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The landscape of Physics is in a constant state of change and the structure of the University level Physics Curriculum needs to be adapted to
this state of affairs. One of the most interesting current features of physics is the increasing importance of multidisciplinary studies. Methods
and ideas from physics are being applied to diverse areas of science ranging from biology and economics to sociology and linguistics.
Statistical Physics (SP) provides the most fertile set of methods for these kind of applications. The aim of the present contribution is to
show how a powerful idea from SP that is widely applied in many fields, the maximum entropy principle (MaxEnt), can be integrated
into the physics curriculum. First of all, the constrained maximization of an entropic measure provides an important illustration of the
Lagrange multipliers technique, which is part of the standard calculus course for physics students. Secondly, MaxEnt provides the basis
for an alternative foundation for statistical mechanics, which is nowadays being considered in some modern textbooks on SP. In point of
fact, the main role usually assigned to MaxEnt (as a tool for teaching theoretical physics) is in connection with the Gibbs canonical and
grand canonical ensembles. However, as we shall here explain, MaxEnt also constitutes a useful tool in the teaching of other aspects of
theoretical physics: it provides an elegant and simple method for obtaining analytical solutions for several evolution equations, like the
Liouville equation, the diffusion equation, and the Fokker-Planck equation. Last but certainly not least, MaxEnt belongs to the tool-kit that
physicist use to solve concrete “real-world” problems.

Keywords:Maximum entropy principle; continuity equations; Liouville equation.

El panorama de la fı́sica contempoŕanea se encuentra en un estado de continuo cambio y por ende la estructura de los planes de estudio del
área necesita adaptarse a tal situación. La creciente importancia de la multidisciplinariedad es hoy faceta tı́pica de la actividad en fı́sica.
Técnicas e ideas de origen fı́sico est́an siendo aplicados conéxito enáreas diversas. Biologı́a y econoḿıa constituyen ejemplos importantes.
La fı́sica estad́ıstica (FE) es la principal proveedora de métodos para este tipo de aplicaciones. Este trabajo se refiere a una idea muy fecunda
(y de amplia aplicación) de la FE, el llamado “principio de ḿaxima entroṕıa” (PME). Pretendemos aquı́ mostrarcomopuede el PME ser
integrado con provecho en la currı́cula de la f́ısica. Se veŕa que los cursos de mecánica estad́ıstica no son lośunicos donde este principio
puede ser exitosamente incorporado. En particular, ilustraremos como el PME puede ser empleado para construir soluciones analı́ticas
relativamente sencillas para ecuaciones de evolución muy importantes, tales como las de Liouville y Fokker-Planck.

Descriptores:Principio de maxima entropı́a; ecuaciones de continuidad; ecuación de Liouville.

PACS: 05.40.-a; 05.20.Gg

1. Introduction

The contents and structure of the physics curriculum have
been in continuous evolution since the last quarter of the XIX
century, when physics finally acquired, as a consolidated in-
dependent discipline and as a professional career, a form that
would be (at least barely) recognizable by a physics student
today. However, the pace of change of the physics curriculum
has not been uniform. The first half of the last century wit-
nessed deep, rapid changes arising from relativity and quan-
tum revolutions. On the other hand, during the second half
of the 20th century, the changes made to the physics curricu-
lum werw not that dramatic. This (relatively speaking) “sta-
tionary state” had the psychological consequence that some
physicists seem to believe that we had already reached “the
end of history”, as far as the physics curriculum is concerned.
Far from the truth. Physics is nowadays experiencing pro-

found changes both in terms of the contents of physics as a
discipline, and in terms of the activities developed by pro-
fessional physicists involved either in pure research or in the
practical applications of physical science. Two of the main
sources behind these deep changes are

(i) the fundamental new role played by the concept of
information in some of the currently most active
branches of theoretical physics and

(ii) the increasing importance of the multidisciplinary ar-
eas of research (particularly concerning the application
of methods and ideas from physics to biology, eco-
nomics, sociology, etc.).

Of course, the physics curriculum must have a finite
length. Consequently, it is not possible to incorporate new
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FIGURE 1. The flow of physical knowledge.

contents in to the curriculum without at the same time effect-
ing an appropriate re-organization of the traditional contents.
The way to do this is to focus on the teaching of the general,
unifying principles, concepts, methods and techniques. Con-
sequently, there should be a flow (see Fig. 1) of these “great
topis”, originating in the physics research literature, to be in-
tegrated into the physics curriculum. Conversely, one should
also expect some of the old, more specific contents to move
away from the physics curriculum into what we might call
“oblivion”. This “flow” out of the physics curriculum has
been taking place all the time (just compare a general physics
textbook written before 1940 with one written at the end of
the 20th century). There is also a continuous flow of topis
out of the current research literature into “oblivion” (dashed
lines in Fig. 1). But to fall into oblivion from the research
literature is less dramatic than to fall from the physics cur-
riculum. Research interests and fashions change all the time,
and a subject that has fallen into oblivion may come back at
any time. But if something was once part of the physics cur-
riculum, it means that there was once a consensus that it was
among the most fundamental topics in physics. And when
something falls from the curriculum, it almost never comes
back.

The Maximum Entropy Principle constitutes one of these
general, unifying ideas that play an important role in current
research. It is, undoubtedly, one of the most fundamental
tools in statistical physics, from both the conceptual and the
practical points of view. It was first mentioned by Gibbs him-
self in his famous book on statistical mechanics [1]. In that
book, Gibbs noticed that his canonical distribution is the one
that maximizes the entropy under the constraints imposed by
the mean energy and normalization. However, it was Jaynes
who, inspired by ideas from information theory, elevated the
maximum entropy principle to the status of the basic postu-
late of statistical mechanics [2]. There are already several
textbooks on equilibrium statistical mechanics that develop
this subject taking as its basis the maximum entropy princi-
ple [3–6]. However, the scientific relevance of the maximum
entropy principle (as wellas the information theory concepts

behind it) goes well beyond the study of equilibrium statisti-
cal mechanics. One of the first places in which this was ex-
plored is the classic work by Brillouin [7]. The great number
of applications of the maximum entropy principle to various
areas of science attest to this. It is impossible to review here
all the applications of the maximum entropy principle. To
give an idea of the richness of its scope, we shall mention
some now recent applications.

• In Ref. 8, the principle of maximum entropy (MaxEnt)
yields a conditional probability distribution model for
estimating the runoff for the catchment (watershed) of
the Matatila dam in India. The model predicts runoff,
subject to the selected constraints, in response to a
given rainfall, in a rather adequate fashion.

• In Ref. 9, a maximum entropy method is applied di-
rectly to experimental kinetic absorption data in or-
der to select between possible photocycle kinetics. No
assumption is needed for the number of intermediate
states taking part in the photocycle.

• In Ref. 10, based on the maximum entropy principle,
the authors proved the asymptotic stability of the equi-
librium state for the balance-equations of charge trans-
port in semiconductors, in the non-linear approxima-
tion, for a typical one-dimensional problem.

• In Ref. 11, a maximum entropy model-based frame-
work is developed to provide a platform capable of in-
tegrating multimedia features as well as their contex-
tual information in a uniform fashion to automatically
detect and classify baseball highlights. This model
simplifies the training-data creation and the highlight-
detection and classification tasks.

• In Ref. 12, the authors found that, for a particular
choice of the set of parameters related to the strengths
of the (i) mean field, (ii) anti-alignment, (iii) inter-
nal magnetic field, and (iv) hopping, a system could
exhibit physical properties characteristic of the colos-
sal magnetoresistance. This property has been inves-
tigated within the framework of the maximum entropy
principle for a system described by a simplified version
of Hubbard-Anderson Hamiltonian.

• In Ref. 13, making use of the maximum entropy
method, it is possible to determine the resonant fre-
quency of a mechanical oscillator from the stochastic
time-series data.

• In Ref. 14, highly resolved electron density maps for
LiF and NaF have been elucidated using reported X-
ray structure factors. Here, the bonding electron den-
sity distribution is clearly revealed both qualitatively
and quantitatively, using MaxEnt.

• In Ref. 15, the maximum entropy method is introduced
in order to build a robust formulation of the inverse
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problem. This method finds the solution which maxi-
mizes the entropy functional under the given tempera-
ture measurements.

• In Ref. 16, MaxEnt is applied to dynamical fermion
simulations of a Nambu-Jona-Lasinio model. The au-
thors present results on large lattices for the spec-
tral functions of the elementary fermion, the pion, the
sigma, the massive pseudoscalar meson, and the sym-
metric phase resonances.

• In Ref. 17, the method of maximum entropy is used for
the solution of the aerosol dynamic equation so as to
get physical insights into the role of coagulation, con-
densation, and removal processes.

• In Ref. 18, the possibility that statistical, natural-
language processing techniques could be used to as-
sign Gene-Ontology codes is explored. It is shown that
maximum entropy modeling outperforms other meth-
ods for associating a set of GO codes (for biological
process) to literature-abstracts and thus to the genes as-
sociated with the abstracts.

• In Ref. 19, the MaxEnt approach is used to find the
exact solution of the one-dimensional Fokker-Planck
equation with variable coefficients. They consider
three examples: the well-known Ornstein-Uhlenbeck
differential equation, the Lamm equation, and the
Fokker-Planck equation for the linear Brownian mo-
tion.

The aim of this article is to provide some hints on how
the maximum entropy principle can be incorporated in to
the teaching of those aspects of theoretical physics related
to, but not restricted to, statistical mechanics. We are go-
ing to focus our attention on the study of maximum entropy
solutions to evolution equations that exhibit the form of con-
tinuity equations. Such equations include, for instance, the
Liouville equation, the diffusion equation, the Fokker-Planck
equation, etc.

2. Brief review of the MaxEnt ideas

The second law of thermodynamics [20] is one of physics’
most important statements. In fact the first and second laws,
constitute strong pillars of our understanding of Nature. In
statistical mechanics, an underlying microscopic substratum
is added that is able to explain not only these laws but the
whole of thermodynamics itself [21–24]. The most basic in-
gredient of such an explanation is a microscopic probability
distribution (PD) that controls the population of microstates
of the system under consideration [21]. Primarily, the maxi-
mum entropy approach, or MaxEnt, is an algorithm designed
to obtain this PD. In order to make sense of it, however, we
must first of all extract the concept of entropy from its nat-
ural thermodynamic surroundings and give it a more general
meaning [2,24,25].

2.1. Entropy as ignorance

Jaynes [2] pioneered MaxEnt based on the idea of regard-
ing entropy as a measure of our ignorance in a given situ-
ation [24]. The following example is quite instructive and
conveys the essentials of this interpretation of entropy [24].
If you haveN identical cells and in one of them a specific
feature can be encountered, but you do not knowin whichof
them you have to look for it, then your ignoranceI in such a
situation (A) depends only onN (I = I(N)), (B) increases
monotonically withN , and (C) reduces to zero forN = 1.
Further, if each cell is subdivided intoM sub-cells, your ig-
norance is now

• (1) that of selecting among theN possibilities, namely,
I(N) plus

• (2) that of choosing among theM subdivisions, that is,
(I(M)).

(D) Ignorance is additive: if Alice has information about (1)
only, and Bob about (2) only, you can overcome it by speak-
ing to both of them to getI(N + M) = I(N) + I(M).
The only function compatible with A-D is the logarithmic
one, i.e.

I = k ln N, (1)

with k a constant that we can use as the unit of information.
It is easy to show [24] that forN non-identical cells, each en-
dowed with a probabilitypi, (i = 1, . . . , N), (5) generalizes
to

I = −k

N∑

i=1

pi ln pi, (2)

a quantity that measures the amount of ignorance attached to
a probability distribution.I measures what we still have to
learn in order to reach the ideal situation of certainty, namely

pi = 1 pm 6=i = 0. (3)

Equation (2), withk = kB , the Boltzmann constant, yields
the thermodynamic entropy in statistical mechanics [22], but
we clearly appreciate the fact that this equation has a much
wider span.

2.2. A derivation of thermodynamics’ first law from
MaxEnt

As a physical example of MaxEnt application, let us tackle
deriving the first law of thermodynamics from it in a special
case: that in which we are concernedonly with changes that
exclusively affect microstate-population. Thus, one considers
a system whose possible atomic energy-levels are labelled
by a set of quantum numbers collectively denoted byi that
can be occupied with probabilitiespi. The waypi variations
dpi are related to changes in a system’s extensive quantities
can be interpreted as one of the essential aspects of the first
law [22]. Consequently, one must show that,
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• given a concave entropic form (or information measure
(IM)) S,

• a mean internal energyU ,

• mean valuesAν ≡ 〈Aν〉; (ν = 1, . . . , M) of M ex-
tensive quantitiesAν ,

• a temperatureT , and

• for any system described by a microscopic probability
distribution (PD){pi},

• assuming a reversible process viapi → pi + dpi,

• (Thesis) if a normalized PD{pi} maximizesS, with
the numerical values ofU and theM Aν as constraints,
this entails

dU = TdS −
M∑

ν=1

γν dAν

First Law of Thermodynamics. (4)

2.2.1. Proof

Consider [26,27] a quitegeneralinformation measure of the
form

S = k
∑

i

pi f(pi), (5)

where, for simplicity’s sake, Boltzmann’s constantkB is de-
noted here just byk. The sum runs over a set of quantum
numbers, collectively denoted byi (characterizing levels of
energyεi), that specify an appropriate basis in the Hilbert
space andP = {pi} is an (as yet unknown) normalized prob-
ability distribution such that

∑

i

pi = 1. (6)

Let f be an arbitrary smooth function of thepi. Further, con-
siderM quantitiesAν that represent mean values of exten-
sive physical quantitiesAν . These take on, for the statei,
the valueaν

i with probabilitypi. Also, we suppose thatg is
another arbitrary smooth, monotonic function of thepi such
thatg(0) = 0 andg(1) = 1. We do not require the condition

∑

i

g(pi) = 1.

The mean energyU and theAν are given by

U =
∑

i

εi g(pi) Aν =
∑

i

aν
i g(pi). (7)

Assume now that the setP changes in such a way that

pi → pi + dpi,

with
∑

i

dpi = 0(Cf.(6)), (8)

which in turn generates corresponding changesdS anddU
in S, theAν , andU respectively.

We wish to extremizeS subject to the constraint of fixing
i) U and ii) theM valuesAν . This is achieved via Lagrange
multipliers i) β and ii) M γν . We need also a normalization
Lagrange multiplierξ:

δ{ pi}[S − βU −
M∑

ν=1

γνAν − ξ
∑

i

pi] = 0, (9)

leading, withγν = βλν , to

0 = δpm

∑

i

pif(pi)

+

(
−δpm

[
∑

i

βg(pi)(
M∑

ν=1

λν aν
i + εi)− ξ]

)
, (10)

so that

0=f(pi)+pif
′(pi)+

[
−βg′(pi)(

M∑
ν=1

λν aν
i +εi)−ξ

]
=0,

that after settingξ = βK becomes

0 = f(pi) + pif
′(pi)

+

{
−β[g′(pi)(

M∑
ν=1

λν aν
i + εi)−K]

}
. (11)

To see that this equation leads to the first law [27], we go
back to the expression for the first law

dU − TdS +
M∑

ν=1

dAνλν = 0, (12)

with T the temperature, and see what happens when thepi

vary such a way thatpi → pi + dpi. A little algebra yields,
up to first order in thedpi

∑

i

[C1
i + C2

i ]dpi ≡
∑

Kidpi = 0

C1
i = [

M∑
ν=1

λν aν
i + εi] g′(pi)

C2
i = −kT [f(pi) + pi f ′(pi)], (13)

where the primes indicate the derivative with respect topi.
We proceed to show now that all theKi are equal. Indeed,
select just two of thedp’s 6= 0, saydpi and dpj , with the
remainingdpk = 0 for k 6= j and k 6= i, which entails
dpi = −dpj . In these circumstances, for Eq. (13) to hold, we
necessarily haveKi = Kj . But, sincei andj have been arbi-
trarily chosen, a posteriori we find thatKi = constant = K
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for all i. The value ofK will be determined by the normal-
ization condition on the probability distribution, to be deter-
mined by the relation:

K =
∑

i

D1
i + D2

i

D1
i = [

M∑
ν=1

λν aν
i + εi] g′(pi)

D2
i = −kT [f(pi) + pi f ′(pi)], (14)

so that we can recast (14) in the form

T 1
i = f(pi) + pi f ′(pi)

T 2
i = −β[(

M∑
ν=1

λν aν
i + εi) g′(pi)−K]

β ≡ 1/kT, that leads to :
∑

i

T 1
i + T 2

i = 0. (15)

Equation (15) comes from the first law while Eq. (11)
comes from MaxEnt. Since it is apparent that the two equa-
tions are identical, our proof is complete.

3. Why is MaxEnt a useful teaching tool?

There are thousands of MaxEnt applications in the most
fields of knowledge. Why is this useful for the theaching of
Physics?

In elementary courses, MaxEnt illustrates in a simple
fashion the utility of Lagrange multipiers. These are seen in
Calculus but seldom illustrated in physics’ lectures, save for
a brief mention in Analytical Mechanics. Some MaxEnt ex-
amples could already be taught in first year courses without
any difficulty.

Of course, MaxEnt should be examined in more detail
in teaching Thermodynamics and Statistical Mechanics. In
additional MaxEnt can be used with reference to the teach-
ing of equations of evolution exhibiting the form of conti-
nuity equations. We can mention, for instance, the Liou-
ville equation, the Fokker-Planck equation, Diffusion equa-
tions, the Von Neumann’s equation in quantum mechanics,
etc. This entails a change of perspective. In the above discus-
sion, we were concerned with discrete probabilities, while we
now need continuous ones, i.e. probability densitiesf(z) for
the random (vector) variablez. Let us thus consider a classi-
cal system described by a time dependent probability distri-
butionf(z, t) evolving according to the continuity equation

∂f

∂t
+∇ · J = 0, (16)

wherez denotes a point in the relevantN -dimensional phase
space andJ is the flux vector (which, in general, depends on
the distributionf ). As examples we have:

• i) The one dimensional diffusion equation,

∂f

∂t
−Q

∂2f

∂x2
= 0, (17)

where Q denotes the diffusion coefficient while the
flux is given by

J = −Q
∂f

∂x
. (18)

• ii) The general Liouville equation

∂f

∂t
+∇ · (fw) = 0, (19)

with flux

J = fw. (20)

The Liouville equation describes the evolution of an
ensemble of classical, deterministic dynamical systems
evolving according to the equations of motion

dz
dt

= w(z), (21)

where z denotes a point in the concomitantN -
dimensional phase space.

• Hamiltonian ensemble dynamics, a particular instance
of the Liouville equations (21). For Hamiltonian sys-
tems withn degrees of freedom we have

1. N = 2n,

2. z = (q1, . . . , qn, p1, . . . , pn),
3. wi = ∂H/∂pi, (i = 1, . . . , n), and

4. wi+n = −∂H/∂qi, (i = 1, . . . , n),

where theqi and thepi stand for generalized coordi-
nates and momenta, respectively.

With reference to the last item, note that Hamiltonian dy-
namics

i) exhibits the important feature of being divergence-free

∇ ·w = 0, (22)

and

ii) for this reason the Liouville equation simplifies to

∂f

∂t
+ w · ∇f = 0 (23)

equivalent to a relationship obeyed by the total time
derivative

df

dt
= 0, (24)

that is computed along an individual phase-space’s or-
bit. This last form of Liouville equation for diver-
genceless systems has an important consequence: if
f(z, t) is a solution to (23)-(24), so is any function
g[f(z, t)].

Rev. Mex. F́ıs. E52 (2) (2006) 151–159



156 J-H. SCHONFELDT, G.B. ROSTON, A.R. PLASTINO, AND A. PLASTINO

4. MaxEnt ansatz for the continuity equation

A central point for our present discussion is that of consider-
ing an especially important ansatz for solving the equation of
continuity (16), namely, the MaxEnt ansatz, that is expressed
by

fME =
1
Z

exp

[
−

M∑

i=1

λiAi

]
, (25)

where theAi(z) areM appropriate quantities that are func-
tions of the phase space locationz, and the partition function
Z (normalization constant) is given by

Z =
∫

exp

[
−

M∑

i=1

λiAid
Nz

]
. (26)

The probability distribution (25) is the one that maximizes
the entropy (here we are dealing with continuous probabil-
ity distributions, and the summations appearing in previous
sections are replaced by integrals):

S[f ] = −
∫

f ln fdNz, (27)

under the constraints imposed by normalization and the rele-
vant mean values,

〈Ai〉 =
∫

AifdNz. (28)

The relevant mean values〈Ai〉 and the associated Lagrange
multipliersλi are related by the well-known Jaynes’ relations

λi =
∂

∂〈Ai〉S, (29)

and

〈Ai〉 = − ∂

∂λi
(lnZ). (30)

All the time dependence of the maximum entropy distri-
bution (25) is contained in the Lagrange multipliersλi(t),
which are assumed to be time dependent. The Lagrange mul-
tipliers change in time, in order to accommodate the evolving
mean values values〈Ai〉. Now, in general, the time deriva-
tives of the aforementioned mean values are

d

dt
〈Ai〉 = −

∫
Ai∇ · JdNz i = 1, . . . M. (31)

Integrating by parts and making the usual assumption that
J → 0 as quickly as|z| → ∞, surface terms vanish (they do
in 99.9% of physics problems!) and we finally obtain

d

dt
〈Ai〉 =

∫
dNz J · ∇Ai, (i = 1, . . . ,M). (32)

The integrals appearing on the right hand sides of these equa-
tions generally involve, unfortunately, new mean values not
included in the original set〈Ai〉(i = 1, . . . , M) (remember

that the fluxJ depends on the distributionf ). One way to im-
plement the maximum entropy approach to solving the evo-
lution Eq. (16) is to evaluate, at each instant of time, the right
hand sides of (31) using the maximum entropy ansatz (25).
In this way, the system of equations (31) can be translated
into a system of equations of motion for the Lagrange mul-
tipliers λi. This approach will yield exact solutions, or only
approximate solutions, depending on the specific form of the
evolution equation (16) [28–32].

5. MaxEnt Solution to the Liouville Equation

According to Eq. (32), and remembering that, for the Liou-
ville equation, the flux is given byJ = fw, the temporal
evolution of the mean values of the dynamical quantitiesAi

is

d 〈Ai〉
dt

=
∫

dNz fw · ∇Ai

= 〈w · ∇Ai〉 (i = 1, . . . , M) . (33)

Here we are going to assume thatf is given by the ansatz
(25)-(26). We can then regard the quantitiesZ, f, andλi’s as
functions of the set〈A1〉, . . . , 〈AM 〉. Alternatively, it is also
possible to regard all relevant quantities as functions of the
λi’s. The time derivative of the Lagrange multipliers reads

dλi

dt
=

M∑

j=1

∂λi

∂ 〈Ai〉
d 〈Aj〉

dt

dλi

dt
=

∂

∂ 〈Ai〉





M∑

j=1

λj
d 〈Aj〉

dt





−
M∑

j=1

λj
∂

∂ 〈Ai〉
d 〈Aj〉

dt
. (34)

Now, since

M∑

j=1

λj
d 〈Aj〉

dt
=

M∑

j=1

λj 〈w · ∇Aj〉 = 〈∇ ·w〉 , (35)

the equation of motion for the Lagrange multipliers can be
written

dλi

dt
=−

M∑

j=1

[
λj

∫
∂f

∂ 〈Ai〉w·∇Ajd
Nz−∂ 〈∇ ·w〉

∂ 〈Ai〉
]

. (36)

Note that, for the important instance of a divergenceless flow,
which implies that∇ ·w = 0, Eq. (36) specializes to

dλi

dt
= −

M∑

j=1

λj
∂

∂ 〈Ai〉
d 〈Aj〉

dt
. (37)
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It is often the case that we deal with a set of relevant quanti-
tiesAi, (i = 1, . . . , M) entering (25)-(26) such that

w · ∇Ai =
M∑

j

Cij Aj , (i = 1, . . . ,M), (38)

where theCij constitute a set of (structure) constants. Re-
membering thatd〈Ai〉/dt = 〈w · ∇Ai〉, this entails

d〈Ai〉
dt

=
M∑

j

Cij 〈Aj〉, (i = 1, . . . , M). (39)

Now, if ∇·w = 0, we have, for the temporal evolution of the
Lagrange multipliers in (25)-(26)

dλi

dt
= −

M∑

j=1

λj
∂

∂〈Ai〉
d〈Aj〉

dt
, (40)

so that

dλi

dt
= −

M∑

j=1

λj
∂

∂〈Ai〉

[∑

k

Cjk〈Ak〉
]

, (41)

which yields the equation of motion for the Lagrange multi-
pliers in the fashion

dλi

dt
= −

M∑

j=1

Cjiλj . (42)

We can now study the time-evolution of
M∑

i=1

λiAi

using (38)-(42) and the fact that this dependence is entirely
contained in the Lagrange multipliers. Thus,

d

dt

(
M∑

i=1

λiAi

)
=

∑

i

dλi

dt
Ai

= −
∑

i

Ai




M∑

j=1

Cjiλj


 , (43)

which, after interchanging sums overi andj, yields

d

dt

(
M∑

i=1

λiAi

)
= −

∑

j

λj

[
M∑

i=1

CjiAi

]

= −
∑

j

λj(w · ∇Aj)

= −w · ∇
∑

j

λjAj , (44)

i.e.,

d

dt

(
M∑

i=1

λiAi

)
+ w · ∇

(
M∑

i=1

λiAi

)
= 0, (45)

from which it follows that
∑M

i=1 λiAi is anexactsolution of
Liouville’s equation, and so is (because of equation (24) any
function of this quantity like the one that interests us here,
this is, the MaxEnt anzatz (25)-(26).

5.1. Example: Application to the Harmonic Oscillator

As a simple illustration of the above ideas, we are going to
consider maximum entropy solutions to the Liouville equa-
tion associated with a one-dimensional harmonic oscillator
(HO) with time dependent frequencyω(t). Given the HO
Hamiltonian

H =
p2

2m
+

1
2
mw2(t)q2, (46)

we have to deal with the following observables, that take the
place here of the〈Ai〉’s, namely,

〈p〉 , 〈q〉 , 〈p2
〉
,
〈
q2

〉
, 〈pq〉 . (47)

Making use of Hamilton’s equations, we find

d 〈p〉
dt

= 〈ṗ〉 =
〈
−∂H

∂q

〉
= −mw2(t) 〈q〉 ;

d 〈q〉
dt

= 〈q̇〉 =
〈

∂H

∂p

〉
=
〈p〉
m

, (48)

d
〈
p2

〉

dt
=

〈
d

dt
p2

〉
= 2 〈pṗ〉 = −2mw2(t) 〈pq〉 , (49)

d
〈
q2

〉

dt
=

〈
d

dt
q2

〉
= 2 〈qq̇〉 =

2 〈pq〉
m

, (50)

and

d 〈pq〉
dt

=
〈

d

dt
pq

〉

= 〈ṗq〉+ 〈pq̇〉 = −mw2(t) 〈q〉2 +
〈p〉2
m

. (51)

In the HO-case we have a divergenceless flow so that (37)
applies, yielding

dλi

dt
= −

M∑

j=1

λj
∂

∂ 〈Ai〉
d 〈Aj〉

dt
, (52)

from which we find:

dλp

dt
= −λq

m
, (53)

dλq

dt
= λpmw2(t), (54)

dλp2

dt
= −λpq

m
, (55)

dλq2

dt
= λpqmw2(t), (56)
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and

dλpq

dt
= λp22mw2(t)− λq22

m
. (57)

The system of linear differential equations (53-57) for the La-
grange multipliersλi can be solved (given a specific form of
w(t)) by a variety of standard methods. Given a particular so-
lution λi(t), the MaxEnt ansatz (remember that all the time
dependence off(q, p, t) is through the Lagrange multipliers
λi)

f(q, p, t) =
1
Z

exp(−λqq − λpp

− λq2q2 − λqp qp− λp2p2), (58)

with

Z =

+∞∫

−∞

+∞∫

−∞
exp(−λqq − λpp

− λq2q2 − λqpqp− λp2p2)dqdp, (59)

constitutes an exact time-dependent solution to the Liouville
equation of the harmonic oscillator. It is worth mentioning
that standard classical dynamics textbooks rarely provide the
reader with examples of exact, time-dependent solutions of
the Liouville equation.

6. Conclusions

This effort has revolved around the idea of giving the Max-
imum Entropy Methodology (MaxEnt) a more important
place in the physics curricula than it has now. The follow-
ing points have been emphasized:

1. MaxEnt constitutes an interesting application of the
Lagrange multipliers technique, and some aspects of
it could already be taught in elementary Calculus
courses.

2. MaxEnt provides the foundation of statistical mechan-
ics, not only in its equilibrium version but also in its
non-equilibrium one.

3. MaxEnt constitutes a useful didactic tool for comfort-
ably tacklingotheraspects of theoretical physics, as it
provides a simple and elegant method for obtainingan-
alytical solutions to several evolution equations, such
as the Liouville, diffusion, and Fokker-Planck equa-
tions.

4. MaxEnt is today an indispensable tool in Physics,
Chemistry, Engineering, etc., for confronting “real
world” problems.

Of course, all these points are inextricably intertwined. In
this contribution we have focused our attention on point 3,
providing a simple and informative application that any at-
tentive student of physics should understand.
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