ENSENANZA REVISTA MEXICANA DE FiSICA E52(2) 116-118 DICIEMBRE 2006

Mirror potentials in classical mechanics
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It is shown that for a central potential that is an injective function of the radial coordinate, a second central potential can be found that leads
to trajectories in the configuration space and the momentum space coinciding, respectively, with the trajectories in the momentum space and
the configuration space produced by the original potential.

Keywords: Hamiltonian mechanics; classical mechanics.

Se muestra que, para un potencial central que sea un@fingectiva de la coordenada radial, se puede hallar un segundo potencial central
que lleva a trayectorias en el espacio de configbragien el de momentos que coinciden, respectivamente, con las trayectorias en el espacio
de momentos y de configuraéci producidas por el potencial original.

Descriptores: Mecanica hamiltoniana; méaica chsica.

PACS: 45.20.Jj; 03.65.Fd

1. Introduction 2. Mirror potentials

In most examples of classical mechanics, the potential enerdye shall consider a particle subjected to a central potential
is a function of the coordinates only; however, this a potentiall’ (r); its Hamiltonian function, expressed in terms of Carte-
determines the orbit of the mechanical system in the configsian coordinates, can be taken as

uration space and also the evolution of the momenta of the

particles of the system. For example, the central potential p; _ Ao +p2 4 p2 +V( /22 142 + 22 +Zg)_ 1
V(r) = —k/r (which corresponds to the so-called Kepler 2m e+ 0y +p2) Y @)

problem) leads to orbits in configuration space that are con—Th_ ion for the Hamiltonian is the standard but
ics, and the trajectory in momentum space tthdograph is (This expression for the Hamiftonian Is the standard one, bu
ywere exist many other choices, see, for example, Ref. 5.)

ask if there exists a potential that leads to orbits in the config- 1 h€ €quations of motion are given by the Hamilton equa-
uration space that are (part of) circles and the hodograph ispns '
conic. d¢* _ 0H dp;, _ 0H
The aim of this paper is to show that, in some cases, for at  op;’ dt oqt’
a given potential, one can find a second potential (which will

and, if we interchange the coordinates and momenta in

b? referred to as thairror potenﬂab, c_iept_andlng_on th? coor- Eq. (1), by reversing the sign of the resulting expression we
dinates only, such that the trajectories in configuration SPACEy:-in'a new Hamiltoniad. which by means of the Hamil-

ﬁ]n? dm va:t);n t?]nu::n_sp?cr(ia pr?ndl;::ercri] briltthrg mirror p(ﬁgm'ﬂﬁcofon equations, will lead to the trajectories in configuration

ct.e € ajec$ els ome 3 stpatche an .COI 9and momentum spaces defined By interchanged. In other
uration space, respectivety, corresponding fo the original po\7v0rds, the substitution of the Hamiltonian
tential. Our discussion will be restricted to central potentials

and we shall show that the mirror potential can be constructed _ 1, s . 5 .
whenever the original potential is an injective function ofthe  H = —5 (2" + 3" +27) =V (\/px +py +pz) (2)
radial distance.

The existence of the mirror potential is not a trivial mat- into the Hamilton equations yields the same equations of
ter. In fact, not every system of ordinary differential equa-motion asH but with the coordinates and momenta inter-
tions can be expressed in the form of the Lagrange equatiorhanged.

(see, for example, Ref. 4 and the references cited therein). Since we are assuming thEtdoes not depend on time,
As we shall show below, with the replacement of the originalthe evolution of the state of the system in the phase space is
potential by the mirror potential, it is necessary to change tha curve lying on a hypersurfadé = — E, whereFE is some

time parametrization [see Eq. (8)]. The use of the Hamilto+eal constant (the minus sign is introduced for convenience).
nian formulation simplifies the derivation enormously. From the conditiorH = — F, making use of Eq. (2) we then
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obtain, SO thatf{: —F is equivalent tdh = 0; hence, on the hyper-
22 4 22\ surfaceld = —FE,
x Yy Z
it = [ (5 2 )]
m 1 7,,2 , 5 2 f[
whereF' denotes the inverse function B, whose existence == <E B Qm) F < B Qm) drf.
requires thal/(r) be an injective function. The last equation
can also be written as (The terms proportional tdr cancel as a consequence of the
2 conditionH = —FE.) Thus, for instance
15 5 5 1 2?4y’ +2? : ’
— —— |F[E-———=]| =0, (3
5, (PatPy +p2) =5 [ ( 5 , 3) . 1 o ; ;
L . . Pi Pi
which is a relation of the form = const., with -=——FF _—=—FF—==—-—(7)
Jdq m dq m dt dr
2
e | 2 4y% 422
h= g (Patpytpz)—5 - {F ( T om 4 with F andF’ evaluated afZ —2/2m, and we have defined
andh is now a Hamiltonian function corresponding to a cen- m
tral potential dr = -7 dt. 8)
1 r? 2 .
u(r) = 5 [F <E - 2)} (5) In a similar way, one obtain8h/0p; = dq¢'/dr. That is,
m m the trajectories generated hycoincide with those generated
that depends parametrically én by H, but have a different parametrization (see also Refs. 6
For instance, if(r) = —k/r, wherek is a constant, and 7).
thenF(r) = —k/r and, owing to Eq. (5), the corresponding |t may be remarked that the Cartesian coordinates are
mirror potential is given by not essential in the construction of the mirror potential given
2 above; in fact, in the derivation of Egs. (7), only the central
1 2mk . .
v(r)=—s— |55 —3 (6) character of the potential was required.
2m \2mFE —r

_ . _ . . Another simple example is given by (r) = (1/2)kr?
According to the discussion above, this potential leads to Oftcorresponding to an isotropic harmonic oscillator); in this

bits in configuration space that are (arcs of) circles and th%aseF(r) = (2r/k)!/2, and therefore the mirror potential is
orbits in momentum space are conics. In fact, if we consider

the Hamiltonian with the mirror potential (6) (expressed in 2

polar coordinates, making use of the fact that, for a central v(r) = T—Q — E, 9)
potential, the orbit lies on a plane), 2m*k - mk
1 P2 1 Imk 2 which is essentially the original potential, and this corre-
h=— ( ; 9) . () ) sponds to the fact that, for an isotropic harmonic oscillator
2m r2 2m \ 2mE — r? pon ! P '
the trajectories in configuration space and in the momentum
taking . = 0 as above and using the conservatiomppive  gpace are both ellipses. By contrast with the potential (6),
have 12 ok 9 the potential (9) only contains the parametein an addi-
A (m) =0 tive constant that has no effect in the equations of motion.
r? 2mE —r? Furthermore, in this case,= —mkt + const.

wherelL is a constant. Then, the chain rule gives
d¢ dg/dt L
dr — dr/dt — r2p, 3. Final remarks

and therefore
a9 omE — 12 Apart from the possibility of extending the main result of this
— = . paper to noncentral potentials, another natural question con-
dr 7’\/(27”1‘3/”27“2 — (2mE —r2)? cerns finding an analog of this result in quantum mechanics.

The solution of this last equation corresponds to a cir-

cle of radius |mk/L| whose center is at a distance

V/(mk/L)? + 2mE from the origin.

The proof that in all casek yields the same trajectories
as H can be given as follows. From Egs. (2) and (4) one
readily verifies that
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