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Quantum bouncer with dissipation
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Effects on the spectra of the quantum bouncer due to dissipation are given when a linear o quadratic dissipation in the velocity of the particle
is taken into account. Classical constants of motion and Hamiltonians are deduced for these systems and their quantized eigenvalues are
estimated through perturbation theory. Differences were found comparing the eigenvalues of the constants of motion and the eigenvalues of
the Hamiltonians. The cases when the dissipation parameters go to zero are compared with the nondissipative cases.
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Los efectos en el espectro del rebotaddrtico debido a la disipatn son dados cuando una disigatlineal o cuadatica en la velocidad

de la paritcula es tomada en cuenta. Constantes de movimieasicels y Hamiltonianos se deducen para estos sistemas y sus eigenvalores
cuantizados son estimados mediante laitede perturbaciones. Se encuentran diferencias comparando los eigenvalores de las constantes de
movimiento y los eigenvalores de los Hamiltonianos. Los casos cuando bosgtmos de disipadn se hacen cero son comparados con los
casos no disipativos.

Descriptores: Mecanica chsica; sistemas discretos; formalismo.
PACS: 03.20.+i; 03.65.Ca

1. Introduction has been studied very little, until now using the first approach
rmentioned above [7].

Dissipative systems have been one of the must subtle a : .
We will assume that the external velocity-dependent force

difficult topics to deal with in classical [1] and quantum

physics [2]. In general, constructing a consistent LagrangiarF ast“n?l_?lr. and quad:]atl'c depentcri]ence W'tth rgtsptect;o tEF::hve'
and Hamiltonian formulation for a given dissipative system ocity. “This approach gives us the opportunity fo check the

can be a big challenge [3]. There are basically two approachél‘amre of qua_ntizatior_w using the Hamilton_ian or constant of
to studying dissipative systems. The first one tries to bring{?ouon associated with the system, that is, using the usual

about dissipation as a result of averaging over all the coor- uant!zat!on ofthe generahzed- Imearmomgntu_m orusing the
dinates of the bath system, where one considers the Who%uantlza'uon of the velocity. This consideration is particularly

- . resting in dissipativ ms, sin n nn Iw
system as composed of two parts, our original conservatwf‘te esting in dissipative systems, since one can not always

system and the bath system, which interacts with the conse nda Ham|ltotn|an gs ;futr?ctlonl of_the“ \,/,anable E)olsmon ?)nd
vative system and causes the dissipation (of energy) in it [4] inear momentum [8]; tha IS, ve ocity "v can n(‘)‘ ?ways €
known explicitly in terms of linear momentum “p” and po-

This approach has its own value and will not be followed . jon *x” of the particle through the relatiop — dL,/dv,

or discussed here. The second approach considers that t@% rel is the Laaranaian of th term. Thi Lis on
bath system produces an average effect on our initially con-. erel 1s the Lagrangian of the system. This paper IS orga-

servative system which is expressed as an additional extep—'z‘.ad as follows: we pre_zsent th? classical study fqr the diS.Si'
nal velocity-dependent force acting on the conservative sysQatNe system considering the linear angl quadratic veloc_lty-
tem and transforming it into a dissipative system with thisdependent fo.rce.. The constant of mot|on., the Lagranglf:m,
velocity-dependent force. The resulting classical dissipativé"md the Hamiltonian of the system are derived, and we give

system thus contains this phenomenological (or theoreticag:;e'rr ev>\</pre?5|onns£ ltjﬁ tomsec;:i(f)indt?rg?r :nﬂt]he ?'Ssr']sar'on pa;ntahm—
velocity-dependent force. Then, the question arises over it er. e prese € modification for the eigenvalues ot the

consistent Lagrangian and Hamiltonian formalism and th guantum bouncer, wh_enthis dissipatiqn i:.; tal_<en into account,
consequences of its quantization. This approach, in add or the above approximated (weak dissipation) constant of

tion, allows us to study and test the Hamiltonian approac otion and Hamiltonian using quantum perturbation theory.

for quantum mechanics and its consistency [5], and is th ]nally, conclusions and some discussions of our results are

approach we will follow in this paper. A system which has given.
attracted our attention for dissipation study through the abov@. Classical linear dissipation

approach is the quantum bouncer. The quantum bouncer [q]he motion of a particle of mass under a constant gravita-

is the quantization of the motion of a particle which is at- . . L ) .

. . tional force and a linear dissipative force is described by the
tracted by the constant gravity force, that is, close to surfacg Lation
of the earth. This particle hits a perfectly reflecting surface, q
producing the bouncing effect. This system, with an addi-
tional dissipation force, is particular importance because of P )

. . . L R m—s = —mg— Qu,
its potential experimental realization. This dissipative system dt? 9
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wherex is the position of the particle; is the constant ac-

127

One should note that all these quantites go to the nondis-

celeration due to the earth’s gravityjs the parameter which sipative case when the dissipative parameter goes to zero.

characterizes the dissipation, and= dz/dt is the veloc-

The constant of motion (3) or (8a) and the Hamiltonian (7)

ity of the particle. A constant of motion of the autonomousor (8d) bring about the damping bouncing effect on spaces

system (1) is a functio,, = K, (x, v) satisfying the equa-
tion [9]

0K, _ (g+ « ) 0K, _o. @)

v ox m
The solution of this equation, such that

limo Ko = mv? /2 + mgx
o—

(the usual total energy for the non dissipative system),

given by
2

2
Ka:mgv_m(@> In <1+av>—|—mgx. 3)
@ ! mg

(z,v) and (, p). The dissipative parameter can be deter-
mined by measuring the velocity, at the reflecting surface
(z = 0) and then measuring its maximum displacement..

(v = 0). By equaling the value of the constant of motion in
both situations, one obtains the expression

m?gu,

2
—m (@) In (1 + Oﬂ}o) = MgTmax, (12)
« « mg

where the parameter can be found.

is

3. Classical quadratic dissipation

In this case, the motion of the particle is described by the
equation

The Lagrangian associated with (1) can be obtained using the

known expression [5]
Ka(z,
L, = v/#dv,
v
producing the following Lagrangian:

2
La:mgvln(l-i—av)

o mg

2
+m (@) In <1+av> — mgx — m gv‘
o mg @

(4)

(5)

Pz

= —mg — yv|v],
where~ represents a dissipation constant which, of course,
is different from the previous case. Proceeding in the same
way as we did for the linear case, the constant of motion,
Lagrangian, generalized linear momentum, and Hamiltonian
are given by

1 2 2 2
Ki=—mv*exp i) PR exp +577) 4 , (14)
2 m 2y m

1, 2vx\ _m2g 2vx
Therefore, the generalized linear momentum and Hamilto- L+=35™ eXp<im>]F 2y \ P )1 (15)

nian are given by
ng av
Po=—"n|14+—
a mg

and

2
H,=m (@) <exp (a];a) —1) _@poﬂ‘mgx. (7
! m2g !

At two orders in the dissipation parameterone has the con-

DL =MV exp (iw) , (16)
and
3 2 2 2
Hi:p—iexp T\, my exp 1507 4 . (17
2m m 2y m

where the upper sign corresponds to the ease0, and the
lower sign corresponds to the case< 0. These equations

stant of motion, the Lagrangian, the generalized linear mowere already given in Ref. 10, and the nondissipative case

mentum, and Hamiltonian given as

2

1 a g oty
K= 5w +mgx — gv + 4m92v , (8)
1 5 a 4 a?
L= S Mv” = mge — @v + 12m92v , 9)
2
p=mv— Q2 + a—v‘g, (10)
2g 3mg
and
2 2
p @ 3 @ 4
H=— . 11
om 9T GVt ol (4D

is obtained when the dissipative parameter goes to zero. The
damping effect of the bouncing particle in the spacevj

can be traced in the following way: starting with the initial
conditionz, = 0 andw, > 0, for example, the constant of
motion K, is determined K, = mwv?2/2. Then, the maxi-
mum distancer,,,, (v = 0) is calculated from the expres-
sion Ky = (m2g/27)(exp(2yZmaz/m) — 1), which helps

to calculate the constaif_,

K_ = —(m?g/2v)(exp(—2vZpmas/m) — 1).

This K_ is now used to calculate the velocity at the turn-

ing point @ = 0), v = —+/2K_/m. Considering a per-
fectly reflexing surface, the velocity of the bouncing particle
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for the next cycle i3y, = —v] (v1 < v,), and the above cy- by

cle is reproduced again, and so on. Starting with the same 1

initial conditions, the trajectories in this space are one below Ky = -—mv?+mgz + W[U%; 4 gaﬂ

the other at any time, as the damping factor is greater. The 2

damping effect in the space(p) can be analyzed similarly 442222 /m + 2923 /3m],  (19)
through the Hamiltonian approach. However, the trajectories 1

starting with the same initial conditions in this space are not L. = imﬁ — mgx £+ vz — ga?

below the other all the time, as the damping factor is greater.

This strange effect is due to the change in sign in (11d) with +9[v*a? /m — 2g2° /3m],  (20)

respect to (11a), produced by the position and velocity de- . 2

pendence of the expression (11c). px = mw £ 9{2va] +7*2va?/m], - (21)
2

To determine the constantthrough the constant of mo- Hi=2 {mgeT y[p?xz/m? — ga?

tion, one can start with the initial conditions,(= 0, v, > 0) 2m

and can determine the constant of motian. = muv?2/2. +v2[p*a? /m? + 2923 /3m].  (22)

Then, one can measure the maximum displacement.

(v = 0) and solvey from the equation 4. Quantization of the constant of motion

1, m%g s Equations (8a) and (13a) can be written as
-mv, = — (exp| —— | —1]). (18)
2 2y m K(z,v) = K,(x,v) + V(z,v), (23)

whereK, is the constant of motion without dissipation
Up to second order in the dissipation parameter, one has,

from (11a) to (11d) the constant of motion, the Lagrangian, K, (z,0)

1 2
the generalized linear momentum, and the Hamiltonian given — " +mga, (24)

| andV takes into account the dissipation factors

—a (g%) +a? (4:;2) (linear case)
Vix,v) = (25)

Fy [0z + ga?] + 42 [ + 2?{7% } (quadratic case)

The quantization of (14) can be carried out through the assa-

ciated Schivdinger’s equation of this constant of motion is well known [6], Withwr(f)) being the eigenfunction given by
ov
= K(z,0)V 1 ;
ih ot (,0)¥, (16) L0 = Ai(z — zp) (29)
" A (=)l

where¥ = ¥ (x,1) is the wave function} is the Plank con-
stant divided by2r, K = K, + V is a Hermitian operator

associated to (17), aridis the velocity operator defined as where Ai and Ai’ are the Airy function and its first differen-

tiation, andz,, is its nth-zero @i(—z,) = 0) which ocurres
ih O for a negative argument onlyz is the normalized variable

T=——— . 26
Y m Oz (26) z =x/lywithl, = (52/2m29)1/3, andz, is related to the

Since Eq. (16) represents a stationary problem, the usueligenvalueEr(LO through the expression
propositionV (z, t) = exp(—iEXt/h) ¢ (x) transforms (16)

to an eigenvalue problem: E©
P 2y = —— . (30)
(Ko + V) = EXy . (27) mglg

Taking the operatol/ as a perturbation of the constant of Up to second order in perturbation theory, the eigenvalues
motion K, one can calculate an approximate solution to theof (18) are given (in Dirac notation [11]) as
problem (18) through perturbation theory. The solution of the

eigenvalue problem I n|V|k>\2
- EX—EO 4 (n|Vin) + Y -0 (31)
Kl = EPy) (28) ;; B ~ B
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where(z|n) = 1/;,(10). Using the Hermitian operators
v2r = (Vi + 020 + 20%) /3 (n|z°|k) = I3(n|2°|k)
and and

0222 = (0222 + 020 + 2%0° + 202 + 2020 + Drdz) /6
(n|d*/dz®k) = 1, %(n|d® /dz"|k)
for the associated expressions on (25b), and using the rela-
tions for any integers, one has (see appendix for a list of matrix

| elements)

0
2 |z 8 g /24 maly/ (B — ED)P
5m " 99% 20 _ 5O
k#n k

n

Q@ (linear)

12gl22721 5623 lei’) .
Fy—TE 42 |~ 5+ g2 ) Snd + 49212 Jank| . (quadratic)
k#n

wherea,,, is a real number given by

112 — 221, (20 — 21)% + (20 — 22))?
(Zk - 271,)9 .

Note that for the linear dissipative case, there is no real con*"

tribution at a first approximation, and for the quadratic dissi- . )

pative case, the first order contribution depends on whethdrduations (8d) and (13d) can be written as

the particle is moving up (-) or down (-). Within a full cy-

cle, this first order correction is cancelled out and the second H(z,p) = Ho(z,p) + W(z,p) , (34)

order contribution remains. Of course, for the approxima-

tion (23a) to be valid, one must assume that the second termhereH, is the Hamiltonian without dissipation,

of this expression must be much less tig which makes

a restriction on the possible value of the dissipative parame- p?

ter. Of course, when the parameters of dissipation go to zero, Ho(z,p) = 5~ +mgz, 35)

one gets the nondissipative eigenvalues.

Qpk =

(33)
Quantization of the Hamiltonian

| andW has the dissipation terms,

3 4
p 2 p i
a <6mg) +a (24m592> (linear)
W(z,p) = (36)
2 2,2 3
2 [z;ng _ gxz} 42 [% + 23‘]7“;”1 ] (quadratic)

It is necessary to mention that the quantization of some

systems for quadratic dissipation has been solved by differ- P

ent authors [10,12] but perfectly reflexing wall potential, mﬁ = H(z,p)¥, (38)
V(o) = 0 forz <0 (37) where H is the Hamiltonian operator associated to
- Imgz forz>0" (24), and p is the usual linear momentum operator

p = —iho/0z. Equation (27) is transformed to an eigen-
Moreover, the solution given in Ref. 10 is singular when thevalue problem,H(z)=E(z), through the proposition
dissipation parameter goes to zero. Therefore, we think itt(z,t) = exp (—iE™t/h) ¢(z), since the Hamiltoniad/ is

worth while to make analysis of the quantization for smallgiven by 7/ = H, + W, where the solution of the equation
orders in the parametet For the usual Skidinger quantiza-

tion approach, one has the stationary equation Hoyp® = E(0)q,©) (39)
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is given by (20) and (21). Perturbation theory can be use@nd
to determine the approximate values of the eigenvaltés

(expression (22/)1 Using the Hermitian operators p’Q;Q = (PPa? + pr?0 + 225 + op%x + aprp + papr) /6
p2r = (px + prp + xp?)/3

|  forthe associated expressions on (25b), one gets

1222 [1/2 + mgly /(B — B |
a? [ in 4 4 9/ "k n (linear)
30m ' 9% (0)
k#n Ek _E7(10)
EH = EO 4 (40)
4ql2 22 3\ 2g13 .
£+ (5 i ) Tt 4% au| . (quadratic)
k#n

wherea,, is given by (23b). One must note here too that, when the parameters of dissipation go to zero, one gets the usual
eigenvalues for the nondissipative system. As one can see from (23) and (29), there is a difference between the eigenvalues
associated with the constant of motion and those associated with the Hamiltonian. Their relative diffeignee( B2 —

EEY/EY is given by

2 (0) (0)y]2
a 66m2g  9Mzn ; Elgo) 70 (linear)
E n c n
OB _ (41)
EY
1691222 ,
+ WTg gcn (quadratic)

6. Conclusion

I
up to the second order in the dissipation parameter using per-

The classical and quantum problem of a particle bouncing ofurbation theory. Relation (30) tells us that that there is a
a hard surface under the influence of gravity and subject tdifference whether the constant of motion or the Hamilto-
a linear and quadratic velocity dissipative force were treategian is quantized, and it suggests that maybe one could see
using the constant of motion and the Hamiltonian of the systhis difference experimentally. Finally, one must observe that
tem. Expressions (3) and (11a) give us the expected dampirfgr the full linear case (7), it is possible to solve exactly the
behavior of the particle in thex(v) space, but the expres- Shiddinger equation in the momentum representation, and
sions (7) and (11d) show an unexpected behavior ifithg)  this will be analyzed in a future paper.

space (two trajectories in this space, for dissipative parame-
ters one bigger than the other, do not follow one under th(aA
other all the time). In addition, all our expressions are re-
duced o the nondissipative case when the parameters of digze show here a list of some matrix elements from Ref. 6 and
sipation go to zero. For the quantum case, we have analyzegme others calculated from the same reference (a correction
the eigenvalues for the constant of motion and Hamiltoniany¢ sign has been made to some matrix elements). Given the
| functions (20) anck # k, one has

ppendix

(nlk) = b (A1)
_1\ntk+1
(nleln) = 2, (nl=te) = 2 (.2
_1\n+k+1
(nl2?ln) = 222 2y = 2 (A3)
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G =St (i = 2 O (n4)
(ol &) =0 iy = CU (A5)
() = —1, ey = 2D 1.6)
L) = 2 i = (5 + =) o (A7)
iy = 122 (nl iy = 2 E 2Bl 2 #9)
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