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In this work the application and the intervals of validity of an inverse polynomial, according to the method proposed by Arfken [1] for the
inversioni of series, is analyzed. It is shown that, for the inverse polynomial there exists a restricted domain whose longitude depends on
the magnitude of the acceptable error when the inverse polynomial is used to approximate the inverse function of the original polynomial.
A method for calculating the error of the approximation and its use in determining the restricted domain is described and is fully developed
up to the third order. In addition, five examples are presented where the inversion of a polynomial is applied in solving different problems
encountered in basic courses on physics and mathematics. Furthermore, expressions for the eighth and ninth coefficients of a ninth-degree
inverse polynomial, which are not encountered explicitly in other known references, are deduced.
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En este trabajo se analiza la aplicación y los intervalos de validez de un polinomio inverso, según el ḿetodo propuesto por Arfken [1]
para la inversíon de series. Se muestra que existe un dominio restringido cuya longitud depende de la magnitud del error aceptable; esto
se ejemplifica por simplicidad con un polinomio de tercer grado, aunque el procedimiento es aplicable a polinomios de cualquier grado.
Se deduce una expresión para determinar el error del polinomio inverso; ası́ mismo, se presentan cinco ejemplos, con diferentes grados
de dificultad, donde se aplica la inversión polinomial para resolver diversos problemas que pueden presentarse en fı́sica y mateḿaticas.
Se deducen las expresiones para los coeficientes octavo y noveno de un polinomio inverso de grado nueve, las cuales no se encuentran
expĺıcitamente en otras referencias conocidas.

Descriptores:Inversíon polinomial; solucíon de ecuaciones; intervalo de validez.

PACS: 01.40.-D; 02.30.Mv; 02.60.Cb

1. Introduction

Some physical and mathematical problems can be solved eas-
ily if the functions involved are approximated, to some level
of accuracy, by simpler and continuous functions, such as al-
gebraic functions, better known as polynomials. Probably the
best known approximating polynomials are those due to Tay-
lor, which are widely used to approximate any differentiable
function and are commonly represented as:

f(x) =
n∑

i=0

aix
i

where

an =
1
n!

dnf(x)
dxn

∣∣∣∣
x=0

,

whenf(x) is expanded aroundx = 0; more general expres-
sions can be found in most of the calculus texts [2].

The main advantage to this approach lies in the fact that
when adding, subtracting, multiplying, deriving and integrat-
ing polynomials, other simple and also continuous polyno-
mial functions are obtained. Some authors even deduce a
polynomial that is the multiplicative inverse [3] of another
polynomial; this inverse polynomial transforms a quotient of
polynomials into a product of them, giving another polyno-
mial as a result.

The most interesting fact, however, is that another in-
verse polynomial [1], but now in the sense of a composition

of functions, can be defined; undoubtedly this new polyno-
mial has the same characteristics as any inverse function [2]
(at least within the order of the approximation given by the
polynomial). This is important, because inverse functions are
useful for solving many mathematical and physical problems;
the simplest process for solving an equation is an algebraic
solution; this process is one of the simpler applications of the
inverse function.

For example, first degree equations have a simple method
of solution by solving the independent variable to obtain the
inverse function. If we define

y = f(x) = mx + b,

then we have:

x =
y − b

m
= f−1(y),

a solution that corresponds to the inverse function off(x).
For second degree equations

Ax2 + Bx + C = 0,

a classic solution, given by the well-known formula of Fer-
rari [4]:

x =
−B ±√B2 − 4AC

2A
,
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is obtained by completing the square of the second degree
equation and extracting its square root. The last operation is
the inverse function of raising to the second power.

There exists a procedure for solving third degree equa-
tions of a kind given by the following expression:

x3 + Px2 + Qx + R = 0.

Although this procedure is not general, the roots of
some of these equations can be found. The method due
to Tartaglia [4,5] consists in making a change of variable
(x = u + Q/3) to transform the complete third degree equation
into a reduced third degree equation:

u3 + qu + r = 0.

The roots of the reduced equation are given by:

u1 = 3

√
r

2
+
√

D + 3

√
r

2
−
√

D,

u2 = −1
2
u1 +

√
3

2

(
3

√
r

2
+
√

D − 3

√
r

2
−
√

D

)
i,

u3 = −1
2
u1 −

√
3

2

(
3

√
r

2
+
√

D − 3

√
r

2
−
√

D

)
i,

wherei is the imaginary unit, and the quantityD (called the
Discriminant), is given by:

D =
(q

3

)3

+
(r

2

)2

.

This solution is valid only ifD ≥ 0. Finally, the roots of the
complete equation are obtained as

xj = uj + Q/3, for j = 1, 2, 3.

For fourth degree equations, Ferrari [4,5] developed a
procedure similar to the above. The procedure, however, is
too involved to be described here in detail.

For fifth degree equations and higher, there is no specific
procedure for solving them; furthermore, Evariste Galois [6]
showed almost two hundred years ago that these equations
are not solvable by radicals. Thus, numerical methods are a
useful option.

This introduction shows that the approximate solution of
even third degree polynomials and higher is well worth while.
In this paper, we propose an approximate solution by finding
the inverse polynomial through the procedure described by
Arfken [1]; this is included in Sec. 2. It is shown that an im-
portant advantage of this method over the numerical methods
is that the inversion procedure gives analytical solutions, in-
stead of only numerical data. In addition, in Sec. 3 we show
that the inverse polynomial is valid only over a restricted do-
main defined by the accepted error. Finally, in Sec. 4, addi-
tional expressions for obtaining the inverse polynomial up to
the ninth degree are given. We also include five examples to
show how the method is used in practice. All of them are
conducted only to the third degree, to avoid lengthy deduc-
tions and expressions. The last two examples show how to
solve simple undergraduate problems.

2. Iverting a polynomial

To obtain the inverse of a polynomial:

P (x) =
N∑

i=1

aix
i = y (1)

according to one of the procedures mentioned by Arfken [1],
a polynomial solution of the same degree is proposed as:

Q(y) =
N∑

j=1

bjy
j = x (2)

Substituting (1) in (2), the compositionQ(P (x)) is car-
ried out:

Q(y) =
N∑

i=1

bi [P (x)]i

=
N∑

j=1

bj

[
N∑

i=1

aix
i

]j

=
N2∑
k=1

ckxk = x,

(3)

where

ck = ck(ai, bj).

Equating the coefficients for each power on both sides of
the equation, we have

c1 = 1, ck = 0, for k = 2, 3, ... (4)

a system ofN2 equations forN unknown coefficientsbj ;
thus, the system is over determined. In order to find a consis-
tent solution, we need only consider the firstNequations and
neglect the remaining ones. Solving the resulting system, we
obtain the coefficients of the inverse polynomial.

As a particular case, let us consider a third degree poly-
nomial, such as

P (x) = a1x + a2x
2 + a3x

3 = y. (5)

Then the proposed inverse polynomial denoted byQ(y)
will have the form

Q(y) = b1y + b2y
2 + b3y

3 = x. (6)

The compositionQ(P (x)) is carried out by substitut-
ing (5) in (6), so we get

Q(P (x)) = b1(a1x + a2x
2 + a3x

3)

+ b2(a1x + a2x
2 + a3x

3)2

+ b3(a1x + a2x
2 + a3x

3)3 = x. (7)
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After expanding and grouping, we obtain

Q(P (x)) = a1b1x + (a2b1 + a2
1b2)x2

+ (a3b1 + 2a1a2b2 + a3
1b3)x3

+ (a2
2b2 + 2a1a3b2 + 3a2

1a2b3)x4

+ (2a2a3b2 + 3a1a
2
2b3

+ 3a2
1a3b3)x5 + (a2

3b2 + 6a1a2a3b3 + a3
2b3)x6

+ (3a2
2a3b3 + 3a1a

2
3b3)x7

+ 3a2a
2
3b3x

8 + a3
3b3x

9

=
N2∑

i=1

cix
i = x (8)

Equating the coefficients of the same power inx from
both sides of Eq. (8), it is required that all coefficients be
identical to zero, except the first. That is,

c1 = a1b1 = 1

c2 = a1b2 + a2b
2
1 = 0

c3 = a3b
3
1 + 2a2b1b2 + a1b3 = 0

c4 = a2
2b2 + 2a1a3b2 + 3a2

1a2b3 = 0

c5 = 2a2a3b2 + 3a1a
2
2b3 + 3a2

1a3b3 = 0

c6 = a2
3b2 + 6a1a2a3b3 + a3

2b3 = 0

c7 = 3a2
2a3b3 + 3a1a

2
3b3 = 0

c8 = 3a2a
2
3b3 = 0

c9 = a3
3b3 = 0 (9)

With the first three relationships, we form a system of
three equations and three unknowns. The rest of the equa-
tions are ignored, otherwise we would have a system with
more equations than unknowns whose solution is overdeter-
mined. The system can be solved to obtain the coefficientsbi

as functions of the coefficientsai of the original polynomial;
the solution to the system of three equations is

b1 =
1
a1

b2 = −a2

a3
1

b3 =
2a2

2 − a3a1

a5
1

. (10)

It is well worth noting that, according to this solution, if
the polynomial does not have a linear term, the inverse poly-
nomial would not exist; this conclusion is valid for any degree
polynomial.

Now if we make the composition ofQ andP , with the
bi coefficients given by Eqs. (10) and neglecting the terms of

any higher degree than the third, we obtain the identity func-
tion; i.e. Q(P (x)) = x, showing consistency in the solution,
within the limits of the proposed approximation.

In order to get better insight into the consequences of this
result, let us analyze numerically the next example in partic-
ular.
Example 1.According to Eqs. (6) and (10), the inverse poly-
nomial of

P (x) = x + x2 + x3 (11)

is

Q(x) = x− x2 + x3. (12)

Evaluating P (x) in x = 0 [see Eq. (11)], we have
P (0) = 0, and when evaluatingQ(P (x)) = 0 = x, thenP (x)
andQ(x) are inverse polynomials inx = 0. If now we eval-
uateP (1) = 3, substituting in Eq. (12) we getQ(3) = 21, so
Q(y) is not the inverse ofP (x), or at least not inx = 1. Thus
the solution is not a general one; there exists a region where
the solution can be considered acceptable.

FIGURE 1. The two polynomials P(x) and Q(x) are shown. a) in
the interval of x∈ [0,16] symmetry near zero is not appreciated.
b) x∈ [0,0.3] symmetry is observed.
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TABLE I. Numerical data for P(x) and Q(x) from Example 1 and
the error of the composition P(Q(x)) for –1≤ x ≤ 1 .

x P (x) Q(P (x)) Error (%)

-1 -1 -3 200

-0.9 -0.819 -2.03911426 126.568251

-0.8 -0.672 -1.42704845 78.381056

-0.7 -0.553 -1.02792138 46.845911

-0.6 -0.456 -0.75875482 26.459136

-0.5 -0.375 -0.56835938 13.671875

-0.4 -0.304 -0.42451046 6.127616

-0.3 -0.237 -0.30648105 2.160351

-0.2 -0.168 -0.20096563 0.482816

-0.1 -0.091 -0.10003457 0.034571

0 0 0 0

0.1 0.111 0.10004663 0.046631

0.2 0.248 0.20174899 0.874496

0.3 0.417 0.31562271 5.207571

0.4 0.624 0.47759462 19.398656

0.5 0.875 0.77929687 55.859375

0.6 1.176 1.41940378 136.567296

0.7 1.533 2.78559744 297.942491

0.8 1.952 5.57940941 597.426176

0.9 2.439 10.9992095 1122.13439

1 3 21 2000

In Fig. 1, the polynomialsP (x) and Q(x) are shown
graphically. In Fig. 1a the curves do not correspond to two
functions with one the inverse of the other, because if they
did so, the graphs should be symmetrical with respect to the
identity function. Certainly they are not. In Fig. 1b certain
symmetry is appreciated, at least in a small interval.

3. Error Analysis

Considering the previous example, it is convenient to ask:
how big are the neglected terms? When is the inverse poly-
nomial acceptable, and what is the error? To answer the first
of these questions, we evaluate the terms neglected in the in-
version of a third degree polynomial. By considering all the
terms in equation (8), and by substituting the expressions for
b1, b2 andb3, obtained in Eqs. (10), we get

(a2
2b2 + 2a1a3b2 + 3a2

1a2b3)x4

=
5a3

2 − 5a1a2a3

a3
1

x4 ≡ T1x
4

2a2a3b2 + 3a1a
2
2b3 + 3a2

1a3b3)x5

=
6a4

2 + a1a
2
2a3 − 3a2

1a
2
3

a4
1

x5 ≡ T2x
5

(a3
2b3 + a2

3b2 + 6a1a2a3b3)x6

=
2a5

2 + 11a1a
3
2a3 − 7a2

1a2a
2
3

a5
1

x6 ≡ T3x
6

(3a2
2a3b3 + 3a1a

2
3b3)x7

=
6a4

2a3 + 3a1a
2
2a

2
3 − 3a2

1a
3
3

a5
1

x7 ≡ T4x
7

(
3a2a

2
3b3

)
x8 =

6a3
2a

2
3 − 3a1a2a

3
3

a5
1

x8 ≡ T5x
8

a3
3b3x

9 =
2a2

2a
3
3 − a1a

4
3

a5
1

x9 ≡ T6x
9 (13)

These are, in an approximate way, the six neglected terms
that can be calculated with a knowledge of the particular val-
ues of the coefficients of the polynomial to invert; clearly they
are dependent on the particular pointx of the polynomial do-
main.

These terms are negligible provided thata1 is large; or
that the domain is restricted, for instance to|x| < 1, be-
causexn, for n = 4, 5, 6, 7, 8, 9, is small.

To answer the second question, we build Table 1, where
the errors are presented for different values ofx.

We can use the data in Table I to see that, for
–0.2≤ x ≤ 0.2, the error in the approximate inverse polyno-
mial is less than 1%; for –0.3≤ x ≤ 0.3, the error is not too
much higher than 5%; but, for the interval –0.5≤ x ≤ 0.5,
the error is greater than 10%. For an error smaller than 1%,
by interpolation we find thatx must be within the interval
(-0.294, 0.241). In Fig. 2, the plots of both polynomials
are shown in this interval; it is easy to observe the symme-
try regarding the identity function (central line), thus, it can
be assumed thatP (x) andQ(x) are inverse polynomials in
this interval.

If we evaluate the neglected terms, we find that their sum
is exactly the error ofP (Q(x)). As can be appreciated from
Eqs. (13), the error diminishes, increasing thea1 value, but
it increases whena2 anda3 are increased.

Another way to state the problem is as follows: if one
wants a error smaller than or similar toe% of x, then

∣∣∣∣∣
T1x

4+T2x
5+T3x

6+T4x
7+T5x

8+T6x

x

9
∣∣∣∣∣ ≤

e

100
(14)

or

∣∣T1x
3+T2x

4+T3x
5+T4x

6+T5x
7+T6x

8
∣∣ ≤ e

100
(15)
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FIGURE 2. The polynomials P(x) and Q(x) are shown in an interval
where certain symmetry is appreciated.

The maximum value for the error should be given inxm,
wherexm is the greatest value ofx in the restricted domain.
For example ifxm = 0.1, then the error is

∣∣10−3T1 + 10−4T2 + 10−5T3 + 10−6T4 + 10−7T5

+ 10−8T6

∣∣ ≤ 10−2e. (16)

Knowing the coefficientsTk, with k = 1,. . . , 6, we can
readily estimate the error of an inverse third degree polyno-
mial.

Example 2. Let us consider again the polynomial (11) in
example 1, we have thata1 = a2 = a3 = 1; then, using
Eqs. (13) we find that the coefficientsT are:

T1= 0,T2 = 4,T3 = 6,T4 = 6,T5 = 3 andT6 = 1.

So, if we allow a maximum percent error equal to 2%,x
must satisfy the following relationship:

−0.02 ≤ 4x4 + 6x5 + 6x6 + 3x7 + x8 ≤ 0.02 (17)

A plot of the inequality is shown in Fig. 3; it is not diffi-
cult to see that the left inequality is always satisfied, and the
right side inequality can be expressed as:

f(x) ≡ 4x4 + 6x5 + 6x6 + 3x7 + x8 − 0.02 ≤ 0. (18)

In the same figure, it can be seen that the solution interval
is the region where the plot off(x) is below thex axis. That
interval is determined by the roots of

4x4 + 6x5 + 6x6 + 3x7 + x8 − 0.02 = 0. (19)

FIGURE 3. Plot of the inequality (17), where the interval solution
is observed

Solving this polynomial by the method of the Regula
Falsi [7] with an error smaller then 0.01%, the roots obtained
are: -0.2937164 and 0.2418198, therefore, inequality (18) is
satisfied when

−0.2937164 ≤ x ≤ 0.2418198,

which coincides with the interval found from Table I.
Example 3. An application of inverting a polynomial is to
find roots of a polynomial. Let us suppose that we want to
find a root of the polynomial

y = P (x) = x3 + x2 + x− 1
4

= 0, (20)

which includes a zero order term. In general, (20) has the
form

P (x) = a0 + a1x + a2x
2 + a3x

3 = y (21)

In order to find the solution, it is convenient to rewrite
Eq. (21) as

z = (y − a0) = a3x
3 + a2x

2 + a1x. (22)

As we already know, the inverse polynomial is of the form

x = b1z + b2z
2 + b3z

3. (23)

Substituting the value ofz, we have:

x = (y − a0)− (y − a0)
2 + (y − a0)

3 (24)

Developing the binomials we get

x = b3y
3 + (b2 − 3b3a0)y2 + (b1 − 2b2a0

+ 3b3a
2
0)y + (−b1a

+
0 b2a

2
0 − b3a

3
0) (25)

The third degree polynomial in Eq. (20) has coefficients
a0= -1/4, a1= 1, a2= 1 anda3= 1, according to the rela-
tionships (10), the coefficents of the inverse polynomial are
b1= 1, b2= -1 andb3= 1.

Substituting these values in (25), we have

x = y3 − 1
4
y2 +

11
16

y +
13
64

(26)

One root of the polynomial is obtained by makingy = 0
in the inverted polynomial Eq. (26). Doing this, we get
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x = 13/64≈ 0.203125. On the other hand, numerically solv-
ing this polynomial again with the method of theReg-
ula Falsi [7], with a smaller error than 0.01%, the root is
x = 0.201392± 0.01%. The value obtained from the inverse
polynomial differs from that found numerically by less than
1%, a value that corresponds to the evaluation of the error
through the expressions in (14), and that may be acceptable
depending on the specific problem.
Example 4. It is important to recognize that this method can
be applied to solve some common physical problems. For
example, the Fraunhofer intensity pattern [8] of a single slit
is given by

I = Im

(
sin(x)

x

)2

. (27)

Usually the width of the pattern is evaluated through the
points where

sin(x)
x

= 0

(see Fig 4); this is given byx = ± nπ with n an integer.
The width of the pattern is found by makingn = ± 1, and
by subtraction,∆x = 2π. In many cases, however, the prob-
lem is not so easy, and one of the important parameters is the
Half Width of the Full Maximum, commonly abbreviated as
HWFM. This is obtained by taking

I(x±) =
1
2
Im. (28)

Substituting (28) in (27) one obtains

(
sin(x±)

x±

)2

=
1
2
. (29)

In this equation,x± cannot be directly solved analytically;
we can, however, use polynomial inversion approach, for ex-
ample, starting from the McLaurin the polynomial expansion
and then inverting this polynomial. Then it is solved follow-
ing the procedure of the previous examples.

FIGURE 4. Plot of the functionf(x) = sin(x)
x

, it is not difficult to
see that f(x) = 0, in x =± nπ, with n integer.

Approximating the sine function with the first three terms
of its McLaurin series,

(
sin(x)

x

)
=

x−x3

3! +
x5

5!−x7

7!

x
=1−x2

6
+

x4

120
− x6

5040
. (30)

Then, substituting Eq. (30) in to Eq. (29)

sin(x)
x

− 1√
2
=

(
1− 1√

2

)
−x2

6
+

x4

120
− x6

5040
=0, (31)

and defining the following polynomial:

P (x) =
x2

6
− x4

120
+

x6

5040
− 0.2929, (32)

and making the following changes of variable:s = x2 and
w = P (x)+ 0.2929, we get:

w = (P (x) + 0.2929) =
s

6
− s2

120
+

s3

5040
= 0 (33)

The coefficients of the inverse polynomial, according to
the relationships in (10) are:

b1 = 6, b2 = 1.8 and b3 = 0.8232;

therefore, the inverse polynomial is

s = 6w + 1.8w2 + 0.8232w3 (34)

or, using (33),

s = 6 (P (x) + 0.2929)

+ 1.8 (P (x)+0.2929)2 +0.8232 (P (x)+0.2929)3 (35)

Developing,

s = 1.9369 + 7.2662P (x)

+ 2.5233P (x)2 + 0.8232P (x)3, (36)

and evaluating inP (x) = 0, we have s=1.9369 or
x± = x = ±1.3917.

Evaluating the error through the expressions in (14) ap-
plied to the polynomial (33) we obtain an error smaller than
0.3%.

Solving Eq. (29) for the method of theRegula Falsi, we
find x = 1.3915, a value that differs from the one obtained for
the inverse polynomial by less than 0.02%.
Example 5. In the study [10] of the radiation emitted by a
black body, it is often necessary to find the wavelengthλ,
for which the density of energy radiated by a black body has
a maximum at a given temperature. As is well known, the
density of energy (see Fig. 5) is given by:

E(λ) =
8πk5T 5

c4h4

x5

ex − 1
,

where:x = hc/λkT .
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FIGURE 5. Plot of density of energy emitted by a black body.

To find the maximum, it is necessary to find the roots of:

dE

dx
= 0.

Expanding the last expression, the problem is reduced to
solving the following equation:

e−x +
x

5
− 1 = 0 (37)

This is a transcendental equation, not easily solved by
elementary algebra. The solution can be approximated, how-
ever, by expanding in Taylor’s series, aroundx = a.We ob-
tain to the third degree

y(x) = e−x +
x

5
− 1

≈ −e−a

6
x3+

{(
1
2
+

a

2

)
e−a

}
x2

−
{(

1+a+
a2

2

)
e−a−1

5

}
x

+
{(

1+a+
a2

2
+

a3

6

)
e−a−1

}
,

defining:

a3 = −e−a

6
;

a2 =
{(

1
2

+
a

2

)
e−a

}
;

a1 = −
{(

1 + a +
a2

2

)
e−a − 1

5

}
;

a0 =
{(

1 + a +
a2

2
+

a3

6

)
e−a − 1

}

y(x) can be expressed approximately as:

y(x) = a0 + a1x + a2x
2 + a3x

3. (38)

At this point, the value ofa is arbitrary. If we try to in-
vert the polynomial (38) for a particular choice ofa, it is very

highly probable that the resulting solution will have a large
error. So, in order to find what is the besta value in such
a way that the solution forx has a low error, we first make
some estimations of error for several values ofa. After sev-
eral trials, we found thata = 8 is a good choice.

By substituting this value in Eq. (37), we have

y = −5.591× 10−5x3 + 0.00150958x2

+ 0.18624603x− 0.95761989

and:

z = y+0.95761989

=−5.591×10−5x3+0.00150958x2+0.18624603x.

The coefficients of the inverse polynomial, according to
the relationships (10), are:

b1 = −1.25, b2 = 0.9765625 and b3 = −1.11897786

Therefore:

x = 0.06680501z3 − 0.23366602z2 + 5.3692419z

or

x = 0.06680501(y + 0.95761989)3

− 0.23366602(y + 0.95761989)2

+ 5.3692419(y + 0.95761989)

Expanding and evaluating iny = 0, we get the root of (38)
as

x = 4.9860789.

This is a very good approximation to the root of the
function (37), because if we solve numerically through the
method of theRegula Falsi[7], with a smaller error than
0.01%, the root is: 4.965332± 0.01%. Thus, the value ob-
tained by inverting the polynomial differs from the numerical
result in less than 0.5%.

Significantly, we found that, fora values between 6 and
10, the result is very similar to the above.

These examples have shown how to estimate the valid-
ity of the solutions of the method of polynomial inversion,
for an approximating polynomial of third degree with a error
smaller than 2%, but these conditions can be varied depend-
ing on the problem that is to be solved.

Next, some expressions are given to determine the coef-
ficients of an inverse polynomial of a higher degree, which
allows a reduction of the error and an increased of the inter-
val of validity of the solution.
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4. Coefficients for inverse polynomials of
higher degree.

Using the method as described above, the coefficients of in-
verse, higher degree polynomials can be calculated; some of
them are listed below. Expressions for b4 to b7 are the same
as those reported by Dwight [9], whereas b8 and b9 are not
reported in any other work we knowii .

Let y(x) be given by

y = a1x + a2x
2 + a3x

3 + a4x
4

+ a5x
5 + a6x

6 + a7x
7 + . . . , with a1 = 0. (39)

Then, its inverse polynomial is given by

x = b1y+b2y
2+b3y

3+b4y
4+b5y

5+b6y
6+b7y

7+. . . , (40)

where coefficientsb1,b2 andb3 are given by the relationships
in (10), and [9]

b4 =
1
a7
1

(
5a1a2a3 − a2

1a4 − 5a3
2

)
,

b5 =
1
a9
1

(
6a2

1a2a4 + 3a2
1a

2
3 + 14a4

2 − a3
1a5 − 21a1a

2
2a3

)
,

b6 =
1

a11
1

(7a3
1a2a5 + 7a3

1a3a4 + 84a1a
3
2a3 − a4

1a6)

− 28a2
1a

2
2a4 − 28a2

1a2a
2
3 − 42a5

2,

b7 =
1

a13
1

(8a4
1a2a6 + 8a4

1a3a5 + 4a4
1a

2
4 + 120a2

1a
3
2a4

+ 180a2
1a

2
2a

2
3 + 132a6

2 − a5
1a7 − 36a3

1a
2
2a5

− 72a3
1a2a3a4 − 12a3

1a
3
3 − 330a1a

4
2a3).

The two new coefficients are:

b8 =
1

a15
1

(9a5
1a2a7 + 9a5

1a3a6 + 9a5
1a4a5 + 165a3

1a
3
2a5

+ 495a3
1a

2
2a3a4 + 165a3

1a2a
3
3 + 1287a1a

5
2a3 − a6

1a8

− 429a7
2 − 45a4

1a
2
2a6 − 45a4

1a2a
2
4 − 90a4

1a2a3a5

− 45a4
1a

2
3a4 − 495a2

1a
4
2a4 − 990a2

1a
3
2a

2
3),

b9 =
1

a17
1

(10a6
1a2a8 + 10a6

1a3a7 + 10a6
1a4a6 + 5a6

1a
2
5

+ 55a4
1a

4
3 + 220a4

1a
3
2a6 + 330a4

1a
2
2a

2
4 + 660a4

1a
2
2a3a5

+ 660a4
1a2a

2
3a4 + 5005a2

1a
4
2a

2
3 + 2002a2

1a
5
2a4 + 1480a8

2

− a7
1a9 − 55a5

1a
2
2a7 − 55a5

1a
2
3a5 − 110a5

1a2a3a6

− 110a5
1a2a4a5 − 55a5

1a3a
2
4 − 715a3

1a
4
2a5

− 2860a3
1a

3
2a3a4 − 1430a3

1a
2
2a

3
3 − 5005a1a

6
2a3),

As for the error terms, we only present the error terms for
a third degree polynomial, and they are shown in Eq. (14); the
error terms for higher degree can be calculated starting from
the composition of polynomials, as was done in section 3; a
detailed computation of the error terms would be too lengthy
for this paper.

5. Conclusions

In this present work, we have evaluated the error of the in-
verse polynomial obtained through a method proposed by Ar-
fken [1]. In addition, accepting a particular amount of error,
we have shown how to obtain the interval of validity for the
inverse approximating polynomial. We have shown how to
apply the polynomial inversion method up to the third de-
gree for solving five different problems not easily solved at
the undergraduate level in physics and engineering. The first
shows only how to do the inversion of the polynomial, and
the second explains the procedure for finding the interval of
validity for the inversion made in problem 1. The third ex-
ample shows how to find one root of a third-degree equation.
The fourth and fifth examples find the solutions for two basic
physics problems where transcendental equations are found:
one is for obtaining the semi width of a single-slit Fraunhofer
diffraction pattern. The other is the calculation of the wave-
length at which the radiation emitted by a black body has a
maximum value. In addition, as a new result, we have ob-
tained explicit expressions for two new coefficients for the
inverse polynomial not reported in other references.

Once the expressions for the coefficients of the inverse
polynomial and the expression of the error are obtained, the
procedure of the inverted polynomial has the advantage of
being very easy to apply, since it reduces to a direct evalua-
tion, and in the case of extraction of roots, it also reduces to
an evaluation, having the disadvantage that it is useful only
in a vicinity around the origin; the radius of this vicinity de-
pends on the magnitudes of the coefficients of the polynomial
to invert. A useful advantage that the inverse polynomial of-
fers is that it allows one to obtain an approximate analytic
expression for transcendent inverse functions, which can be
easily evaluated. It can be concluded that the procedure of
inversion of polynomials is a good first approach to the solu-
tions of some problems that involve polynomials or that can
be approximated with them.
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i. It is worth to recognize here that in many text books [1,9] the
term reversion is used instead; the meaning, however, is the
same as implied along this paper.

ii. We tried to find the two additional references given by Dwight
on page 15 of Ref. [9]; however we were not able to find them.
Our sources state that the Philosophical Magazine was not pub-
lished until 1921. The other reference is a book not found in
México. In addition,MATHEMATICA[11] reports a general ex-
pression which is not completely defined because it is formally
defined but not explicitly expressed; furthermore,MATHEMAT-
ICA does not account for the error of the inversion procedure.
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