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Transfer matrices for piecewise constant potentials
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By expressing the time-independent Sidinger equation in one dimension as a system of two first-order differential equations, the transfer
matrix for a rectangular potential barrier is obtained making use of the matrix exponential. It is shown that the transfer matrix allows one
to find the bound states and the quasinormal modes. A similar treatment for the one-dimensional propagation of electromagnetic waves in a
homogeneous medium is also presented.
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Expresando la ecudm de Schidinger independiente del tiempo en una dim@msiomo un sistema de dos ecuaciones diferenciales de
primer orden, se obtiene la matriz de transferencia para una barrera de potencial rectangular haciendo uso de la exponencial de matrices. S
muestra que la matriz de transferencia permite hallar los estados ligados y los modos cuasinormales. Se pregenta taatémiento

similar para la propaga@n unidimensional de ondas electromatices en un medio homégeo.

Descriptores: Disperson; matriz de transferencia; modos cuasinormales; sistemas en capas.

PACS: 03.65.-w; 02.10.Ud

1. Introduction system can be easily integrated using the matrix exponential.
We also show that, making use of the transfer matrix, one

A standard problem in elementary quantum mechanics is thatan find the bound states and the quasinormal modes. The

of finding the reflection and transmission amplitudes for thetransfer matrix for the one-dimensional propagation of elec-

scattering produced by a potential barrier, or well, in onetfromagnetic waves in a medium with a piecewise constant

dimension (see, for example, Refs. 1 to 4). The reflectiorrefractive index is obtained in a similar manner, without em-

and transmission amplitudes are conveniently arranged in thgloying the Fresnel coefficients.

transfer matrix, which relates the wave function on both sides In Sec. 2 an elementary discussion about the transfer ma-

of the potential barrier, in such a way that the effect of twotrices for the one-dimensional-Sélainger equation is given

or more potential barriers is readily obtained by means of thé¢see also Ref. 5 and the references cited therein). In Sec. 3

product of the corresponding transfer matrices (see, for exthe transfer matrix for a rectangular barrier is obtained mak-

ample, Ref. 5 and the references cited therein). A similaing use of the matrix exponential; the bound states and quasi-

result applies to the one-dimensional propagation of electrorormal modes are then found starting from the transfer ma-

magnetic waves in layered media (see, for example, Ref. 6jrix. In Sec. 4 a similar derivation for the case of the one-

In fact, the transfer matrices can be defined in all cases wheidimensional propagation of electromagnetic waves in layered

there is an output that depends linearly on an input; some immedia is given.

portant examples, apart from the two already mentioned, are

the electric circuits and optigal systems. In the cases considzl Transfer matrices

ered here, the transfer matrices are 2 complex matrices

but, depending on the equations involved (more specificallyThe solutions of the time-independent Sidinger equation

the number of variables and the differential order), the size of R 42

the transfer matrices do vary. ———— +V(2)Y = Ey (1)

The aim of this paper is to show that the transfer ma- 2m dz
trix for a rectangular potential barrier (and, therefore, for awith a given short-range potentikl(z), which vanishes out-
piecewise constant potential) can be easily obtained by inside the intervah, < x < b, can be expressed in the form

tegrating the time-independent Setinger equation in one Ajeif@=a) L goe=ik(@=a)  for p<q
dimension by means of the matrix exponential. The time- Y(z)={ Bye*@=b) | Bye—ik(z—b) ’ for x>b, )
independent Scbdinger equation in one dimension, being u(z) ’ for a<a:7<b

a second-order ordinary differential equation, is equivalent
to a system of two coupled first-order differential equationswherek = v2mE/h, A1, A, By, Bo are constants andx)
and, only in the case of a (piecewise) constant potential, this a function that depends on the explicit form of the poten-
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tial V(x). By imposing the usual conditions of continuity of is also a solution of the Scbdinger equation. Substituting
¥(x) and its derivative at = a« andz = b, a linear relation the coefficients appearing in Eq. (8) into Eq. (3) we find that

of the form A B Ut e
r
(a)=»(%) © w= (e e ) ®

can be obtained, wherd is some2 x 2 complex matrix (the
transfer matrix), which depends &f(z) and the value of.

Assuming thal/(x) is real, Eq. (1) implies that the prob-
ability current density

Then, according to Eq. (7}let M = 1, which means that
(for real k) the transfer matrix belongs to the group SU(1,1),
formed by the2 x 2 complex matrices with unit determinant
. that satisfy Eq. (5).
j(z) = i (w*dw _ ¢d¢ ) 7 The reflection and transmission amplitudes of the poten-

2im dz dz tial V' (x) for waves incident from the right; and¢’, respec-
where* denotes complex conjugation, satisfies the continuitytively, need not coincide with and¢. In fact, from Egs. (3)
equation,dj/dx = 0, that is,j(z) = const.; then, making and (9), settingd; = 0 andB, = 1, we must have
use of Eq. (2), one finds that, for ral

0 1/t * [ /
[A1* = Aaf* = [Bif* — | Baf?. “) (t’):(rjt rl//f* ><1 )

Using the fact that

which, making use of Eq. (7), implies that

i

A 1 0 A

A, 0 —1 Ay =t 0=%+%. (10)
where' denotes the Hermitian adjoint, and Eq. (3), one finds
that Eq. (4) is equivalent to Hence, = r’ if and only if /¢ is pure imaginary.

1 0 1 0
M7 M = : 5 .
< 0 -1 ) ( 0 -1 ) ©) 3. Rectangular barriers

The complex2 x 2 matrices satisfying Eq. (5) form a group
with the usual matrix multiplication (see below). Equa-
tion (5) implies that the modulus aft M is equal to 1.

The entries of the transfer matrix are related to the re

The reflection and transmission amplitudes for a given po-
tential are usually obtained by solving the time-independent
Schibdinger equation (1) (see, for example, Refs. 1 to 4). In

flection and transmission amplitudes of the poteriidk), the exceptional case of a piecewise constant potential, the
denoted by andt, respectively. When there are no waves transfer matrix (and, therefore, the reflection and transmis-
coming from the right B, = 0), there exist solutions of the sion amplitudes) can be readily obtained by means of matrix

Schibdinger equation of the form exponentiation. _ _
The time-independent Saidinger equation (1) can be

ik(z— —ik(z—
¢ ‘(x @ +re” 0 forx <a, expressed as the first-order differential equation
P(x) = ¢ telh@=b) for x > b, (6)

ur (@), fora <z <b, d( V() ):( 0 1 ) ( V() ) (11)
that is, solutions of the form (2) witd; = 1, A, = r, and dz \ ¢'(2) v(z) —k* 0 Y'i(z) )’

By =t. Thus, f Eqg. (3) it foll that . .
! us, from Eq. (3) itfollows tha wherev(z) = 2mV (x)/h?. Hence, ifV(z) is a constant/
o [Vt M for a < z < b, the solution of Eq. (11) is
T‘/t M22 ’
with My, and Mo not yet identified, and from Eq. (4) we ( ¢/<x> ) = exp {x ( 0 5 1 )] ( “ ) ,
obtain the well-known relation ¥'(x) vo—k° 0 €2

1—|r]? = [t (7) fora < x < b, wherevy, = 2mV,/h2, andey, ¢, are some

(In most textbooks the reflection and transmission amplitudegonStams' Thus,

are defined by means of expressions similar to Eg. (6), with ¥(a) 0 1 »(b)
r andt being the coefficients af ¥ ande!** and therefore, ( '(a) ) =exp {—L ( vo—k? 0 )]( W' () ) , (12)
the amplitudes: andt defined by Eq. (6) differ from those

usually employed by factoks®* ande~'*?, respectively.) with L = b — a. Letting
SinceV (z) is real, for realk the complex conjugate of
the solution (6) J= ( 0 ) 1 )
preib(@—a) oik(@=a)  for z<q, vo—k* O
V()= t**e_lk(r_b)» for 2>0, (8 one finds that? = (vy — k2)I, whereI is the unit2 x 2
ui(x), for a<w<b, matrix, hence (see, for example, Ref. 7)
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sinh(Ly/vg — k?) .
h(Lvog — K2 T — J, ifvg—k2 >0,
cosh(L+v/vg ) N if vy
—-LJ) = in(Lvk? — 13
exp( ) cos(Ly/k2 —vo) I — sin(LVA? — o) = %) J, if vg — k% < 0, 13)
“
I-1J if vo — k2 = 0.

On the other hand, from Eq. (2) we have
¢(a‘) = Al + A2a ¢l(a) = lk(Al - A2)7
- o 1/1 —i/k 11
1/)(()) = B1 + Bg, 1,[) (b) = lk(Bl - Bg), 5 1 l/k J ik —ik
that is,

! Then, noting that

o 1 Vo — 2k‘2 Vo
( 1) 1(1 —1/]{?)(1&(@)) _Qik< —9 —1}()-‘1-2]</’2>7
2 2\ 1 i/k V'(a) )° , .
from Egs. (12)—(14) one finds that, for a rectangular potential
( ¥(b) ) _ ( o1 ><B1 ) (14)  barrier (or potential well)
') ) \ ik —ik By )

SIS

=

0, ifx<aorz>Db,
(Note that Egs. (14) correspond to the continuity conditions V(z) = { Vo, ifa<z<b (15)
for ¢ andvy)’ atx = a andz = b.)
| the transfer matrix is given by
——, ,_ sinh(Lvivg —k?) 1 (" vy — 2k? V0 e o
cosh(Lvvg — k?) I N Tk v w42k ) if vg — k% >0,
_ 5 _ SiIl(L\/ k2 — UO) i Vo — 2k2 Vo . 12
M cos(Lvk? —vg) I o ik v v+ 22 ) if vg — k* <0, (16)
ikL (1 -1 : 2 _
[_2(1 _1>7 ifvg—k*=0.

Note that, owing to the definitions of the amplitudés,
A,, By, and B, in terms of the exponentialst#(*—4) and ! . )
e*ik(z=b) the transfer matrices (16) depend©andb only have a determinant equal to 1 also wheis complex, al-
through their differencd, = b — a. The simplicity of the though no longer belongs to SU(1,1).
transfer matrices (16) contrasts with the complexity of the  The example considered in this section also allows us to
expressions for the reflection and transmission amplitudeslustrate the fact that making use of the transfer matrix, one
obtained in the standard manner (see, for example, Ref. 2an find the energies of the bound states or the quasinormal
Chap. 5). Note also that, even though we follow the convenmodes by considering pure imaginary or complex values of
tions of Ref. 5, the transfer matrix (16) does not agree withk, respectively.

the amplitudes given in Eq. (12) of Ref. 5. In the case of the bound states of the potential well (15)
It may also be noticed that, by allowingu, — k? tobe-  yith 1) < 0, we haveE < 0 and, writingk = i|k], from
come pure imaginary or taking the limit agv) — k> goes g (2) we see that in order for the wave function to remain
to zero, from the first expression in (16) one can obtain thg)y,nded B, = 0 andA; = 0. Then Eq. (3) implies that
other two. Furthermore, one can verify directly that, wien Mj1, the first entry of the diagonal dff, must be equal to

is real, the transfer matrices (16) are of the form zero. Since the determinant of the transfer matrix is equal to 1
a 8 (independent of the value &}, this last condition is equiva-
g* a* )’ lent to saying that the off-diagonal entries/af (which have

opposite signs) must be equaltal or —1. In the present
with || — |8* = 1 and therefore they indeed belong t0 case, — k2 < 0, and from the second line of Eq. (16) we
SU(1,1). On the other hand, Egs. (11)—(13) hold#aeal payve
or complex and since the trace #fis equal to zero for any
value of k (even if V(z) was not real), the determinant of sin(Ly/—[k[* —vo) wo

exp(—LJ) is equal to 1; therefore, the transfer matrices (16) /—Tk]2 = vy 2/k| =1,
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which is equivalent to the conditions obtained in the text- Making use of the identitiessin z=—isinh(iz),

books (see, for example, Refs. 1 and 2). cos z=cosh(iz), this last equation can be written as
The so-called quasinormal modes correspond to complexinh(Lo) cosh(i2a)) — cosh(Lo) sinh(i2a) = 0, which is

values ofk for which there are no incident waves on the po-equivalent to

tential barrier but only outgoing waves. In this case the so-

lutions of the time-independent Sédinger equation are of

sinh(Lo —i2a) =0

the form and, thereforeLo — i2a = inm, wheren is an integer. Then,
Ageik@a—a) 5 < g letting o = a3 + ia ando = o1 + iog, we have
Y(x) =< Bie*E=b g > 17) _ o
u(z), a<z<b Loy = —2as, Loy =2aq7 — n. (21)

assuming that the real part bfs positive €f. Eq. (2),4; and

From the relationo; + ioca = Qcos(a; + ias) [see

B, are equal to zero so that there are no incident waves oRq. (19)] we obtain
the barrier). Thus, as in the case of the bound states, we have

M1 = 0 and, making use of the first expression in Eq. (16), o1 = Qcosajcoshas, 02 = —Q@Qsina;gsinhas  (22)
we have
sinh(Lv/og — ) vy — 2k2 and, combining Egs. (21) and (22), it follows that
cosh(Lv/ vy — k?) — - =0
Vg — k2 2ik

which can also be expressed in the form
sinh(Lo) 0% — k?
= 18
o 2ik 0, (18)
with the definitione = vy — k2. Hence,o? + k2 = vy.
Following Chandrasekhar [8], we parameterizando ac-
cording to

cosh(Lo) —

k= Qsina, (19)

with Q2 = vy andQ > 0 (assumingy, > 0). Substituting
these expressions férando into Eq. (18) we have

Q? cos? o — Q? sin® «

o = Qcosa,

h(Lo) — sinh(L =
cosh(Le) —sinh(La) 2iQ? sin o cos a 0,
which is equivalent to
cosh(Lo) + isinh(Lo) cot 2a = 0. (20)

ifap >0 = tanay <0,

if ag <0 = tanag >0,

Given a solutionp, as, to Egs. (23), the values @éf; and
ko are determined by means of Egs. (25).

Since the time-independent Soldinger equation (1) is
obtained assuming that the wave function has a time depe

dence of the formexp(—iEt/h), whenk is complex,E has

a negative imaginary part for; > 0 [ko iS negative, see

Eq. (25)] that produces an exponential decay in time.

Denoting by (Y the matrix appearing in Eq. (3), we

have the relation
M(aﬂc) — M(a’b)M(bvc)’

200 —nmr <0 = n>0,

200 —mm >0 = n <0,

—2as = L@ cos aq cosh as,

201 — nm = —LQ sina; sinh as. (23)

Hence,

2000 — nmw

tan o tanh ap = (24)

2052

Similarly, from Eq. (19), we havk, +ike = @ sin(aq +ias),
that is,
k1 = @sinay coshas, ko = Qcosay sinh ag

and, making use of Eqgs. (23),

209 tan o
L b

200 tanh ap

ky = 7

2 = (25)
By hypothesis,k; > 0 and @ > 0; therefore, from
Egs. (24) and (25) it follows that

transmission and reflection amplitudes) for any piecewise
constant potential, and from the conditidd,; = 0, the

"Sound states and guasinormal modes can then be obtained,

though the expressions will be even more involved than the
ones considered here.

4. Reflection and transmission of electromag-
netic waves

for any value ofc. This relation together with Eq. (16) allow The behavior of a linearly polarized electromagnetic plane
us to readily find the transfer matrix (or, equivalently, thewave normally incident on a slab of dielectric material can
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be found following a procedure similar to that employed inat the boundary of the slab amounts to the continuitypf
the preceding section. For plane monochromatic waves promnddE, /dz, and from Eq. (28) we see that
agating along the-axis with the electric field parallel to the

y-axis in a homogeneous dielectric medium, the wave equa- E,(a) = Ay + A, @(a) = iko(A; — Ay),
tion reduces to . da
Yy 2, _ dE .
12 k By =0, (26) E,(b) = By + By, T;<b) = iko(B1 — Ba);

wherek = nw/c, n is the refractive index of the medium ) ) ) ) )
andw is the frequency of the wave. Equation (26) can pethus, proceeding as in the previous section, we obtain the re-

expressed as the first-order equation lation
(&)= (%)

() () () 4)+(3
do \ dE,/dz —k= 0 dEy/dz with the transfer matrix
which is of the form (11) withy = 0; hence,

(29)

sin(kL)
M= I-
B \_w( B0 cos(bL) T = —¢
dEy/dx|w:a dEy/d.’L|x:b ’ i k(Q) + k2 7]1% + k2
— 30
where [see Egs. (12) and (13)] . 2ko ( kG —k? —k—K? ) » (30)
'y sin(kL) 0 1 which is related to the transmission and reflection amplitudes
M = cos(kL) I — 9 . . :
k —k= 0 asin Eqg. (9). It may be noticed that, also in the present case,

_ the transfer matrix (30) belongs to SU(1,1) for réalnd
andL =b —a. : . L
that the determinant ot/ is equal to 1 even ik is complex

If the slab is bounded by the planes= ¢ andz = b and, hich Id dt ductivit
for instance, surrounded by a vacuum, Eq. (26) has solution(éN ich woulld correspond to a nonzero conductivity).

of the form
5 Aleiko(ac—a) + A2€—ik0(x—a)’ forz < a, 28 ACknOWledgment
v { Byeiko(@=b) 4 Boe—iko(z=b) = for x> b, (28)
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