the axial direc-
tion inside, and vanishes outside. For an infinite plane with a



ELECTROSTATIC AND MAGNETOSTATIC FIELDS FOR BESSEL-FOURIER DISTRIBUTED SOURCES ON INFINITE PLANES 91

uniformly distributed current, the magnetic induction field is
uniform, parallel to the plane, and perpendicular to the direc-
tion of the current. The electrostatic and magnetostatic fields
for the planes with uniform sources share the uniformity, and
differ in directions.

The reader may ask if the simple and familiar situations
just described can be modified in a simple way in order to
generate other easy-to-understand and interesting situations
of electrostatics and magnetostatics. The answer is yes, and
is illustrated in the textbooks at the higher levels [3-7], specif-
ically via the multipole expansions of the respective potential
fields. However, most of the presentations in the books are
limited to the fields outside a region where the sources are
located, ignoring the fact that the fields inside are already
present in the same expansion, and that there are geometrical
and physical connections between the inner and outer fields.
This was the motivation for writing the articleMultipole Ex-
pansions Inside and Outside[8]. Other harmonic expansions
in two dimensions in circular, elliptic, and parabolic cylin-
drical coordinates [9-12], and in three dimensions in circu-
lar cylindrical, parabolic, and spheroidal coordinates [13,14],
in toroidal coordinates [15-18], and in bispherical coordi-
nates [19,20] have been studied by our group in connection
with the analysis of different electric, magnetic, and elec-
tronic devices.

In a recent work, harmonic static charge and stationary
current distributions in planes were assumed to be of the cir-
cular and hyperbolic cosine types in one of the Cartesian co-
ordinates, and the corresponding electrostatic and magneto-
static fields were constructed [21]. In this contribution, the
harmonic source distributions on the planes are chosen to
be of the Bessel-Fourier type, in circular cylindrical coor-
dinates. The changes from [21] to this work in the type of
distribution and in the coordinates translate also into changes
in the dimensionality of the associated fields from two to
three. There is also a change at the didactic and mathemati-
cal levels, requiring the use of Bessel radial functions instead
of the (co)sine functions in the Cartesian coordinate. Sec-
tion 2 presents the construction of the electrostatic potential
and electric intensity fields from the assumed Bessel-Fourier
static charge distributions in a plane. Section 3 illustrates
the corresponding construction of the magnetostatic potential
and magnetic induction fields for the Bessel-Fourier distribu-
tions of the stationary electric current in a plane. Section 4
contains a description of the results of the previous sections,
including a comparison of the respective fields, and also their
connections with other systems.

2. Construction of the electrostatic poten-
tial and electric intensity fields for Bessel-
Fourier distributed static charges on an in-
finite plane

The electric intensity field~E(~r) is connected with its electro-
static charge sources via Gauss’s law in differential equation

and boundary condition forms:

∇ · ~E = 4πρ (1)

( ~E2 − ~E1) · n̂ = 4πσ, (2)

whereρ is the volume charge density,σ is the surface charge
density, and̂n is a unit vector normal to the boundary surface.
The conservative nature of the electrostatic field is expressed
by the corresponding equations:

∇× ~E = 0 (3)

( ~E2 − ~E1)× n̂ = 0. (4)

Integration of Eq. (3) is accomplished by introducing the
electrostatic potentialφ(~r):

~E = −∇φ. (5)

Substitution of Eq. (5) into Eq. (1) leads to the Poisson
equation for the potential,

∇2φ = −4πρ. (6)

For the situation of charge distributed in an infinite plane,
the volume densityρ vanishes and Eqs. (1) and (6) become

∇ · ~E = 0 (7)

∇2φ = 0. (8)

Consequently, the electric intensity field must be
solenoidal, Eq. (7), and irrotational, Eq. (3); while the poten-
tial must be harmonic, Eq. (8).

The separability and integrability of Eq. (8) in circular
cylindrical coordinates lead to the harmonic solutions

φ(ρ, ϕ, z) = [AmJm(κρ) + BmNm(κρ)]

×[Cm cos mϕ + Dm sin mϕ][Eme−κz + Fmeκz] (9)

in terms of radial Bessel functions, angular (co)sine func-
tions, and longitudinal exponential functions, with separation
constantsκ andm = 0, 1, 2, 3, . . . [22].

The Bessel-Fourier surface charge distributions in the
z = 0 plane

σC = σ0Jm(κρ) cos mϕ (10)

σS = σ0Jm(κρ) sin mϕ (11)

determine the values of the parameters and coefficients in
Eq. (9).

Specifically, for the charge distribution of Eq. (10), the
potential becomes

φC(ρ, ϕ, z ≥ 0) = φ0Jm(κρ) cos mϕe−κz (12)

φC(ρ, ϕ, z ≤ 0) = φ0Jm(κρ) cos mϕeκz (13)

exhibiting its harmonic nature inherited from the source, its
continuity atz = 0, and its vanishing for|z| → ∞.
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Then the electric intensity field follows directly from the
substitution of Eqs. (12) and (13) into Eq. (5):

~EC(ρ, ϕ, z ≥ 0) = −φ0 [ρ̂κJ ′m(κρ) cos mϕ

− ϕ̂
m

ρ
Jm(κρ) sin mϕ− k̂κJm(κρ) cos mϕ

]
e−κz (14)

~EC(ρ, ϕ, z ≤ 0) = −φ0 [ρ̂κJ ′m(κρ) cos mϕ

− ϕ̂
m

ρ
Jm(κρ) sin mϕ + k̂κJm(κρ) cos mϕ

]
eκz (15)

Notice that the tangential components of the field at the
source plane,z = 0, are continuous, so that Eq. (4) is satis-
fied, while the normal components in thek̂ direction exhibit
a discontinuity which, via Eqs. (2) and (10), determines the
value ofφ0:

2κφ0 = 4πσ0. (16)

For the charge distribution of Eq. (13), the final results
are directly written, for the potential:

φS(ρ, ϕ, z ≥ 0) =
2πσ0

κ
Jm(κρ) sin mϕ e−κz (17)

φS(ρ, ϕ, z ≤ 0) =
2πσ0

κ
Jm(κρ) sin mϕ eκz (18)

and for the electric intensity field:

~ES(ρ, ϕ, z ≥ 0) = 2πσ0 [−ρ̂J ′m(κρ) sin mϕ

− ϕ̂m
Jm(κρ)

κρ
cos mϕ + k̂Jm(κρ) sin mϕ

]
e−κz (19)

~ES(ρ, ϕ, z ≤ 0) = 2πσ0 [−ρ̂J ′m(κρ) sin mϕ

− ϕ̂m
Jm(κρ)

κρ
cosmϕ− k̂Jm(κρ) sin mϕ

]
eκz (20)

The familiar case of the uniformly charged plane fol-
lows from Eq. (10) for the limit situation whenκ → 0 and
m = 0, taking into account the fact thatJ0(κρ → 0) → 1,
J ′0(κρ → 0) → 0 ande∓κz → 1 ∓ κz. Then, the potential
in Eqs. (12) and (13) becomes linear in the distance from the
source plane, and the field in Eqs. (14) and (15) becomes uni-
form and normal to the source plane. with the discontinuity
4πσ0 associated with Gauss’s law, Eq. (2).

The source distributions in Eqs. (19) and (11) for a cho-
sen value ofm = 1, 2, 3, . . ., share the same form and differ
only in their relative orientations. The same properties are
naturally inherited by the potentials and the electric intensity
fields, as follows from the comparisons of Eqs. (12)-(13) vs
(17)-(18) and (14)-(15) vs (19)-(20).

3. Construction of the magnetic potential and
magnetic induction fields for Bessel-Fourier
distributed stationary currents on an infi-
nite plane

The magnetic induction field
⇀

B(~r) is connected with its sta-
tionary electric current sources by Ampère’s law in its differ-
ential equation and boundary condition forms:

∇× ~B =
4π

c
~J (21)

( ~B2 − ~B1)× n̂ =
4π

c
~K (22)

where ~J is the current per unit area and~K is the current per
unit length. The non-existence of magnetic monopoles is ex-
pressed by the magnetic Gauss law in its differential equation
and boundary condition forms:

∇ · ~B = 0 (23)

( ~B2 − ~B1) · n̂ = 0. (24)

The solenoidal character of the magnetic induction field,
Eq. (23), allows its expression as the curl of the magneto-
static vector potential~A(~r):

~B = ∇× ~A(~r). (25)

Substitution of this expression into Eq. (21) leads to the
equation satisfied by the potential

∇× (∇× ~A) =
4π

c
~J

∇(∇ · ~A)−∇2 ~A =
4π

c
~J. (26)

By using the transverse gauge,

∇ · ~A = 0,

equation (26) reduces to Poisson’s equation

∇2 ~A = −4π

c
~J. (27)

For the current sources distributed on the planez = 0,
the current density outside the plane vanishes,~J = 0. Then,
the magnetic induction field becomes irrotational, and the po-
tential satisfies Laplace’s equation, since Eqs. (21) and (27)
reduce to

∇× ~B = 0 (28)

∇2 ~A = 0. (29)

The stationary electric currents on the source plane are
chosen as the linear density distributions of the Bessel-
Fourier types:

~KC
m = I0∇× [k̂Jm(κρ) cos mϕ]

= I0

[
−ρ̂

m

ρ
Jm(κρ) sin mϕ− ϕ̂κJ ′m(κρ) cos mϕ

]
(30)
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~KC
m = I0∇× [k̂Jm(κρ) sin mϕ]

= I0

[
ρ̂
m

ρ
Jm(κρ) cos mϕ− ϕ̂κJ ′m(κρ) sin mϕ

]
. (31)

The harmonic magnetostatic potential, solutions of
Eq. (29), share the Bessel-Fourier character of the sources.
In the case of Eq. (30) we consider the potential above and
below the source plane:

~AC
m(ρ, ϕ, z ≥ 0) = AC

m0

×
[
−ρ̂

m

ρ
Jm(κρ) sin mϕ−ϕ̂κJ ′m(κρ) cos mϕ

]
e−κz (32)

~AC
m(ρ, ϕ, z ≤ 0) = AC

m0

×
[
−ρ̂

m

ρ
Jm(κρ) sin mϕ−ϕ̂κJ ′m(κρ) cos mϕ

]
eκz. (33)

which is solenoidal and continuous atz = 0.
The magnetic induction field is obtained when the poten-

tial from these equations are substituted into Eq. (25):

~BC
m(ρ, ϕ, z ≥ 0) = AC

m0κ [−ρ̂κJ ′m(κρ) cos mϕ

+ϕ̂
m

ρ
Jm(κρ) sin mϕ + k̂κJm(κρ) cos mϕ

]
e−κz (34)

~BC
m(ρ, ϕ, z ≤ 0) = AC

m0κ [ρ̂κJ ′m(κρ) cos mϕ

−ϕ̂
m

ρ
Jm(κρ) sin mϕ + k̂κJm(κρ) cos mϕ

]
eκz (35)

Notice now that the normal components of the magnetic
induction fields atz = 0 are continuous, Eq. (24) for̂n = k̂;
while its tangential components are discontinuous and pro-
portional to the linear current density, Eq. (30), consistent
with Eq. (22) and determining the value ofAC

0m:

−2κAC
0m =

4π

c
I0. (36)

For the current distribution of Eq. (31), the correspond-
ing magnetic potential and magnetic induction fields take the
final forms:

~AS
m(ρ, ϕ, z>

<0) = −2πI0

cκ

[
ρ̂
m

ρ
Jm(κρ) cos mϕ

− ϕ̂κJ ′m(κρ) cos mϕ] e∓κz (37)

~BS
m(ρ, ϕ, z>

<0) = −2πI0

cκ
[∓ρ̂κJ ′m(κρ) sin mϕ

∓ϕ̂
m

ρ
Jm(κρ) cos mϕ + k̂κJm(κρ) sin mϕ

]
e∓κz (38)

It is instructive to analyze the purely Besselm = 0 dis-
tribution in Eq. (30), which becomes tangential to concentric
circles:

~KC
0 = −I0ϕ̂κJ ′0(κρ) = I0ϕ̂κJ1(κρ), (39)

and, in addition, the derivative of the zero-order Bessel func-
tion is replaced by its value in terms of the first-order Bessel
function [22]. Then, the magnetostatic potential also be-
comes circular, Eqs. (32) and (36),

~AC
0 (ρ, ϕ, z>

<0) =
2πI0

cκ
ϕ̂κJ ′0(κρ)e∓κz

= −2πI0

cκ
ϕ̂J1(κρ)e∓κz. (40)

And the magnetic induction field does not have any cir-
cular components, Eqs. (34) and (35):

~BC
0 (ρ, ϕ, z>

<0) =
2πI0

c

×
[
∓ρ̂κJ1(κρ)− k̂κJ0(κρ) sin mϕ

]
e∓κz. (41)

Of course, the casem = 0 in Eq. (31) gives a vanishing
charge distribution. For the other values ofm = 1, 2, 3, . . .,
the corresponding charge distributions, Eqs. (30)-(31), mag-
netostatic potentials, Eqs. (32), (33), (36) and (37), and mag-
netic induction fields, Eqs. (34), (35), (36) and (38), have the
same shapes and differ in orientations.

4. Discussion

Both elements, the geometrical region and the harmonic-
ity of the sources of electrostatic and magnetostatic fields,
are important for the construction or identification of the re-
spective potential and force fields, which inherit the corre-
sponding harmonicity, as illustrated by the references in the
Introduction. Specifically, the well-known textbook exam-
ples of spheres, cylinders and planes with uniformly sur-
face distributed sources, corresponding to the lowest har-
monicity, have equipotential surfaces with the respective ge-
ometries and straight field lines. The higher harmonicity
sources, potential and force fields are the natural extensions
of those simplest examples. For other geometries, the sur-
face source distribution with lowest harmonicity is no longer
uniform [9-20].

The harmonic distribution of sources in a plane was cho-
sen to be of cosine types in one Cartesian coordinate in
Ref. 21, and of Bessel-Fourier types in this article. Natu-
rally, the differences between the Cartesian and circular har-
monicities of the sources are inherited by the respective po-
tential and force fields, as a comparison of Secs. 2 and 3
of both works show. The only common case corresponds
to the uniformly charged plane, associated with the lowest
harmonicities,k → 0 in [21], andm = 0, κ → 0, as dis-
cussed at the end of the respective Secs. 2. Another differ-
ence between [21] and this work is in the method of solution:
in the Cartesian two-dimensional case, the force fields were
constructed directly as solenoidal and irrotational with their
components subject to the respective boundary conditions;
in the present circular cylindrical three-dimensional case, the
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potentials were constructed first borrowing the harmonicity
of the sources, then the solenoidal and irrotational character
of the force fields is guaranteed, and the boundary conditions
are applied to determining the magnitude parameter for the
potential, Eq. (36).

In Ref. 21 the electromagnetic fields associated with
time-harmonically-varying currents distributed harmonically
on an infinite plane were constructed. The corresponding
problem, for currents with Bessel-Fourier, Mathieu, and We-

ber distributions on an infinite plane, has also been investi-
gated using circular, elliptic, and parabolic cylindrical coor-
dinates, respectively. It is recognized that the corresponding
electromagnetic radiation fields correspond to the respective
Propagation Invariant Optical Fields [23]. Their static limits
correspond to the Bessel-Fourier cases studied here, and to
the respective harmonic sources, potentials, and force fields
in elliptic and parabolic geometries.
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