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J.I. Jiḿenez-Aquinoa, J.R. Varelab, and A.C. Ṕerez-Guerrero N.a
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In this work, we propose an alternative method for solving a to radiative transfer equation in the four-stream approximation following the
ideas of Jiḿenez-Aquino and Varela (2005). We use the Li and Ramaswamy (1995) proposal to establish the set of four coupled first-
order differential equations associated with theradiancesor radiative intensities. The method consists in transforming those four coupled
differential equations into a set of four independent fourth-order differential equations associated with the quantitiesMs andMd, which
represent the sum and the difference respectively of two radiative intensities. As a consequence of this fact, the solutions for the radiative
intensities are then easily calculated, and no matrix method is required.
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En este trabajo proponemos un método de solución alternativo a las ecuaciones de transferencia de radiación en la aproximación de cuatro
flujos, siguiendo las ideas propuestas por Jiménez-Aquino and Varela (2005). Usamos la propuesta de Li and Ramaswamy (1995), para
establecer un conjunto acoplado de cuatro ecuaciones diferenciales de primer orden asociados a las intensidades de radiación. El ḿetodo
consiste en transformar esas cuatro ecuaciones acopladas en un conjunto de cuatro ecuaciones diferenciales independientes, asociados a las
cantidadesMs y Md, las cuales representan la suma y la diferencia de dos intensidades de radiación respectivemente. Como cosecuencia de
este hecho, las soluciones para las intensidades de radiación son obtenidas facilmente sin el requerimiento de algún método matricial.

Descriptores: Dispersíon; polarizacíon; ecuacíon de transferencia radiativa.

PACS: 42.68.Db; 42.68.Mj

1. Introduction

The problem of specifying the radiation field of an atmo-
sphere which scatters light in accordance with well-defined
physical laws originated in Lord Rayleigh’s research in 1871
into the illumination and polarization of the sunlit sky. But
the fundamental equations governing Rayleigh’s problem had
to wait seventy-five years for their formulation and solutions.
However the subject was given in more tractable conditions
when Arthur Schuster in 1905 studied a problem in Radiative
Transfer in an attempt to explain the appearance of absorption
and emission lines in stellar spectra, and Karl Schwarzschild
introduced in 1906 the concept of radiative equilibrium in
stellar atmospheres. Since that time the Radiative Transfer
has been investigated principally by astrophysicists, though
in recent years the subject has attracted the attention of physi-
cists also, since essentially the same problem arises in the
theory of the diffusion of neutrons.

With regard to the atmospheric problem, the radiative
transfer also plays a very important role in the study of
air pollution, earth global heating, photochemistry of tropo-
spheric pollution, etc. For instance, in tropospheric photo-
chemistry, one of the most important quantities related to
the dissociation of certain molecules into fragments which
are highly reactive, and one that contributes to the unlimited
generation of ozone in the troposphere, is known asactinic
flux, see Finlayson-Pittset al., (1999). This is defined as the
amount of radiation coming from all directions that strikes
a given volume containing molecules and/or particles. The
calculation of the actinic flux begins with the solar radiation

incident at the top of the atmosphere and must include ab-
sorption and scattering of the light in the atmosphere and at
the ground’s surface. One way to calculate the actinic flux is
through the solution to the radiative transfer equation applied
to plane-parallel atmospheres, as proposed by Chandrasekhar
in 1960. It is an Integro-differential equation associated with
the intensity of solar radiation whose exact analytical solu-
tion has not yet been obtained. The solution has only been
calculated by some numerical and analytical approximation
methods. Such approximations are referred to as two-stream
four-stream approaches.

Two-stream methods for radiative transfer have been
widely used in radiative flux calculations, as described in sev-
eral review papers such as Meador and Weaver (1980), Shet-
tle and Weinman (1970), Zdunkowskiet al. (1980), and King
and Harshvardhan (1986), Ruı́z-Súarezet al. (1993), etc. The
popularity of two-stream approximation is due to the fact that
analytical solutions for upward and downward fluxes can be
derived, and numerical computations for these fluxes can be
efficiently performed in a plane-parallel medium. The ac-
curacies of the various two-stream methods have been com-
pared by King and Harshvardhan (1986). It wasfound that
the relative error in the radiative quantities can be up to 20%
or higher for any of the two-stream methods, over a range of
optical thicknesses and solar zenith angles. It follows that
improvements to the two-stream approaches are needed if
a higher accuracy in the calculations is desired. Generally,
the technique for improvement is to extend the two-stream
method to a four-stream or, in general, multi-stream approx-
imation.
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FIGURE 1. A pencil of radiation.

In 1995, an analytical method, based on the higher-order
spherical harmonic expansion in both the radiative intensity
and the phase function, was proposed by Li and Ramaswamy
to solve the radiative transfer equation. The proposed method
consists basically in reducing the radiative transfer equation
to a set of coupled first-order differential equations for the
radiative intensities, which, according to the truncation or-
der in the approximations lead, to two-stream, four-stream or
multi-stream approximations. In this work, we follow the Li
and Ramaswamy theoretical scheme and use the four-stream
approximation to establish the four coupled first-order dif-
ferential equations for the radiances. Our main aim in this
work is now to apply the strategy, based on thediffusion-
type equation for radiative transfer, proposed by Jiḿenez-
Aquino and Varela (2005) to solve those four coupled differ-
ential eaquations. The strategy consists in transforming those
coupled differential equations into a set of four independent
fourth-order differential equations associated with the quan-
tities Ms andMd, where these quantities will be defined re-
spectively as the sum and the difference of two radiative in-
tensities. The solutions for the radiances will be calculated
through these quantities in a direct manner, without any ma-
trix method. As will be shown, these solutions can easily be
transformed into the same expressions as those calculated by
Li and Ramaswamy, using some matrix methods. Finally, the
conclusions are given at the end of this work.

In this work, we start with some concepts and definitions
for the understanding of radiative transfer in planetary atmo-
spheres. So, the analysis of a radiation field often requires the
consideration of the amount of radiant energydEλ, in a time
interval dt, and in a specified wavelength interval,λ to dλ,
which crosses an element of areadA, and directions confined
to a differential solid angledΩ, which is oriented at an angle
θ to the normal ofdA, as shown in Fig. 1. This energy is ex-
pressed in terms of the specific intensity (or simply intensity
or radiance) Iλ given by

dEλ = −Iλ cos θ dA dΩ dλ dt, (1)

wherecos θ dA denotes the effective area at which the en-
ergy in being intercepted. Thus the intensity is in units of

energy per area per time per wavelength and per steradian.
The intensity is commonly, said to be confined in apencil of
radiation.

Themonochromatic flux densityor monochromatic irra-
dianceof radiant energy is defined by the normal component
of Iλ integrated over the entire hemispheric solid angle, and
may be written as

Fλ =
∫

Ω

Iλ cos θ dΩ . (2)

In polar coordinates, we write

Fλ =

2π∫

0

π/2∫

0

Iλ(θ, ϕ) cos θ sin θ dθ dϕ . (3)

Scatteringis a physical process by which a particle in
the path of an electromagnetic wave continuously abstracts
energy from the incident wave and reradiates that energy in
all directions. Therefore, the particle may be thought of as
a point source of scattered energy. Scattering is often ac-
companied byabsorption. Grass looks green because it scat-
ters green light while it absorbs red and blue light. The ab-
sorbed energy is converted to some other form, and it is no
longer present as red or blue light. Both scattering and ab-
sorption remove energy from a beam of light passing through
the medium. The beam of light is attenuated, and this atten-
uation can be calledextinction. Thus extinction is a result of
scattering plus absorption. In a nonabsorbing medium, scat-
tering is the sole process of extinction.

On the other hand, in the field of light scattering and ra-
diative transfer, it is customary to use a term calledcross sec-
tion, analogous to the geometrical area of a particle, to denote
the amount of energy removed from the original beam by the
particle. When the cross section is associated with a parti-
cle dimension, its units are denoted in terms of area (cm2).
Thus theextinction cross section, in units of area, is the
sum of the scattering and absorption cross sections, that is,
σext = σsca + σabs. However, when the cross section
is in reference to unit mass, its units are given in area per
mass (cm2g−1). In this case, themassextinction cross sec-
tion is the sum of the mass absorption and mass scattering
cross sections, that is,kext = ksca + kabs. Furthermore,
when the extinction cross section is multiplied by the particle
number density (cm−3), i.e. nσext, or when the mass ex-
tinction cross section is multiplied by the density (g cm−3),
i.e. ρkext, in both cases the resulting parameter has units of
(cm−1) and is referred to as theextinction coefficientand de-
noted byβext. The basic theories for an understanding of the
scattering of particles in the atmosphere are the Rayleigh and
Mie scattering theory.

In a scattering volume, which contains many particles,
each particle is exposedby, and also scatters, the light that
has already been scattered by other particles. For instance, a
particle at some position, say A, removes the incident light
just once,i.e. single scattering, in all directions. Meanwhile,
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a portion of this scattered light reaches another particle at a
position, say B, where it is scattered again in all directions.
This is calledsecondary scattering. Similarly, a subsequent
third-order scattering involving the particle at another posi-
tion, say C, takes place. Scattering more than once is called
multiple scattering. Multiple scattering is an important pro-
cess for the transfer of radiant energy in the atmosphere, es-
pecially when aerosols and clouds are involved.

2. Introduction to radiative transfer

A pencil of radiation passing through a medium will be weak-
ened by its interaction with matter. If the intensity of radia-
tion Iλ becomesIλ + dIλ after passing through a thickness
ds in the direction of its propagation, then

dIλ = −ρ kλ Iλ ds , (4)

whereρ is the density of the material, andkλ denotes the
mass extinction cross section (in units of area per mass) for
radiation of wavelengthλ. The mass extinction cross section
is the sum of the mass absorption and scattering cross section.
Thus, the reduction in intensity is due to both absorption and
scattering by the material.

On the other hand, the radiation intensity may be
strengthened by emission from the material plus multiple
scattering from other directions into the pencil under consid-
eration at the same wavelength. We define the source func-
tion coefficientjλ such that the increase in intensity due to
emission and multiple scattering is given by

dIλ = jλ ρ ds, (5)

where the source function coefficientjλ has the same physi-
cal meaning as the mass extinction cross section. Upon com-
bining Eqs. (4) and (5), we obtain that

dIλ = −kλ ρ Iλ ds + jλ ρ ds . (6)

It is convenient to define the source functionJλ = jλ/kλ,
which in this case has units of radiant intensity. So, Eq. (6)
may be rearranged to yield

dIλ

kλρ ds
= −Iλ + Jλ . (7)

This is the general radiative transfer equation without any co-
ordinate system imposed, and it is fundamental to the discus-
sion of any radiative transfer process.

2.1. The equation of radiative transfer for plane-
parallel atmospheres

For many atmospheric radiative transfer applications, it is
physically appropriate to consider that the atmosphere in lo-
calized portions is plane-parallel so that variations in the in-
tensity and atmospheric parameters (temperature and gas pro-
files) are permitted only in the vertical direction (i.e. height

and pressure). In this case, it is convenient to measure linear
distances normal to the plane of stratification. Ifz denotes
this distance, then the general equation of radiative transfer
defined in Eq. (7) becomes

cos θ
dI(z, θ, ϕ)

k ρ dz
= −I(z, θ, ϕ) + J(z, θ, ϕ) , (8)

whereθ denotes the inclination with respect to the upward
normal, andϕ the azimuthal angle in reference to thex axis.
For simplicity’s sake, we have omitted the subscriptλ on the
radiative quantities. By defining the normal optical thickness
(or depth)

τ =

∞∫

z

k ρ dz′ , (9)

measured downward from the outer boundary, we find that

µ
dI(τ, µ, ϕ)

dτ
= I(τ, µ, ϕ)− J(τ, µ, ϕ) , (10)

whereµ = cos θ. Eq. (10) is the basic equation for the prob-
lem of multiple scattering in plane-parallel atmospheres.

2.2. Multiple scattering and absorption in planetary at-
mospheres

The scattering process is often coupled with absorption. To
formulate the fundamental equation governing the transfer of
diffuse solar radiation in plane-parallel atmospheres contain-
ing molecules and particles, the following must be consid-
ered. The termdiffuse is associated with multiple scatter-
ing processes and is differentiated fromdirectsolar radiation.
The first term on the RHS of Eq. (8) describes the extinction
processes and the second one the emission and multiple scat-
tering of the diffuse radiation. For this purpose, we will con-
sider an atmospheric layer of thickness∆z delimited by two
plane-parallels and containing molecules and/or particles, as
shown in Fig. 2. The differential change of diffuse inten-
sity emerging from below the layer is due to the following
processes:

(1) reduction from the extinction attenuation,

(2) increase from the single scattering of the unscattered
direct solar flux from the direction(−µ0, ϕ0) to (µ, ϕ),

(3) increase from multiple scattering of the diffuse inten-
sity from directions(µ′, ϕ′) to (µ, ϕ), and

(4) increase from emission within the layer in the direction
(µ, ϕ).

Point (1) corresponds to the first term on the RHS of Eq. (8),
whereas points (2)-(4) are included in the source function
J(τ, µ, ϕ).

To describe the scattering of a particle it will be nec-
essary to introduce thephase function, which represents
the angular distribution of the scattered radiation coming
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from some other direction. For instance, phase function
℘(µ, ϕ;−µ0, ϕ0) describes the angular distribution of the
scattered radiation to the outgoing direction(µ, ϕ) coming
from direction(−µ0, ϕ0). Phase function℘(µ, ϕ;µ′, ϕ′) de-
scribes the angular distribution of the scattered radiation to
the outgoing direction(µ, ϕ) coming from other directions
(µ′, ϕ′).

On the other hand, according to the definitions given at
the end of Sec. I, the quantityn(z)σ ds must be understood
as the number of molecules and/or particles inside the vol-
ume element of lengthds and unitary cross section (1 cm2),
whereds = dz/ cos θ = dz/µ. Obviouslyn(z)σ dz is then
the number of molecules and/or particles inside the vertical
column of heightdz and unitary cross section. We define
the extinction, scattering, and absorption coefficient asβext,
βsca, andβabs as

βext,sca,abs =
1

∆z

∫

∆z

σext,sca,abs(z)n(z) dz. (11)

So, the differential change of the diffuse intensity can be
written as required by Eq. (8), that is:

µ
dI(z, θ, ϕ)

dz
= −nσextdz I(z, θ, ϕ)

+nσscadz
F¯
4π

e−τµ0℘(µ, ϕ;−µ0, ϕ0)

+
nσscadz

4π

2π∫

0

1∫

−1

I(τ, µ′, ϕ′) ℘(µ, ϕ; µ′, ϕ′)dϕ′dµ′

+nσabsdz B[T (z)]. (12)

Therefore, the first term on the RHS of Eq. (12) refers
to the reduction of intensity because of the extinction pro-
cesses; in the second term, the only expressionF¯e−τµ0 is
the attenuation of the direct radiation flux coming from the
sun, whereF¯ is the direct radiation flux at the top of the
atmosphere, as shown in Fig. 2. This attenuation represents
the Beer-Bouguer-Lambert law, which is obtained by solving
Eq. (10) without the second term of the RHS. So, the second
term refers to the increase in intensity because of the single
scattering of the unscattered direct solar flux from direction
(−µ0, ϕ0) to (µ, ϕ). The factor4π is the normalization con-
stant of the phase function because it must be integrated over
the4π solid angle. The third term contributes to the increase
in the scattered radiation in the direction(µ, ϕ) coming from
all other directions(µ′, ϕ′). Finally, the last termB[T (z)]
is concerned with the laws of blackbody radiation, which are
the basic to an understanding of the absorption and emission
processes. This is the case for the transfer of thermal infrared
radiation emitted for the earth and the atmosphere. How-
ever, the flux emitted for the earth and the atmosphere with
an equilibrium temperature∼ 255K is not sufficient for the
photodissociation process of some chemical species in com-
parison to that emitted from the sun forλ ≤ 3.5 µm. There-
fore, for some solar radiative transfer problem, which is our
interest in this work, we may omit the last term of Eq. (12).

FIGURE 2. Transfer of diffuse solar intensity from below in plane-
parallel layers: (1) attenuation y extinction; (2) single scattering of
the unscattered solar flux; (3) multiple scattering; and (4) emission
from the layer.

So, if we integrate Eq. (12) in the region∆z, and use the
definition of Eq. (11), we get

µ
∆I(z, θ, ϕ)

dz
= −βext I(z, θ, ϕ)

+βsca
F¯
4π

e−τµ0℘(µ, ϕ;−µ0, ϕ0)

+
βsca

4π

2π∫

0

1∫

−1

I(τ, µ′, ϕ′) ℘(µ, ϕ; µ′, ϕ′)dϕ′dµ′ . (13)

If we define thesingle-scattering albedõω as

ω̃ =
βsca

βext
, (14)

and the optical depthτ as

τ =

∞∫

z

βext dz′ , (15)

then, by taking the limit when∆z goes to zero, Eq. (13) can
finally be written more concisely as

µ
dI(z, θ, ϕ)

dτ
=I(τ, θ, ϕ)−J(τ, µ, ϕ)−J0(τ, µ0, ϕ0), (16)

whereJ(τ, µ, ϕ) is referred to as theinternal source function
due to multiple scattering and is defined as

J(τ, µ, ϕ)=
ω̃

4π

2π∫

0

1∫

−1

℘(µ, ϕ; µ′, ϕ′)I(τ, µ′, ϕ′)dϕ′dµ′, (17)

andJ0(τ, µ0, ϕ0) is referred to as theexternal source func-
tion due to single scattering of the direct radiation, and is
given by

J0(τ, µ0, ϕ0) =
ω̃

4π
℘(µ, ϕ;−µ0, ϕ0)F¯ e−u0τ . (18)
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FIGURE 3. Illustration of the incident solar fluxF¯ on the top of a
plane-parallel atmosphere, at an angleθ0. The parameterτ∗ is the
total optical dept,h andτ represents any point inside the layer.

The fundamental parameters that drive the transfer of diffuse
intensity are the optical depth, the single-scattering albedo,
and the phase function.

3. Li and Ramaswamy method

In the Li and Ramaswamy scheme, the phase function is ex-
panded in terms of the spherical harmonic function in the fol-
lowing way:

℘(µ, ϕ; µ′, ϕ′) =
∞∑

l=0

m=l∑

m=−l

ωl

2l + 1
Y m

l (µ, ϕ)Y m ∗
l (µ′, ϕ′) ,

(19)

where Y m
l (µ, ϕ) are the spherical harmonic function and

Y m ∗
l (µ′, ϕ′) its conjugate complex, such that

Y m
l (µ, ϕ) =

√
(2l + 1)(l −m)!

(l + m)!
Pm

l (µ) eimϕ , (20)

Pm
l (µ) being the associated Legendre function. The mo-

mentsωl of the series can be calculated using the expansion
of the phase function in terms of the scattering anglecosΘ
such that

℘(cosΘ) =
∞∑

l=0

ωl Pl(cosΘ) , (21)

where

cosΘ = µµ′ + (1− µ2)1/2(1− µ′2)1/2 cos(ϕ− ϕ′) ,
(22)

Θ is the angle between incident and scattered radiation, and

Pl(cosΘ) =
m=l∑

m=−l

1
2l + 1

Y m
l (µ, ϕ)Y m ∗

l (µ′, ϕ′) . (23)

The momentωl is determined by the orthogonality of the
Legendre function

ωl =
2l + 1

2

1∫

−1

℘(cos Θ)Pl(cos Θ)d cosΘ . (24)

It can be shown thatω0 = 1, which represents the normaliza-
tion of the phase function. The quantityω1/3 = g, is defined
as theasymmetry factorand is given by

g =
ω1

3
=

1
2

1∫

−1

℘(cosΘ)cosΘ d cosΘ; (25)

it is an important parameter because it characterizes the scat-
tering pattern of a particle.

3.1. The four stream approximation

The four stream method proposed by Li and Ramaswamy
starts with the following series expansion for radiative inten-
sity:

I(τ, µ, ϕ) =
∞∑

l=0

m=l∑

m=−l

√
2l + 1 Im

l (τ)Y m
l (µ, ϕ), (26)

whereIm
l (τ) is the radiative intensity as a function ofτ . Sub-

stituting Eq. (26) into Eqs. (17) and (18), and using the or-
thogonality property of the spherical harmonics, we obtain
expressions for the source functions

J = ω̃

∞∑

l=0

m=l∑

m=−l

ωl√
2l + 1

Im
l (τ)Y m

l (µ, ϕ) , (27)

and

J0 =
ω̃

4

∞∑

l=0

m=l∑

m=−l

ωl

2l + 1
Y m

l (µ, ϕ)Y m∗
l (−µ0, ϕ0)

×F¯ e−u0τ . (28)

Now, substituting Eqs. (26), (27) and (28) into the radiative
transfer equation (17), we get the following:

[
(l −m + 1)(l + m + 1)

]1/2 dIm
l+1

dτ

+
[
(l + m)(l −m)

]1/2 dIm
l−1

dτ
= al Im

l − bm
l e−u0τ , (29)

where coefficientsal andbm
l areal = [(2l + 1) − ω̃ωl] and

bm
l = ω̃ωlY

m ∗
l (−µ0, ϕ0)F¯/4

√
2l + 1. We consider a so-

lution with a truncation of orderL, which means that the
spherical harmonic functionY m

l (µ, ϕ) is restricted to order
l = 0, 1, 2, . . . , L. ForL = 1, if only calculations of flux and
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the azimuthally averaged intensity are considered, we have
(for m = 0)

dI0
1

dτ
= a0I

0
0 − b0

0 e−u0τ ,

dI0
0

dτ
= a1I

0
1 − b0

1 e−u0τ . (30)

System (30) is the well-known two-stream approximation
and is the same as that obtained in the Eddington approxi-
mation (Shettle and Weinman, 1970). The caseL = 2 corre-
sponds to a degenerate case and will not be considered in this
work.

For L = 3 we obtain the four-stream closure. Again,
if only the calculations of flux and the azimuthally averaged
intensity are considered, thenm = 0. In this case,

dI1

dτ
= a0I0 − b0 e−u0τ

2
dI2

dτ
+

dI0

dτ
= a1I1 − b1 e−u0τ

3
dI3

dτ
+ 2

dI1

dτ
= a2I2 − b2 e−u0τ

3
dI2

dτ
= a3I3 − b3 e−u0τ . (31)

Since we are considering only the azimuthally independent
case, and for simplicity the superscript”0” in I0

i and b0
i

(i = 0, 1, 2, 3) are omitted. Eqs. given in (31) can be com-
bined to yield

dI0

dτ
= a1I1 − 2a3

3
I3 −

(
b1 − 2b3

3
)

e−u0τ

dI1

dτ
= a0I0 − b0 e−u0τ

dI2

dτ
=

a3

3
I3 − b3

3
e−u0τ

dI3

dτ
= −2a0

3
I0 +

a2

3
I2 +

(2b0

3
− b2

3
)

e−u0τ . (32)

4. An alternative method of solution

To solve the set ofEqs. (??), we propose the following. Let
us define the new variables

Ms
1 = I0 + I2, Md

1 = I0 − I2,

Ms
2 = I1 + I3, Md

2 = I1 − I3, , (33)

in terms of which we will construct a set of four independent
fourth-order differential equations, one for eachMs, d

i with
i = 1, 2. For this purpose, we first write the first derivative
with respect toτ for eachMs, d

i , obtaining the following:

dMs
1

dτ
= A−1 Ms

2 + A+
1 Md

2 + B1 e−u0τ , (34)

dMd
1

dτ
= A′ −1 Ms

2 + A′+1 Md
2 + B′

1 e−u0τ , (35)

dMs
2

dτ
= A+

2 Ms
1 + A−2 Md

1 + B2 e−u0τ , (36)

dMd
2

dτ
= A′ −2 Ms

1 + A′+2 Md
1 + B′

2 e−u0τ , (37)

where we have defined the coefficients

A±1 =
a1

2
± a3

6
, A′ ±1 =

a1

2
± a3

2
,

A±2 =
a0

6
± a2

6
, A′ ±2 =

5a0

6
± a2

6
,

B1 =
b3

3
− b1, B′

1 = b3 − b1,

B2 = −b0

3
− b2

3
, B′

2 =
b2

3
− 5b0

3
. (38)

Next, the second derivative with respect toτ of Eqs. (34)-(37)
is calculated, combining these equations, so that

d2Ms
1

dτ2
= C11M

s
1 + C12M

d
1 + D e−u0τ , (39)

d2Md
1

dτ2
= C21M

s
1 + C22M

d
1 + E e−u0τ , (40)

d2Ms
2

dτ2
= C ′11M

s
2 + C ′12M

d
2 + D′ e−u0τ , (41)

d2Md
2

dτ2
= C ′21M

s
2 + C ′22M

d
2 + E′ e−u0τ , (42)

in this case, the coefficients are defined as

C11 = A−1 A+
2 + A+

1 A′ −2 , C12 = A−1 A−2 + A+
1 A′+2 ,

C21 = A′ −1 A+
2 + A′+1 A′ −2 , C22 = A′ −1 A−2 + A′+1 A′+2 ,

C ′11 = A+
2 A−1 + A−2 A′ −1 , C ′12 = A+

2 A+
1 + A−2 A′+1 ,

C ′21 = A′ −2 A−1 + A′+2 A′ −1 , C ′22 = A′ −2 A+
1 + A′+2 A′+1 ,

D = A−1 B2 + A+
1 B′

2 − u0B1,

E = A′ −1 B2 + A′+1 B′
2 − u0B

′
1,

D′ = A+
2 B1 + A−2 B′

1 − u0B2,

E′ = A′ −2 B1 + A′+2 B′
1 − u0B

′
2. (43)
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The four fourth-order differential equations for eachMs, d
i

are easily calculated from Eqs. (39)-(42), giving us

d4Ms
1

dτ4
= C11

d2Ms
1

dτ2
+ C12

d2Md
1

dτ2
+ u2

0D e−u0τ (44)

d4Md
1

dτ4
= C21

d2Ms
1

dτ2
+ C22

d2Md
1

dτ2
+ u2

0E e−u0τ (45)

d4Ms
2

dτ4
= C ′11

d2Ms
2

dτ2
+ C ′12

d2Md
2

dτ2
+ u2

0D
′ e−u0τ (46)

d4Md
2

dτ4
= C ′21

d2Ms
2

dτ2
+ C ′22

d2Md
2

dτ2
+ u2

0E
′ e−u0τ . (47)

As we can see, these equations are not clearly independent.
However, they can be transformed into four independent dif-
ferential equations with the help of Eqs. (39)-(42). This is
possible if the second derivatived2Md

1 /dτ2 in (44) can be
written in terms of an algebraic sum ofd2Ms

1/dτ2 andMs
1 ,

and also if the second derivatived2Ms
1/dτ2 in (45) can be

written in terms of an algebraic sum ofd2Md
1 /dτ2 andMd

1 .
Similarly if the second derivatived2Md

2 /dτ2 in (46) and
d2Ms

2/dτ2 in (47) satisfy the same requirements asMs d
1 .

After some algebraic manipulations of Eqs. (44)-(47), we
obtain forMs d

1

d4Ms
1

dτ4
= β

d2Ms
1

dτ2
+ γMs

1 + δ e−u0τ , (48)

d4Md
1

dτ4
= β

d2Md
1

dτ2
+ γMd

1 + ε e−u0τ , (49)

and forMs, d
2 we get

d4Ms
2

dτ4
= β′

d2Ms
2

dτ2
+ γ′Ms

2 + δ′ e−u0τ , (50)

d4Md
2

dτ4
= β′

d2Md
2

dτ2
+ γ′Md

2 + ε′ e−u0τ , (51)

which are clearly four independent fourth-order differential
equations, and the coefficients are defined as

β = C11 + C22, γ = C12C21 − C11C22,

δ = C12E − C22D + u2
0D,

ε = C21D − C11E + u2
0E , (52)

and

β′ = C ′11 + C ′22, γ′ = C ′12C
′
21 − C ′11C

′
22,

δ′ = C ′12E
′ − C ′22D

′ + u2
0D

′,

ε′ = C ′21D
′ − C ′11E

′ + u2
0E

′ . (53)

It can be shown thatβ = β′ = a0a1+(4/9)a0a3+(1/9)a2a3

andγ = γ′ = −(1/9)a0a1a2a3.
The solutions to Eqs. (48)-(51) are now very easy to cal-

culate. The solutions for eachMs, d
1 and eachMs, d

2 are given

by the sum of the homogeneous part plus a particular solu-
tion. In this case, they can be written more concisely as

[
Ms

1

Md
1

]
=

4∑

j=1

[
Fj

Gj

]
e−kjτ +

[
ξ1

ξ2

]
e−u0τ , (54)

and

[
Ms

2

Md
2

]
=

4∑

j=1

[
F ′j
G′j

]
e−kjτ +

[
ξ′1
ξ′2

]
e−u0τ , (55)

whereFj , Gj , F ′j , G′j , ξ1, ξ2, ξ′1 andξ′2 are constant. If
we substitute the homogeneous solution forMs

1 into the ho-
mogeneous part of Eq. (48), we obtain the following:

4∑

j=1

(k4
j − βk2

j − γ)Fj ekjτ = 0 . (56)

We arrive at the same expression when the homogeneous so-
lutions forMd

1 , Ms
2 andMd

2 are substituted into the homo-
geneous part of Eq. (49), (50) and (51) respectively, except
thatFj must be replaced byGj , F ′j andG′j . Thus, to have a
nontrivial solution for eachMs, d

i , we must have

f(k) = k4 − βk2 − γ = 0 , (57)

and therefore, the four roots for the solutions (54) and (55)
will be given by

k1 = [β +
√

β2 + 4γ]1/2/
√

2,

k2 = [β −
√

β2 + 4γ]1/2/
√

2,

k3 = −k1, andk4 = −k2.
On the other hand, if the particular solutions for each

Ms d
i are respectively substituted into Eqs. (48), (49), (50)

and (51), we obtain

ξ1=
δ

f(u0)
, ξ2=

ε

f(u0)
, ξ′1=

δ′

f(u0)
, ξ′2=

ε′

f(u0)
. (58)

So, according to the results given above, the explicit so-
lutions forMs, d

1 andMs, d
2 will be given by

Ms
1=F1e

−k1τ+F3e
k1τ+F2e−k2τ

+F4e
k2τ+ξ1e−u0τ (59)

Md
1 =G1e

−k1τ+G3e
k1τ+G2e−k2τ

+G4e
k2τ+ξ2e−u0τ (60)

Ms
2=F ′1e

−k1τ+F ′3e
k1τ+F ′2e

−k2τ

+F ′4e
k2τ+ξ′1e

−u0τ (61)

Md
2 =G′1e

−k1τ+G′3e
k1τ+G′2e

−k2τ

+G′4e
k2τ+ξ′2e

−u0τ . (62)
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According to the definitions given by Eq. (33), the solutions
for the radiative intensitiesIi(τ) can be written as

I0(τ) = J1e−k1τ + K1ek1τ + J2e−k2τ

+K2ek2τ + η0e−u0τ (63)

I1(τ) = J ′1e
−k1τ + K ′

1e
k1τ + J ′2e

−k2τ

+K ′
2e

k2τ + η1e−u0τ (64)

I2(τ) = R1e−k1τ + L1ek1τ + R2e−k2τ

+L2ek2τ + η2e−u0τ (65)

I3(τ) = R′1e
−k1τ + L′1e

k1τ + R′2e
−k2τ

+L′2e
k2τ + η3e−u0τ , (66)

where now

J1 = (F1 + G1)/2, K1 = (F3 + G3)/2,

J2 = (F2 + G2)/2, K2 = (F4 + G4)/2,

J ′1 = (F ′1 + G′1)/2, K ′
1 = (F ′3 + G′3)/2,

J ′2 = (F ′2 + G′2)/2, K ′
2 = (F ′4 + G′4)/2,

R1 = (F1 −G1)/2, L1 = (F3 −G3)/2,

R2 = (F2 −G2)/2, L2 = (F4 −G4)/2,

R′1 = (F ′1 −G′1)/2, L′1 = (F ′3 −G′3)/2,

R′2 = (F ′2 −G′2)/2, L′2 = (F ′4 −G′4)/2,

η0 = (ξ1 + ξ2)/2, η1 = (ξ′1 + ξ′2)/2,

η2 = (ξ1 − ξ2)/2, η3 = (ξ′1 − ξ′2)/2. (67)

To write the radiances given by Eqs. (63)-(66), in the same
form as those established by Li and Ramaswamy, we must
show that the coefficients of Eqs. (64)-(66) are not indepen-
dent. In fact, it can be shown with the help of Eqs. (34)-(37)
that each one of them is related to its corresponding coef-
ficient given in Eq. (63). Thus, by substituting only the
homogeneous solution for eachMs, d

i into its corresponding
homogeneous part in Eqs. (34)-(37), we find the following
conditions forMs, d

1 :

−k1F1=A−1 F ′1+A+
1 G′1, −k1G1=A′ −1 F ′1+A′+1 G′1,

k1F3=A−1 F ′3+A+
1 G′3, k1G3=A′ −1 F ′3 + A′+1 G′3,

−k2F2=A−1 F ′2+A+
1 G′2, −k2G2=A′ −1 F ′2+A′+1 G′2,

k2F4=A−1 F ′4+A+
1 G′4, k2G4=A′ −1 F ′4+A′+1 G′4, (68)

and forMs, d
2 , the conditions

−k1F
′
1=A+

2 F1+A−2 G1, −k1G
′
1=A′ −2 F1+A′+2 G1,

k1F
′
3=A+

2 F3+A−2 G3, k1G
′
3=A′ −2 F3+A′+2 G3,

−k2F
′
2=A+

2 F2+A−2 G2, −k2G
′
2=A′ −2 F2+A′+2 G2,

k2F
′
4=A+

2 F4+A−2 G4, k2G
′
4=A′ −2 F4+A′+2 G4. (69)

Combining Eqs. (68) and (69), we can show that

J ′1 = −a0

k1
J1, K ′

1 =
a0

k1
K1,

J ′2 = −a0

k2
J2, K ′

2 =
a0

k2
K2,

R1 =
1
2

(
a0a1

k2
1

− 1
)

J1, L1 =
1
2

(
a0a1

k2
1

− 1
)

K1,

R2 =
1
2

(
a0a1

k2
2

− 1
)

J2, L2 =
1
2

(
a0a1

k2
2

− 1
)

K2,

R′1=−
3

2a3

(
a0a1

k1
−1

)
J1, L′1=

3
2a3

(
a0a1

k1
−1

)
K1,

R′2=−
3

2a3

(
a0a1

k2
−1

)
J2, L′2=

3
2a3

(
a0a1

k2
−1

)
K2. (70)

Now, if we define the constants

S1 = −a0/k1,

S2 = −a0/k2,

T1 = [(a0a1/k2
1)− 1]/2,

T2 = [(a0a1/k2
2)− 1]/2,

U1 = −3[(a0a1/k1)− k1]/2a3,

U2 = −3[(a0a1/k2)− k2]/2a3,

then the set of solutions for the radiative intensities (63)-(66)
can be transformed as those given by Li and Ramaswamy,
that is:

I0(τ) = J1e−k1τ + K1ek1τ + J2e−k2τ

+ K2ek2τ + η0e−u0τ (71)

I1(τ) = S1[J1e−k1τ −K1ek1τ ]

+ S2[J2e−k2τ −K2ek2τ ] + η1e−u0τ (72)

I2(τ) = T1[J1e−k1τ + K1ek1τ ]

+ T2[J2e−k2τ + K2ek2τ ] + η2e−u0τ (73)

I3(τ) = U1[J1e−k1τ −K1ek1τ ]

+ U2[J2e−k2τ −K2ek2τ ] + η3e−u0τ . (74)

In the Li and Ramaswamy solutions, the constantsJi, Ki, Si,
Ti, andUi with i = 1, 2 are named by other letters, and the
constantsη0, η1, η2 andη3 are the same as those used by the
authors, namely:

η0 =
1

9f(u0)
[
a1b0 − u0b1(a2a3 − 9u2

0)

+ 2u2
0(a3b2 − 2a3b0 − 3b3u0)

]
, (75)
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η1 =
1

9f(u0)
[
(a0b1 − u0b0)(a2a3 − 9u2

0)

− 2a0u0(a3b2 − 3b3u0)
]
, (76)

η2 =
1

9f(u0)
[
(a3b2 − 3b3u0)(a0a1 − u2

0)

− 2a3u0(a0b1 − b0u0)
]
, (77)

η3 =
1

9f(u0)
[
(a2b3 − 3b2u0)(a0a1 − u2

0)

+ u2
0(6a0b1 − 4a0b3 − 6b0u0)

]
. (78)

The above solutions determine the radiative intensity (radi-
ant energy) for a single-layer homogeneous atmosphere. The
constantsJ1, K1, J2 andK2 can be determined using the ap-
propriate boundary conditions. Here we will use the Marshak
boundary condition (Evans, 1993). For the layer considered,
at the upper boundary (optical depthτ = τu),

−1∫

0

2π∫

0

[I(τu, µ, ϕ)− I−(τu, µ, ϕ)]

× Y m ∗
l (µ, ϕ) dµdϕ = 0 , (79)

with l = 1, . . . , L;m = ±1, . . . ,±l; andI−(τu, µ, ϕ) is the
downward diffuse intensity at the upper boundary. At the
lower boundary (optical depthτ = τ

l
),

1∫

0

2π∫

0

[I(τ
l
, µ, ϕ)− I+(τ

l
, µ, ϕ)]

× Y m ∗
l (µ, ϕ) dµdϕ = 0 , (80)

wherel = 1, . . . , L; m = ±1, . . . ,±l; and I+(τ
l
, µ, ϕ) is

the upward diffuse intensity at the lower boundary. For a
single-layer medium, at the top (τ = 0), there is no down-
ward diffuse intensity; in this case,

−1∫

0

2π∫

0

I(0, µ, ϕ)Y 0 ∗
1 dµdϕ

∼ 1
2
I0(0)− I1(0) +

5
8
I2(0) = 0 , (81)

and
−1∫

0

2π∫

0

I(0, µ, ϕ)Y 0 ∗
3 dµdϕ

∼ −1
8
I0(0) +

5
8
I2(0)− I3(0) = 0 . (82)

At the bottom of the layer (τ = τ∗, see Fig. 3) there is no up-
ward diffuse intensity (surface albedo is assumed to be zero);
in this case,

1∫

0

2π∫

0

I(τ∗, µ, ϕ)Y 0 ∗
1 dµdϕ

∼ 1
2
I0(τ∗) + I1(τ∗) +

5
8
I2(τ∗) = 0 , (83)

and

1∫

0

2π∫

0

I(τ∗, µ, ϕ)Y 0 ∗
3 dµdϕ

∼ −1
8
I0(τ∗) +

5
8
I2(τ∗)− I3(τ∗) = 0 . (84)

By substituting Eqs. (71)-(74) into their corresponding
expressions given by (81)-(84), we establish a set of four
equations with four unknownsJ1, K1, J2 andK2. These
quantities can be determined in a very similar way to those
calculated by Jiḿenez-Aquino and Varela, (2002), using the
same boundary conditions.

5. Concluding remarks

The alternative method of solution proposed by Jiménez-
Aquino and Varela (2005) for solving the radiative transfer
equation in the two-stream approximations, has been applied
in solving the set of four coupled first-order differential equa-
tions (32), which arise in the Li and Ramaswamy theoretical
framework. The method of solution is developed in terms of
the quantitiesMs, d

i , with i = 1, 2; it is clearly simple, and
the radiances given by Eqs. (63)-(66) are, consequently, cal-
culated in a direct way. The transformation of those solutions
into the same expressions as those established by Li and Ra-
maswamy (1995) has also been very simple to calculate. The
method can, of course, be easily extended to other cases.
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