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Transfer matrices for piecewise constant potentials
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By expressing the time-independent Schrödinger equation in one dimension as a system of two first-order differential equations, the transfer
matrix for a rectangular potential barrier is obtained making use of the matrix exponential. It is shown that the transfer matrix allows one
to find the bound states and the quasinormal modes. A similar treatment for the one-dimensional propagation of electromagnetic waves in a
homogeneous medium is also presented.
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Expresando la ecuación de Schr̈odinger independiente del tiempo en una dimensión como un sistema de dos ecuaciones diferenciales de
primer orden, se obtiene la matriz de transferencia para una barrera de potencial rectangular haciendo uso de la exponencial de matrices. Se
muestra que la matriz de transferencia permite hallar los estados ligados y los modos cuasinormales. Se presenta también un tratamiento
similar para la propagación unidimensional de ondas electromagnéticas en un medio homogéneo.
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1. Introduction

A standard problem in elementary quantum mechanics is that
of finding the reflection and transmission amplitudes for the
scattering produced by a potential barrier, or well, in one
dimension (see, for example, Refs. 1 to 4). The reflection
and transmission amplitudes are conveniently arranged in the
transfer matrix, which relates the wave function on both sides
of the potential barrier, in such a way that the effect of two
or more potential barriers is readily obtained by means of the
product of the corresponding transfer matrices (see, for ex-
ample, Ref. 5 and the references cited therein). A similar
result applies to the one-dimensional propagation of electro-
magnetic waves in layered media (see, for example, Ref. 6).
In fact, the transfer matrices can be defined in all cases where
there is an output that depends linearly on an input; some im-
portant examples, apart from the two already mentioned, are
the electric circuits and optical systems. In the cases consid-
ered here, the transfer matrices are2 × 2 complex matrices
but, depending on the equations involved (more specifically,
the number of variables and the differential order), the size of
the transfer matrices do vary.

The aim of this paper is to show that the transfer ma-
trix for a rectangular potential barrier (and, therefore, for a
piecewise constant potential) can be easily obtained by in-
tegrating the time-independent Schrödinger equation in one
dimension by means of the matrix exponential. The time-
independent Schrödinger equation in one dimension, being
a second-order ordinary differential equation, is equivalent
to a system of two coupled first-order differential equations
and, only in the case of a (piecewise) constant potential, this

system can be easily integrated using the matrix exponential.
We also show that, making use of the transfer matrix, one
can find the bound states and the quasinormal modes. The
transfer matrix for the one-dimensional propagation of elec-
tromagnetic waves in a medium with a piecewise constant
refractive index is obtained in a similar manner, without em-
ploying the Fresnel coefficients.

In Sec. 2 an elementary discussion about the transfer ma-
trices for the one-dimensional-Schrödinger equation is given
(see also Ref. 5 and the references cited therein). In Sec. 3
the transfer matrix for a rectangular barrier is obtained mak-
ing use of the matrix exponential; the bound states and quasi-
normal modes are then found starting from the transfer ma-
trix. In Sec. 4 a similar derivation for the case of the one-
dimensional propagation of electromagnetic waves in layered
media is given.

2. Transfer matrices

The solutions of the time-independent Schrödinger equation

− ~
2

2m

d2ψ

dx2
+ V (x)ψ = Eψ (1)

with a given short-range potentialV (x), which vanishes out-
side the intervala ≤ x ≤ b, can be expressed in the form

ψ(x)=





A1eik(x−a) + A2e−ik(x−a), for x<a,
B1eik(x−b)+B2e−ik(x−b), for x>b,
u(x), for a≤x≤b,

(2)

wherek ≡ √
2mE/~, A1, A2, B1, B2 are constants andu(x)

is a function that depends on the explicit form of the poten-
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tial V (x). By imposing the usual conditions of continuity of
ψ(x) and its derivative atx = a andx = b, a linear relation
of the form (

A1

A2

)
= M

(
B1

B2

)
(3)

can be obtained, whereM is some2×2 complex matrix (the
transfer matrix), which depends onV (x) and the value ofk.

Assuming thatV (x) is real, Eq. (1) implies that the prob-
ability current density

j(x) =
~

2im

(
ψ∗

dψ

dx
− ψ

dψ∗

dx

)
,

where∗ denotes complex conjugation, satisfies the continuity
equation,dj/dx = 0, that is,j(x) = const.; then, making
use of Eq. (2), one finds that, for realk

|A1|2 − |A2|2 = |B1|2 − |B2|2. (4)

Using the fact that

|A1|2 − |A2|2 =
(

A1

A2

)†(
1 0
0 −1

) (
A1

A2

)
,

where† denotes the Hermitian adjoint, and Eq. (3), one finds
that Eq. (4) is equivalent to

M†
(

1 0
0 −1

)
M =

(
1 0
0 −1

)
. (5)

The complex2 × 2 matrices satisfying Eq. (5) form a group
with the usual matrix multiplication (see below). Equa-
tion (5) implies that the modulus ofdetM is equal to 1.

The entries of the transfer matrix are related to the re-
flection and transmission amplitudes of the potentialV (x),
denoted byr andt, respectively. When there are no waves
coming from the right (B2 = 0), there exist solutions of the
Schr̈odinger equation of the form

ψ(x) =





eik(x−a) + re−ik(x−a), for x < a,
teik(x−b), for x > b,
u1(x), for a ≤ x ≤ b,

(6)

that is, solutions of the form (2) withA1 = 1, A2 = r, and
B1 = t. Thus, from Eq. (3) it follows that

M =
(

1/t M12

r/t M22

)
,

with M12 andM22 not yet identified, and from Eq. (4) we
obtain the well-known relation

1− |r|2 = |t|2. (7)

(In most textbooks the reflection and transmission amplitudes
are defined by means of expressions similar to Eq. (6), with
r andt being the coefficients ofe−ikx andeikx and therefore,
the amplitudesr and t defined by Eq. (6) differ from those
usually employed by factorseika ande−ikb, respectively.)

SinceV (x) is real, for realk the complex conjugate of
the solution (6)

ψ∗(x)=





r∗eik(x−a)+e−ik(x−a), for x<a,
t∗e−ik(x−b), for x>b,
u∗1(x), for a≤x≤b,

(8)

is also a solution of the Schrödinger equation. Substituting
the coefficients appearing in Eq. (8) into Eq. (3) we find that

M =
(

1/t r∗/t∗

r/t 1/t∗

)
. (9)

Then, according to Eq. (7),detM = 1, which means that
(for realk) the transfer matrix belongs to the group SU(1,1),
formed by the2× 2 complex matrices with unit determinant
that satisfy Eq. (5).

The reflection and transmission amplitudes of the poten-
tial V (x) for waves incident from the right,r′ andt′, respec-
tively, need not coincide withr andt. In fact, from Eqs. (3)
and (9), settingA1 = 0 andB2 = 1, we must have

(
0
t′

)
=

(
1/t r∗/t∗

r/t 1/t∗

)(
r′

1

)
,

which, making use of Eq. (7), implies that

t′ = t, 0 =
r′

t
+

r∗

t∗
. (10)

Hence,r = r′ if and only if r/t is pure imaginary.

3. Rectangular barriers

The reflection and transmission amplitudes for a given po-
tential are usually obtained by solving the time-independent
Schr̈odinger equation (1) (see, for example, Refs. 1 to 4). In
the exceptional case of a piecewise constant potential, the
transfer matrix (and, therefore, the reflection and transmis-
sion amplitudes) can be readily obtained by means of matrix
exponentiation.

The time-independent Schrödinger equation (1) can be
expressed as the first-order differential equation

d
dx

(
ψ(x)
ψ′(x)

)
=

(
0 1

v(x)− k2 0

)(
ψ(x)
ψ′(x)

)
, (11)

wherev(x) ≡ 2mV (x)/~2. Hence, ifV (x) is a constantV0

for a ≤ x ≤ b, the solution of Eq. (11) is
(

ψ(x)
ψ′(x)

)
= exp

[
x

(
0 1

v0 − k2 0

)](
c1

c2

)
,

for a ≤ x ≤ b, wherev0 ≡ 2mV0/~2, andc1, c2 are some
constants. Thus,
(

ψ(a)
ψ′(a)

)
=exp

[
−L

(
0 1

v0−k2 0

)](
ψ(b)
ψ′(b)

)
, (12)

with L ≡ b− a. Letting

J ≡
(

0 1
v0 − k2 0

)

one finds thatJ2 = (v0 − k2)I, whereI is the unit2 × 2
matrix, hence (see, for example, Ref. 7)
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exp(−LJ) =





cosh(L
√

v0 − k2) I − sinh(L
√

v0 − k2)√
v0 − k2

J, if v0 − k2 > 0,

cos(L
√

k2 − v0) I − sin(L
√

k2 − v0)√
k2 − v0

J, if v0 − k2 < 0,

I − LJ, if v0 − k2 = 0.

(13)

On the other hand, from Eq. (2) we have

ψ(a) = A1 + A2, ψ′(a) = ik(A1 −A2),

ψ(b) = B1 + B2, ψ′(b) = ik(B1 −B2),

that is,
(

A1

A2

)
=

1
2

(
1 −i/k
1 i/k

)(
ψ(a)
ψ′(a)

)
,

(
ψ(b)
ψ′(b)

)
=

(
1 1
ik −ik

)(
B1

B2

)
. (14)

(Note that Eqs. (14) correspond to the continuity conditions
for ψ andψ′ atx = a andx = b.)

Then, noting that

1
2

(
1 −i/k
1 i/k

)
J

(
1 1
ik −ik

)

=
1

2ik

(
v0 − 2k2 v0

−v0 −v0 + 2k2

)
,

from Eqs. (12)–(14) one finds that, for a rectangular potential
barrier (or potential well)

V (x) =
{

0, if x < a or x > b,
V0, if a ≤ x ≤ b,

(15)

the transfer matrix is given by

M =





cosh(L
√

v0 − k2) I − sinh(L
√

v0 − k2)√
v0 − k2

1
2ik

(
v0 − 2k2 v0

−v0 −v0 + 2k2

)
, if v0 − k2 > 0,

cos(L
√

k2 − v0) I − sin(L
√

k2 − v0)√
k2 − v0

1
2ik

(
v0 − 2k2 v0

−v0 −v0 + 2k2

)
, if v0 − k2 < 0,

I − ikL

2

(
1 −1
1 −1

)
, if v0 − k2 = 0.

(16)

Note that, owing to the definitions of the amplitudesA1,
A2, B1, andB2 in terms of the exponentialse±ik(x−a) and
e±ik(x−b), the transfer matrices (16) depend ona andb only
through their differenceL = b − a. The simplicity of the
transfer matrices (16) contrasts with the complexity of the
expressions for the reflection and transmission amplitudes
obtained in the standard manner (see, for example, Ref. 2,
Chap. 5). Note also that, even though we follow the conven-
tions of Ref. 5, the transfer matrix (16) does not agree with
the amplitudes given in Eq. (12) of Ref. 5.

It may also be noticed that, by allowing
√

v0 − k2 to be-
come pure imaginary or taking the limit as

√
v0 − k2 goes

to zero, from the first expression in (16) one can obtain the
other two. Furthermore, one can verify directly that, whenk
is real, the transfer matrices (16) are of the form

(
α β
β∗ α∗

)
,

with |α|2 − |β|2 = 1 and therefore they indeed belong to
SU(1,1). On the other hand, Eqs. (11)–(13) hold fork real
or complex and since the trace ofJ is equal to zero for any
value ofk (even if V (x) was not real), the determinant of
exp(−LJ) is equal to 1; therefore, the transfer matrices (16)

have a determinant equal to 1 also whenk is complex, al-
thoughM no longer belongs to SU(1,1).

The example considered in this section also allows us to
illustrate the fact that making use of the transfer matrix, one
can find the energies of the bound states or the quasinormal
modes by considering pure imaginary or complex values of
k, respectively.

In the case of the bound states of the potential well (15)
with V0 < 0, we haveE < 0 and, writingk = i|k|, from
Eq. (2) we see that in order for the wave function to remain
bounded,B2 = 0 andA1 = 0. Then Eq. (3) implies that
M11, the first entry of the diagonal ofM , must be equal to
zero. Since the determinant of the transfer matrix is equal to 1
(independent of the value ofk), this last condition is equiva-
lent to saying that the off-diagonal entries ofM (which have
opposite signs) must be equal to+1 or −1. In the present
case,v0 − k2 < 0, and from the second line of Eq. (16) we
have

sin(L
√
−|k|2 − v0)√

−|k|2 − v0

v0

2|k| = ±1,
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which is equivalent to the conditions obtained in the text-
books (see, for example, Refs. 1 and 2).

The so-called quasinormal modes correspond to complex
values ofk for which there are no incident waves on the po-
tential barrier but only outgoing waves. In this case the so-
lutions of the time-independent Schrödinger equation are of
the form

ψ(x) =





A2e−ik(x−a), x < a,
B1eik(x−b), x > b,
u(x), a ≤ x ≤ b,

(17)

assuming that the real part ofk is positive (cf.Eq. (2),A1 and
B2 are equal to zero so that there are no incident waves on
the barrier). Thus, as in the case of the bound states, we have
M11 = 0 and, making use of the first expression in Eq. (16),
we have

cosh(L
√

v0 − k2)− sinh(L
√

v0 − k2)√
v0 − k2

v0 − 2k2

2ik
= 0

which can also be expressed in the form

cosh(Lσ)− sinh(Lσ)
σ

σ2 − k2

2ik
= 0, (18)

with the definitionσ ≡ √
v0 − k2. Hence,σ2 + k2 = v0.

Following Chandrasekhar [8], we parameterizek andσ ac-
cording to

k = Q sin α, σ = Q cosα, (19)

with Q2 = v0 andQ ≥ 0 (assumingv0 ≥ 0). Substituting
these expressions fork andσ into Eq. (18) we have

cosh(Lσ)− sinh(Lσ)
Q2 cos2 α−Q2 sin2 α

2iQ2 sin α cosα
= 0,

which is equivalent to

cosh(Lσ) + i sinh(Lσ) cot 2α = 0. (20)

Making use of the identities sin z=−i sinh(iz),
cos z=cosh(iz), this last equation can be written as
sinh(Lσ) cosh(i2α) − cosh(Lσ) sinh(i2α) = 0, which is
equivalent to

sinh(Lσ − i2α) = 0

and, therefore,Lσ− i2α = inπ, wheren is an integer. Then,
lettingα = α1 + iα2 andσ = σ1 + iσ2, we have

Lσ1 = −2α2, Lσ2 = 2α1 − nπ. (21)

From the relationσ1 + iσ2 = Q cos(α1 + iα2) [see
Eq. (19)] we obtain

σ1 = Q cosα1 cosh α2, σ2 = −Q sinα1 sinh α2 (22)

and, combining Eqs. (21) and (22), it follows that

−2α2 = LQ cosα1 cosh α2,

2α1 − nπ = −LQ sin α1 sinhα2. (23)

Hence,

tan α1 tanh α2 =
2α1 − nπ

2α2
. (24)

Similarly, from Eq. (19), we havek1+ik2 = Q sin(α1+iα2),
that is,

k1 = Q sin α1 coshα2, k2 = Q cosα1 sinhα2

and, making use of Eqs. (23),

k1 = −2α2 tanα1

L
, k2 = −2α2 tanh α2

L
. (25)

By hypothesis,k1 ≥ 0 and Q ≥ 0; therefore, from
Eqs. (24) and (25) it follows that

if α2 > 0 ⇒ tanα1 ≤ 0, 2α1 − nπ ≤ 0 ⇒ n > 0,
π

2
≤ α1 ≤ π,

if α2 < 0 ⇒ tanα1 ≥ 0, 2α1 − nπ ≥ 0 ⇒ n ≤ 0, 0 ≤ α1 ≤ π

2
.

Given a solution,α1, α2, to Eqs. (23), the values ofk1 and
k2 are determined by means of Eqs. (25).

Since the time-independent Schrödinger equation (1) is
obtained assuming that the wave function has a time depen-
dence of the formexp(−iEt/~), whenk is complex,E has
a negative imaginary part fork1 > 0 [k2 is negative, see
Eq. (25)] that produces an exponential decay in time.

Denoting byM (a,b) the matrix appearing in Eq. (3), we
have the relation

M (a,c) = M (a,b)M (b,c),

for any value ofc. This relation together with Eq. (16) allow
us to readily find the transfer matrix (or, equivalently, the

transmission and reflection amplitudes) for any piecewise
constant potential, and from the conditionM11 = 0, the
bound states and quasinormal modes can then be obtained,
though the expressions will be even more involved than the
ones considered here.

4. Reflection and transmission of electromag-
netic waves

The behavior of a linearly polarized electromagnetic plane
wave normally incident on a slab of dielectric material can
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be found following a procedure similar to that employed in
the preceding section. For plane monochromatic waves prop-
agating along thex-axis with the electric field parallel to the
y-axis in a homogeneous dielectric medium, the wave equa-
tion reduces to

d2Ey

dx2
+ k2Ey = 0, (26)

wherek = nω/c, n is the refractive index of the medium
andω is the frequency of the wave. Equation (26) can be
expressed as the first-order equation

d
dx

(
Ey

dEy/dx

)
=

(
0 1
−k2 0

)(
Ey

dEy/dx

)
, (27)

which is of the form (11) withv = 0; hence,
(

Ey(a)
dEy/dx|x=a

)
= M̃

(
Ey(b)

dEy/dx|x=b

)
,

where [see Eqs. (12) and (13)]

M̃ = cos(kL) I − sin(kL)
k

(
0 1
−k2 0

)

andL = b− a.
If the slab is bounded by the planesx = a andx = b and,

for instance, surrounded by a vacuum, Eq. (26) has solutions
of the form

Ey =
{

A1eik0(x−a) + A2e−ik0(x−a), for x < a,
B1eik0(x−b) + B2e−ik0(x−b), for x > b,

(28)

wherek0 ≡ ω/c. Faraday’s law implies that thez-component
of the magnetic field is proportional todEy/dx and, there-
fore, the continuity of the tangential components of the fields

at the boundary of the slab amounts to the continuity ofEy

anddEy/dx, and from Eq. (28) we see that

Ey(a) = A1 + A2,
dEy

dx
(a) = ik0(A1 −A2),

Ey(b) = B1 + B2,
dEy

dx
(b) = ik0(B1 −B2);

thus, proceeding as in the previous section, we obtain the re-
lation (

A1

A2

)
= M

(
B1

B2

)
(29)

with the transfer matrix

M = cos(kL) I − sin(kL)
k

× i
2k0

(
k2
0 + k2 −k2

0 + k2

k2
0 − k2 −k2

0 − k2

)
, (30)

which is related to the transmission and reflection amplitudes
as in Eq. (9). It may be noticed that, also in the present case,
the transfer matrix (30) belongs to SU(1,1) for realk and
that the determinant ofM is equal to 1 even ifk is complex
(which would correspond to a nonzero conductivity).
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