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Quantum bouncer with dissipation

G. López and G. Gonźalez
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Effects on the spectra of the quantum bouncer due to dissipation are given when a linear o quadratic dissipation in the velocity of the particle
is taken into account. Classical constants of motion and Hamiltonians are deduced for these systems and their quantized eigenvalues are
estimated through perturbation theory. Differences were found comparing the eigenvalues of the constants of motion and the eigenvalues of
the Hamiltonians. The cases when the dissipation parameters go to zero are compared with the nondissipative cases.
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Los efectos en el espectro del rebotador cuántico debido a la disipación son dados cuando una disipación lineal o cuadŕatica en la velocidad
de la part́ıcula es tomada en cuenta. Constantes de movimiento clásicas y Hamiltonianos se deducen para estos sistemas y sus eigenvalores
cuantizados son estimados mediante la teorı́a de perturbaciones. Se encuentran diferencias comparando los eigenvalores de las constantes de
movimiento y los eigenvalores de los Hamiltonianos. Los casos cuando los parámetros de disipación se hacen cero son comparados con los
casos no disipativos.
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1. Introduction

Dissipative systems have been one of the must subtle and
difficult topics to deal with in classical [1] and quantum
physics [2]. In general, constructing a consistent Lagrangian
and Hamiltonian formulation for a given dissipative system
can be a big challenge [3]. There are basically two approaches
to studying dissipative systems. The first one tries to bring
about dissipation as a result of averaging over all the coor-
dinates of the bath system, where one considers the whole
system as composed of two parts, our original conservative
system and the bath system, which interacts with the conser-
vative system and causes the dissipation (of energy) in it [4].
This approach has its own value and will not be followed
or discussed here. The second approach considers that the
bath system produces an average effect on our initially con-
servative system which is expressed as an additional exter-
nal velocity-dependent force acting on the conservative sys-
tem and transforming it into a dissipative system with this
velocity-dependent force. The resulting classical dissipative
system thus contains this phenomenological (or theoretical)
velocity-dependent force. Then, the question arises over its
consistent Lagrangian and Hamiltonian formalism and the
consequences of its quantization. This approach, in addi-
tion, allows us to study and test the Hamiltonian approach
for quantum mechanics and its consistency [5], and is the
approach we will follow in this paper. A system which has
attracted our attention for dissipation study through the above
approach is the quantum bouncer. The quantum bouncer [6]
is the quantization of the motion of a particle which is at-
tracted by the constant gravity force, that is, close to surface
of the earth. This particle hits a perfectly reflecting surface,
producing the bouncing effect. This system, with an addi-
tional dissipation force, is particular importance because of
its potential experimental realization. This dissipative system

has been studied very little, until now using the first approach
mentioned above [7].

We will assume that the external velocity-dependent force
has linear and quadratic dependence with respect to the ve-
locity. This approach gives us the opportunity to check the
nature of quantization using the Hamiltonian or constant of
motion associated with the system, that is, using the usual
quantization of the generalized linear momentum or using the
quantization of the velocity. This consideration is particularly
interesting in dissipative systems, since one can not always
find a Hamiltonian as a function of the variable position and
linear momentum [8]; that is, velocity “v” can not always be
known explicitly in terms of linear momentum “p” and po-
sition “x” of the particle through the relationp = ∂L/∂v,
whereL is the Lagrangian of the system. This paper is orga-
nized as follows: we present the classical study for the dissi-
pative system considering the linear and quadratic velocity-
dependent force. The constant of motion, the Lagrangian,
and the Hamiltonian of the system are derived, and we give
their expressions up to second order in the dissipation param-
eter. We present the modification for the eigenvalues of the
quantum bouncer, when this dissipation is taken into account,
for the above approximated (weak dissipation) constant of
motion and Hamiltonian using quantum perturbation theory.
Finally, conclusions and some discussions of our results are
given.

2. Classical linear dissipation
The motion of a particle of massm under a constant gravita-
tional force and a linear dissipative force is described by the
equation

m
d2x

dt2
= −mg − αv , (1)
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wherex is the position of the particle,g is the constant ac-
celeration due to the earth’s gravity,α is the parameter which
characterizes the dissipation, andv = dx/dt is the veloc-
ity of the particle. A constant of motion of the autonomous
system (1) is a functionKα = Kα(x, v) satisfying the equa-
tion [9]

v
∂Kα

∂x
−

(
g +

α

m
v
) ∂Kα

v
= 0. (2)

The solution of this equation, such that

lim
α→0

Kα = mv2/2 + mgx

(the usual total energy for the non dissipative system), is
given by

Kα =
m2gv

α
−m

(mg

α

)2

ln
(

1 +
αv

mg

)
+ mgx. (3)

The Lagrangian associated with (1) can be obtained using the
known expression [5]

Lα = v

∫
Kα(x, v)

v2
dv, (4)

producing the following Lagrangian:

Lα =
m2gv

α
ln

(
1 +

αv

mg

)

+m
(mg

α

)2

ln
(

1 +
αv

mg

)
−mgx− m2gv

α
. (5)

Therefore, the generalized linear momentum and Hamilto-
nian are given by

pα =
m2g

α
ln

(
1 +

αv

mg

)
(6)

and

Hα=m
(mg

α

)2
(

exp
(

αpα

m2g

)
−1

)
−mg

α
pα+mgx. (7)

At two orders in the dissipation parameterα, one has the con-
stant of motion, the Lagrangian, the generalized linear mo-
mentum, and Hamiltonian given as

K =
1
2
mv2 + mgx− α

3g
v3 +

α2

4mg2
v4, (8)

L =
1
2
mv2 −mgx− α

6g
v3 +

α2

12mg2
v4, (9)

p = mv − α

2g
v2 +

α2

3mg
v3, (10)

and

H =
p2

2m
+ mgx +

α

6mg
p3 +

α2

24m5g2
p4. (11)

One should note that all these quantites go to the nondis-
sipative case when the dissipative parameter goes to zero.
The constant of motion (3) or (8a) and the Hamiltonian (7)
or (8d) bring about the damping bouncing effect on spaces
(x, v) and (x, p). The dissipative parameterα can be deter-
mined by measuring the velocityvo at the reflecting surface
(x = 0) and then measuring its maximum displacementxmax

(v = 0). By equaling the value of the constant of motion in
both situations, one obtains the expression

m2gvo

α
−m

(mg

α

)2

ln
(

1 +
αvo

mg

)
= mgxmax, (12)

where the parameterα can be found.

3. Classical quadratic dissipation

In this case, the motion of the particle is described by the
equation

m
d2x

dt2
= −mg − γv|v|, (13)

whereγ represents a dissipation constant which, of course,
is different from the previous case. Proceeding in the same
way as we did for the linear case, the constant of motion,
Lagrangian, generalized linear momentum, and Hamiltonian
are given by

K±=
1
2
mv2 exp

(
±2γx

m

)
±m2g

2γ

(
exp

(
±2γx

m

)
−1

)
, (14)

L±=
1
2
mv2 exp

(
±2γx

m

)
∓m2g

2γ

(
exp

(
±2γx

m

)
−1

)
, (15)

p±=mv exp
(
±2γx

m

)
, (16)

and

H±=
p2
±

2m
exp

(
∓2γx

m

)
±m2g

2γ

(
exp

(
±2γx

m

)
−1

)
, (17)

where the upper sign corresponds to the casev ≥ 0, and the
lower sign corresponds to the casev < 0. These equations
were already given in Ref. 10, and the nondissipative case
is obtained when the dissipative parameter goes to zero. The
damping effect of the bouncing particle in the space (x, v)
can be traced in the following way: starting with the initial
conditionxo = 0 andvo > 0, for example, the constant of
motion K+ is determined,K+ = mv2

o/2. Then, the maxi-
mum distancexmax (v = 0) is calculated from the expres-
sion K+ = (m2g/2γ)(exp(2γxmax/m)− 1), which helps
to calculate the constantK−,

K− = −(m2g/2γ)
(
exp(−2γxmax/m)− 1

)
.

This K− is now used to calculate the velocity at the turn-
ing point (x = 0), v∗1 = −

√
2K−/m. Considering a per-

fectly reflexing surface, the velocity of the bouncing particle
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for the next cycle isv1 = −v∗1 (v1 < vo), and the above cy-
cle is reproduced again, and so on. Starting with the same
initial conditions, the trajectories in this space are one below
the other at any time, as the damping factor is greater. The
damping effect in the space (x, p) can be analyzed similarly
through the Hamiltonian approach. However, the trajectories
starting with the same initial conditions in this space are not
below the other all the time, as the damping factor is greater.
This strange effect is due to the change in sign in (11d) with
respect to (11a), produced by the position and velocity de-
pendence of the expression (11c).

To determine the constantγ through the constant of mo-
tion, one can start with the initial conditions (xo = 0, vo > 0)
and can determine the constant of motionK+ = mv2

o/2.
Then, one can measure the maximum displacementxmax

(v = 0) and solveγ from the equation

1
2
mv2

o =
m2g

2γ

(
exp

(
2γxmax

m

)
− 1

)
. (18)

Up to second order in the dissipation parameter, one has,
from (11a) to (11d) the constant of motion, the Lagrangian,
the generalized linear momentum, and the Hamiltonian given

by

K± =
1
2
mv2 + mgx± γ[v2x + gx2]

+γ2[v2x2/m + 2gx3/3m], (19)

L± =
1
2
mv2 −mgx± γ[v2x− gx2]

+γ2[v2x2/m− 2gx3/3m], (20)

p± = mv ± γ[2vx] + γ2[2vx2/m], (21)

H± =
p2

2m
+ mgx∓ γ[p2x/m2 − gx2]

+γ2[p2x2/m3 + 2gx3/3m]. (22)

4. Quantization of the constant of motion

Equations (8a) and (13a) can be written as

K(x, v) = Ko(x, v) + V (x, v), (23)

whereKo is the constant of motion without dissipation

Ko(x, v) =
1
2
mv2 + mgx, (24)

andV takes into account the dissipation factors

V (x, v) =





−α

(
v3

3g

)
+ α2

(
v4

4mg2

)
(linear case)

∓γ
[
v2x + gx2

]
+ γ2

[
v2x2

m + 2gx3

3m

]
(quadratic case)

(25)

The quantization of (14) can be carried out through the asso-
ciated Schr̈odinger’s equation of this constant of motion

i~
∂Ψ
∂t

= K̂(x̂, v̂)Ψ , (16)

whereΨ = Ψ(x, t) is the wave function,~ is the Plank con-
stant divided by2π, K̂ = K̂o + V̂ is a Hermitian operator
associated to (17), and̂v is the velocity operator defined as

v̂ = − i~
m

∂

∂x
. (26)

Since Eq. (16) represents a stationary problem, the usual
propositionΨ(x, t) = exp(−iEKt/~) ψ(x) transforms (16)
to an eigenvalue problem:

(K̂o + V̂ )ψ = EKψ . (27)

Taking the operator̂V as a perturbation of the constant of
motionKo, one can calculate an approximate solution to the
problem (18) through perturbation theory. The solution of the
eigenvalue problem

K̂oψ
(0)
n = E(0)

n ψ(0)
n (28)

is well known [6], withψ
(0)
n being the eigenfunction given by

ψ(0)
n =

Ai(z − zn)
|Ai′(−zn)| , (29)

whereAi andAi′ are the Airy function and its first differen-
tiation, andzn is its nth-zero (Ai(−zn) = 0) which ocurres
for a negative argument only.z is the normalized variable
z = x/lg with lg =

(
~2/2m2g

)1/3
, andzn is related to the

eigenvalueE(0
n through the expression

zn =
E

(0)
n

mglg
. (30)

Up to second order in perturbation theory, the eigenvalues
of (18) are given (in Dirac notation [11]) as

EK
n = E(0)

n + 〈n|V̂ |n〉+
∑

k 6=n

|〈n|V̂ |k〉|2
E

(0)
k − E

(0)
n

, (31)
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where〈z|n〉 = ψ
(0)
n . Using the Hermitian operators

v̂2x = (v̂2x + v̂xv̂ + xv̂2)/3

and

v̂2x2 = (v̂2x2 + v̂x2v̂ + x2v̂2 + xv̂2x + xv̂xv̂ + v̂xv̂x)/6

for the associated expressions on (25b), and using the rela-
tions

〈n|xs|k〉 = lsg〈n|zs|k〉

and

〈n|ds/dxs|k〉 = l−s
g 〈n|ds/dzs|k〉

for any integers, one has (see appendix for a list of matrix
elements)

EK
n = E(0)

n +





α2


 l2gz

2
n

5m + 8
9gl3g

∑

k 6=n

|1/2 + mglg/(E(0)
k − E(0)

n )|2
E

(0)
k − E(0)

n


 (linear)

∓ γ
12gl2gz

2
n

15 + γ2




(
−1

2 + 56z3
n

105

)
2gl3g
m + 4g2l4g

∑

k 6=n

ank


 , (quadratic)

(32)

whereank is a real number given by

ank =
|12− 2zk(zn − zk)2 + (zn − zk)3|2

(zk − zn)9
. (33)

Note that for the linear dissipative case, there is no real con-
tribution at a first approximation, and for the quadratic dissi-
pative case, the first order contribution depends on whether
the particle is moving up (-) or down (-). Within a full cy-
cle, this first order correction is cancelled out and the second
order contribution remains. Of course, for the approxima-
tion (23a) to be valid, one must assume that the second term
of this expression must be much less thanE

(0)
n which makes

a restriction on the possible value of the dissipative parame-
ter. Of course, when the parameters of dissipation go to zero,
one gets the nondissipative eigenvalues.

5. Quantization of the Hamiltonian

Equations (8d) and (13d) can be written as

H(x, p) = Ho(x, p) + W (x, p) , (34)

whereHo is the Hamiltonian without dissipation,

Ho(x, p) =
p2

2m
+ mgx , 35)

andW has the dissipation terms,

W (x, p) =





α

(
p3

6mg

)
+ α2

(
p4

24m5g2

)
(linear)

∓γ

[
p2x
m2 − gx2

]
+ γ2

[
p2x2

m3 + 2gx3

3m

]
(quadratic)

(36)

It is necessary to mention that the quantization of some
systems for quadratic dissipation has been solved by differ-
ent authors [10,12] but perfectly reflexing wall potential,

Ṽ (x) =

{
∞ for x < 0
mgx for x ≥ 0

. (37)

Moreover, the solution given in Ref. 10 is singular when the
dissipation parameter goes to zero. Therefore, we think it
worth while to make analysis of the quantization for small
orders in the parameterγ. For the usual Shrödinger quantiza-
tion approach, one has the stationary equation

i~
∂Ψ
∂t

= Ĥ(x, p̂)Ψ , (38)

where Ĥ is the Hamiltonian operator associated to
(24), and p̂ is the usual linear momentum operator
p̂ = −i~∂/∂x. Equation (27) is transformed to an eigen-
value problem,Ĥψ(x)=EHψ(x), through the proposition
Ψ(x, t) = exp

(−iEHt/~
)
ψ(x), since the Hamiltonian̂H is

given byĤ = Ĥo + Ŵ , where the solution of the equation

Ĥoψ
(0)
n = E(0)

n ψ(0)
n (39)
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is given by (20) and (21). Perturbation theory can be used
to determine the approximate values of the eigenvaluesEH

n

(expression (22)). Using the Hermitian operators

p̂2x = (p̂2x + p̂xp̂ + xp̂2)/3

and

p̂2x2 = (p̂2x2 + p̂x2v̂ + x2p̂2 + xp̂2x + xp̂xp̂ + p̂xp̂x)/6

for the associated expressions on (25b), one gets

EH
n = E(0)

n +





α2


 l2gz

2
n

30m + 4
9gl3g

∑

k 6=n

|1/2 + mglg/(E(0)
k − E(0)

n )|2
E

(0)
k − E(0)

n


 (linear)

± γ
4gl2gz

2
n

15 + γ2




(
−1

2 + 56z3
n

105

)
2gl3g
m + 4g2l4g

∑

k 6=n

ank


 , (quadratic)

(40)

whereank is given by (23b). One must note here too that, when the parameters of dissipation go to zero, one gets the usual
eigenvalues for the nondissipative system. As one can see from (23) and (29), there is a difference between the eigenvalues
associated with the constant of motion and those associated with the Hamiltonian. Their relative difference,δEn = (EH

n −
EK

n )/E
(0)
n , is given by

δEn

E
(0)
n

=





α2


−1

6
lgzn

6m2g
− 4

9
l2g

mzn

∑

k 6=n

|1/2 + mglg/(E(0)
k − E(0)

n )|2
E

(0)
k − E(0)

n


 (linear)

± γ
16gl2gz

2
n

15 , (quadratic)

(41)

6. Conclusion

The classical and quantum problem of a particle bouncing on
a hard surface under the influence of gravity and subject to
a linear and quadratic velocity dissipative force were treated
using the constant of motion and the Hamiltonian of the sys-
tem. Expressions (3) and (11a) give us the expected damping
behavior of the particle in the (x, v) space, but the expres-
sions (7) and (11d) show an unexpected behavior in the(x, p)
space (two trajectories in this space, for dissipative parame-
ters one bigger than the other, do not follow one under the
other all the time). In addition, all our expressions are re-
duced to the nondissipative case when the parameters of dis-
sipation go to zero. For the quantum case, we have analyzed
the eigenvalues for the constant of motion and Hamiltonian

up to the second order in the dissipation parameter using per-
turbation theory. Relation (30) tells us that that there is a
difference whether the constant of motion or the Hamilto-
nian is quantized, and it suggests that maybe one could see
this difference experimentally. Finally, one must observe that
for the full linear case (7), it is possible to solve exactly the
Shr̈odinger equation in the momentum representation, and
this will be analyzed in a future paper.

Appendix

We show here a list of some matrix elements from Ref. 6 and
some others calculated from the same reference (a correction
of sign has been made to some matrix elements). Given the
functions (20) andn 6= k, one has

〈n|k〉 = δnk (A.1)

〈n|z|n〉 =
2
3
zn 〈n|z|k〉 =

2(−1)n+k+1

(zn − zk)2
(A.2)

〈n|z2|n〉 =
8
15

z2
n 〈n|z2|k〉 =

24(−1)n+k+1

(zn − zk)4
(A.3)
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〈n|z3|n〉 =
3
7

+
48
105

z3
n 〈n|z3|k〉 =

24(zn + zk)(−1)n+k+1

(zn − zk)4
(A.4)

〈n| d

dz
|n〉 = 0 〈n| d

dz
|k〉 =

(−1)n+k

zn − zk
(A.5)

〈n| d2

dz2
|n〉 = −1

3
zn 〈n| d2

dz2
|k〉 =

2(−1)n+k

(zn − zk)2
(A.6)

〈n| d3

dz3
|n〉 =

1
2

〈n| d3

dz3
|k〉 =

(
1
2

+
1

zk − zn

)
(−1)n+k (A.7)

〈n| d4

dz4
|n〉 =

1
5
z2
n 〈n| d4

dz4
|k〉 =

−2(zk − zn) + 24− 2zk(zk − zn)2

(zk − zn)4
(−1)n+k (A.8)
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