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Brownian motion of a charged particle in a magnetic field
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In this work we show that Taylor’s description of Brownian motion in a magnetic field is equivalent to the situation in which the constant
magnetic field is allowed to point along any direction. This can be achieved by means of a rotation of the Langevin equation given in the
space of coordinates to another space of coordinates where the description of the problem is quite similar to that studied by Taylor.

We use the over-damping approximation to show why, at equilibrium, the oscillatory behavior inherent in the system is not reflected in the
diffusion process across the magnetic field, a fact not studied by Taylor. We also use the large-time approximation to study the effects of
colored noise (small correlation time) on the diffusion processes across and along the magnetic field.

Keywords:(MSD) Mean Square Displacement.

En este trabajo mostramos que la descéipdidrica de Taylor del movimiento Browniano en un campo n&igo, es equivalente a la
descripodn tébrica en la que el campo magfico constante apunta en una diréccarbitraria. Esto de logra mediante una rdiadie la
ecuacbn de Langevin, dada en el espacio de coordenadastro espacio de coordenadss donde la descripoi tedrica del problema

es totalmente similar al problema de Taylor. Usamos la aproxématé sobre-amortiguamiento, para mostrar perep el equilibrio, el
comportamiento oscilatorio, inherente en el sistema, no se ve reflejado en el proceso de tinsversal al campo magjito, situaddn

gue no fue estudiado por Taylor. Usamos ta@nba aproximadin en el imite de tiempos largos para estudiar los efectos del ruido de color
(tiempos de correlaén pequéos), en los procesos de difasitransversal y a lo largo del campo méatico.

Descriptores:(DCP) Desplazamiento Cuaatico Promedio.

PACS: 05.40.-a; 02.50.-r

1. Introduction later, the problem has again become of interest to other sci-
entists, cf. [4-7]. In particular, in Ref. 4 the full descrip-

The stochastic diffusion of a plasma across a magnetic fielon of the Brownian motion in the magnetic field is given
arising from the fluctuations of the electric field was solvedthrough the transition probability densities for the velocity-
by Taylor in 1961 using a theoretical Langevin descrip-SPace, phase-space, and the Smolu.chowsky configuration-
tion [1]. In that work, a situation is considered in which SPace. In Refs. 1,2, and 4 the theoretical developments were
the density gradient of charged particles exists only in thd?ursued by assuming that the constant magnetic field vector
direction perpendicular to the external magnetic field. DueBXPlicitly points along the-axis, thatisB = (0,0, B.). Our

to this physical situation, the diffusion process is described®'Pose in this work is to study three theoretical extensions to
by two coupled stochastic differential equations associated@y!or's proposal. The first one consists in showing that Tay-
with two components of the ion velocity vector. The diffu- lor’s problem is equivalent to a situation in which the constant
sion process is then characterized through the Mean Squaf@@gnetic field is allowed to point along any direction, that is
Displacement (MSD) across the magnetic field. In the nexB = (Bx, By, B:). This can easily be achieved by means of
year, the same problem on the Brownian motion in a mag@ rotation of this magnetic field along theaxis of the trans-
netic field was solved by Kumdjlu [2] by making an ex- formed space of coordinatésﬁyﬁ;’). The second one, al-
tension to the Chandrasekhar [3] treatment of ordinary Browthough it would seems to be obvious, was not considered by
nian motion in terms of the probability distribution function Taylor and consists in the following: a charged particle in a
associated with the magnitude of the velocity. In his work,constant magnetic field is a strictly rotational phenomenon
Kursunaojlu assumed that the surrounding medium in whichand the conditions under which the Brownian motion in a
the charged particles are diffused is the electromagnetic fielf?@gnetic field have been studied (small fluctuations of the
which is envisaged by a set of classical harmonic oscillators€/ectric field) also correspond to a rotational phenomenon.
By assuming the existence of a fluctuating electric field in thel "€ question then is why, at equilibrium (large time-limit),
plasma, the charged particles in the field can be assumed B€ rotational effects of the charged Brownian particle are not
undergo a large number of collisions per second with the OSr_eflec_ted in the diffusion process across the magnetic field as
cillators. Therefore, the diffusion is described as a stochastigffectively shown by Taylor and Kuesiaglu [1,2]? The an-
process where some kind of dynamical friction proportionaiSWer to this question can easily be clarified if we focus on
to the velocity of the particle acts. Consequently, the usuail® Langevin equation in the large-friction force approxima-
expressions for the diffusion processes across and along th@n @lso known as the over-damping problem. The third
external magnetic field were obtained. Almost forty yearsCase is the following: because the large-time limit or diffu-
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sive regime is the regime of interest, we take advantage cfuch thatw? = w? + w2 + w? = €2 B?/m? 2, with

the results of the over-damped problem to study the effects ab? = B} + B2 + B2 being the square modulus of the exter-
colored noise on the MSD across and along the magnetic fieldal magnetic fieldB. The second term of Eq. (5) can also be
for a small correlation time. Two appendices are included towritten as the cross produdt’’v’ = (e/mc)v’ x B’, where
support our theoretical results, and conclusions are given @’ can be visualized as an external magnetic field given by
the end of the work. B’ = BK/, k’ being the unitary vector along thg axis.
Therefore, in the transformed space of coordinates, the exter-
nal magnetic field points, in a natural way, along thexis.

The Brownian motion of a plasma will be better described

The Brownian motion of a charged particle can be described"ough the Langevin equation (5), whose solution may be

by an equation similar to the Langevin equation associatel}//tt€n as
with the velocity column vectov, which reads as [2] V(1) = e PtR(1) V' (0)

2. The Langevin equation for a plasma

mv = —av+ v x B+ eE(t), (1) t

¢ + R(t) / e P RT (5)E'(s) ds . 7
where —av, with « positive, is the friction force added to 0
the Lorentz force for a charged particle in an electromagnetic ] ) )
field, and refers to a dynamical friction between the charges; 10 calculate the correlation function for the velocityt) -
it is not independent of the fluctuating for&t), and it ac- at two different times, we have to impose the initial condition

tually gives rise to the stochastic fluctuations of this electric®n velocity v(0). We assume that it is determined by the
field. The above equation can also be written as Maxwell distribution function

=~ m 3/2 m
v=—-0v+ Wv+E®l)), (2) Pl(v(O))<2ﬂ_kBT> exp { 5% T v(0)-v(0)|, (8)

where3 = «/m, W is a real antisymmetric matrix given by i whichv(0)-v(0) denotes a scalar produgs is the Boltz-
mann constant, and is the temperature of the surrounding

0 s W, : : . .
W= —w UE)J wwz 3) medium. It is also assumed that there is no correlation be-
N w s —w 01 ’ tweenv(0) values andk(¢) for anyt > 0. Because it will

2

! be necessary to average ow€(0) using the Maxwell dis-

whose elements, defined @s = eB; /mc, are known as the tribution, as well as averaging stochastically with respect to
Larmor frequencypB; being each component of the magnetic the noiseE’(¢), we use the notatiof- - - } for the averages
field vector B where the subindex may take on the val- ©0Vverv’(0). In this case, due to the transformationsvoft)
ues1,2,3 representing the coordinatesy, ~ respectively. andE’(t), it can also be shown that there is no correlation
The fluctuating electric field(t) = (¢/m)E(t) satisfies the betweenv’(0) andE’(t). Also

Ecr)(::)e?;t:ieosrﬁznGca:;snS|an white noise with zero mean value and (1) = e PR V0) and (V) =0. (9)

~ o~ The correlation function at two different times for the com-

(Ei(DE; (1) = 2q6i; 6(t = 1), ) ponents of velocity’(t) reads as
¢ being the noise intensity. . . {<U£(t1)v;(t2)>} — o B(titt2) Rir (t1)R1(t2) {v},(0)0}(0)}
If we make the change of variablé = R v, whereR
is the transpose of the rotation matfdgiven in Appendix A, + Rk (t1) R (t2) (e (t1) lu(t2)),  (10)

then Eq. (2) is becomes where the stochastic average is

vi=-3v +Wv + iiv]'(t)7 (5) ty to

= = . hi(t1) hu(t2)) = —Oltttz—ty—t3)

whereE/(t) = R'E(t) and W' = R" WR is another an- (e (tr) hultz)) //e L

tisymmetric matrix such thai(t) = ¢"'* is in general an . R
orthogonal rotation matrix satisfyingg’ (t) = R-1(¢), ie. X Jem ()R )in(t) (B, (1) B, (1)) dty dty. (11)

is its i el (t) = e~ W't
the transp(_)se IS Its inverse and ther_e (t) =e . Using the Maxwell distribution (8), it can be shown that
Such matrices, as shown in Appendices A and B, are given

k,T
> [0} = 2L 6y 12)
0 w coswt sinwt . . .
W'=|-w 0 o], R(t)=|-sinwt coswt 0|, (6) and, using the correlation function (4), we can also show that
0 0 ¢

0 0 1 (B (E)EL () = 20 0mn 0, — ). (13)
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Therefore, the stochastic average (11) reduces to cross correlations can be calculated using Eq. (15). For the
o 2’ (t) component we have, after some algebra, that
1 t2
(e bu(t2)) = 2q [ [ emrersetiot) (Aa')?) = (' (1) — 2/ (0)])
0 0

X (R (1) (R )in(ty) 8(t) — t3) dt) dty.  (14)

[ —]

t t
Z% //cosw tl—fg € —Blt— t2|df1dt2 s (19)
0 0

So, according to Egs. (12) and (14), the correlation func-

tion (10) is then which can be readily evaluated, yielding:
D
kBT, A/2:27 t— 1— —Ait
(o)) = 2T e ) g (1) 1) (@07 =2( ) 1 e
—pP|t1—12 - 1+t2 — q _ oAt
+B R (t1) R (t2) [e ™A 11712l — =B ()], ﬂAg(l e ) (20)

15
(19) where D=q/3*=k,T/m/3, which is consistent with the

The constantg can be calculated from the fluctuation- Value of the Einstein coefficient, =f—iw, andA;=F+iw.
dissipation relation [8], which is related to the average kinetic! he sam;a exprsassmn 'IS obtained fOfZ‘/V‘(e) component, that
energy at equilibrium. This average can be calculated fronis ((Ay")*)=([y'(t) — ¥'(0)]*)=((Az")?). The MSD for the

Eq. (15) at the time; = ¢, = ¢, yielding (1) omponent is simply
2\ — / / 2
1 12 _ 3kB T —28t 3gm __—28t <(AZ/) > = <[Z (t) -z (0)] >
S W)= ——e 25 [1—e771], (16)
q - 1—t2
whereuv’ 2(t) is the square modulus of velocity(t). As time = ﬁ{// e Pl dt |, (21)

goes to infinity, the Brownian particle attains thermal equilib-
rium with the surrounding medium in which it is immersed. \yhjch leads to the following result

Consequently, this average kinetic energy shoulBlhel’ /2. 5
q

Eq.(15) agrees with this value if and onlygf= gk, T/m, (AZ)Y) =2Dt — —5 (1= e Py, (22)
which is precisely the fluctuation-dissipation relation. Once
this relation is used in (16), it is seen that, for all time, which is also an expected result. On the other hand, it can be
1 (20} — 3 kT a7 shown that cross correlation functions
2" ’ ((Az")(Ay)) = ((Ay")(Az")) =0,
which exhibits one aspect of the stationarity of the process. (AZ)(AZ)) = ((AZ)(A))) =0,

Therefore, in the transformed space of velocities, the plasma
diffusion also satisfies the same fluctuation-dissipation relaand
tion as that of the usual Brownian maotion.

((Ay")(AY)) = ((AZ')(AY)) =
2.1. The Mean-Square Displacement From the expressions given in Egs. (20) and (22), we can
make the analysis for short and large times. For short times,
such thatst <« 1 andwt < 1, we get the following expres-
sions for the three components:

In the transformed space of veloc;tieé, it is clear that
v/(t) = dr'(t)/dt, wherer’(t) = R r(t). So, if at time
t = 0 the particle is at’(0), then the MSD for the vector

r'(t) is given by (A)?) = (Ay)?) = ((A)?) = %t% (23)
3
(1) =) = 3 (6 - riO)?) therefore,
o (I (- () =3 (! )2 3(’“mT> 2. (24)
i vj(t2 1 al2. =
_;0/0/{<vi(tl) i(t2))} b dz. (18) This result shows that, in this regime of approximation,

the MSD is the same for the three components and propor-
To calculate this quantity, we must calculate the MSDtional tot2, which corresponds to the behavior of a free par-
for each component of vectaf(¢). If we define the com- ticle. This means that, in this limit of approximation, the
ponents of this vector as (t) = 2/(¢), r5(t) = ¥'(t) and  plasma is not sensitive to the surrounding medium in which
r4(t) = 2/(t), then the MSD for each component and theirit is immersed. For large times, such th#t > 1, wt > 1
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and alsav < 8 we have, for ther’ andy’ components, the The large friction-force approximation (30) is well known
following expression: as the over-damped problem, in whié#’ —! can be called
D a “diffusion coefficient matrix”. It is now clear that, in the
(Az")?) = (Ay)?) =2 (2) t, (25)  dynamical evolution of Eg. (30), there is no rotational effect.
1+ (w/B) Here, the MSD can simply be calculated by solving Eq. (30)
and for thez’ component, in terms of the vector’(¢). In this case,
AZ')?) =2Dt. 26 3
, ,<( " ) (['(t) = ' (0)]%) = D _([ri(t) = r(0))*])
Finally, the MSD will be i=1
’ ’ 2 2 : / 1 [
<[I‘ (t) I'(O)] >— |:(1+(w/ﬂ)2> +1:|2Dt (27) —QQiZ::l k0/0/6t1 t2 dtldtg (32)

The expressions given by Eqgs. (25) and (26) are the MSD So. f h ‘ lude that
across and along the magnetic field respectively, and they are 0, foreach component we conclude tha
proportional tat. Therefore, in this regime of approximation, o "o D
which corresponds to the diffusive regime, the plasma enters ((A')7) = ((Ay')") = 2( 2) ¢ (33)
. : . : . 1+ (w/B)
in contact with the surrounding medium through the inces-
sant collisions with the oscillators. We can also see, fronnd s
Egs. (25) and (26), that the MSD’s are related by ((AZ')%) =2Dt. (34)

(AZ)?) _ﬁ2((Az’)2> The rest of the cross correlation functions are equal to zero.

<(A$/)2>:<(Ay/)2>: 2 2 2 9 (28)
L+ (w/6) Ftw 2.3. The colored noise problem
and the maximum value of the MSD across the magnetic field

occurs aff = w, that is For this problem, the fluctuating electric field(t) satis-
b T fies the properties of Gaussian colored noise with zero mean
(AZ)) max = (AY) ) max = (BB) t, (29)  value and correlation function [13, 14]
(&
~ ~ q gt -
whereT is the temperature of the diffusing particle at equi- (Ei(t)E;(t) = —0ije =l (35)
librium.

for intermediate times the MSDwith 7 the correlation time of noise.

(20), con- Because the large-time limit is the time interval of inter-
hest, we study the colored noise problem in the over-damped
approximation given by Eq.(30). In this case, the MSD is

now written as

As can be seen,
across the magnetic field, given by Eg.
tains the rotational effects of the system throug
the  factors e ™! = (coswt+isinwt)e Pt  and
e M2t = (coswt — isinwt) e=?t, which clearly disappear
in the large time limit. For this reason the expression given

by (25) does not contain these rotational effects. (IX'(t) = ' (0))*) = > (Ir} 0)J])
=1
2.2. The over-damped problem 3 ror ,
=I5 w )fk//e_lt_t /™ dty dt, . (36)
Expressions (25) and (26) describe the plasma diffusion at T k=1 50

equilibrium and they do not properly exhibit the rotational ] ]
character of the system. This physical situation can be un- BY evaluating the integral we have, for thecomponent
derstood if we pay attention to the solution to the Langevin D
equation in the large frictional force approximation. In this ((Az')?) = 2<1+(w/ﬂ)2) {t - T(e_t/T - 1)] , (37)
limiting case, the time derivative of Eq.(5) can be neglected,
resulting in the following approximation: and the same expression for tifecomponent. The MSD for
V= L), (30) thez’ component is
where W’~! is defined as the inverse of the matrix ((Az")?) = QD{f - T(‘ﬂ_t/T - 1)] : (38)
= B3I — W', such that
The rest of the cross correlation functions are equal to

B w
BZ+w?  BHw? 0 zero. In the limit of the small correlation time such that
— Y 5 t > 7, we get
w = | 571 e 0] . (31) D
A’2=A’2=2()t . (39
o0 3 (') = (A P) =2y ) 0+ )0 (39)
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T T 1 two equations. So, for a large-time limit, the MSD across the

magnetic field (25) is similar to that obtained by Taylor and
Kursundjlu, except for the Larmor frequency. It reduces

to the Taylor's and Kunsnajlu's results if By = Bs = 0,

for whichw = eBs/mec. According to this result, the dif-
fusion process across the magnetic field defines an effective
diffusion constant given byp. = D/[1 + (w/3)?].

, We have also shown that, in the large-time limit, the dif-

° {(ax)") fusion process is essentially equivalent to the over-damped
a ((Ay’)2> problem, which yields to the Langevin approximation (30).

I The solution to this equation is clearly not rotational, as
shown by Eq.(32), and therefore the plasma diffusion across
the magnetic field is described without any oscillatory behav-
FIGURE 1. MSD across the magnetic field for each of the charged i0"» @S can be corroborated in the numerical simulation results

particle position components in the transformed space. Thetheoreldi3p|‘_5‘yed in Fig. 1.
ical result given by Eq. (33) is the dashed line, and the simulation ~ Finally, we take advantage of the over-damped approx-

750 - 1 -

500 - —

(Ir®-ror)

250

0 . 1 . 1 . 1 . 1 .
0 200 400 600 800 1000
t

results are the circles and squares. imation to calculate the effect of colored noise on the dif-
fusion processes across and along the magnetic field for

and small 7, yielding to the approximations (39) and (40). The

((A2')*) =2D(t + ). (40)  non-markovian contribution to the MSD's in this approxima-

Obviously, forr = 0 the expressions (39) and (40) reduce ti0n is & time translation for smati values.
to the white noise case.
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sition and time variables a8 — r’/l,, andt — wt, where

lm = (mc?/B?%)'/? andw is the aforementioned Larmor fre- ) ) _
quency, we obtain a dimensionless expression for Eq.(5), ift APPendix: Transformation of matrix W
which we takew = 30. These equations were written as a

o ) . . . . Given the antisymmetric matrix
multivariate Langevin equation for which a suitable integra- y

tion algorithm was proposed in Ref. 9. The simulation pa- 0 w,  —w,
rameters were taken @st = 0.001 for the integration time- W=|-w, 0 w, |, (A1)
step,8 = 100.0 andq = 5000, which guarantee that we are w, —w, 0

simulating the over-damping problem, and the position vari- . . )
ables represent a driftless Wiener process [10]. The resuliscan be transformed into another antisymmetric mat#i,

of the theoretical expression (33) agree with the simulatioyvhich defines a new reorientation of the magnetic fiBld
results, as can be appreciated in Fig. 1. The transformation can be achieved by means of a rotation

matrix R which is composed by the unitary eigenvectors of

) matrix W [11]. Therefore, the rotation matrix will be
3. Conclusions

—W, w

193 ) 1
By means of a rotation of the Langevin equation given by wyfeite;  Vertep @
Eq. (2), we have shown that the Brownian in a constant mag- o, o, w,
netic field, allowed to point along any direction, is equivalent R = PNy S e S B (A.2)
to that studied by Taylor, as effectively shown by Eq. (5).
In our case, the twa’ andy’ velocity components are cou- w?tw? 0 w,
pled and are very similar to those proposed for Taylor, ex- wy/w? w2 w

cept by th_e expression of the Larzmor friq“e”‘;ty’ Wh;Ch "where the first and second column are the real and imaginary
our case isv = eB/mc, whereB* = Bf + B; + Bj.

This is the frequency with which the charged particle ro_part O.f one of the tW.O conpIex eigenvectorswf So, the
. . following transformation? WR leads to
tates around the’-axis of the transformed space of coordi-

nates before it reaches a state of equilibrium state as time 0 w 0
goes to infinity. The:’ velocity component satisfies the usual W =RTWR=|-w 0 0], (A.3)
Brownian motion equation and is independent of the other 0O 0 0
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wherew? = w? + w? + w2 andR" is the transpose of matrix wherel is the unit matrix. Collecting both the odd and even
R,suchthatR R =1I. terms and taking into account that

. M=, (B.3)

o O O

10
B Appendix: The rotation matrix 9(t) M=S5=10 1
00

To show that the relation'”'* = %(t) is a rotation matrix, ] ) _ o _
we follow the proposal of Ref. 12. For this purpose, we definevheresS is a symmetric matrix ant/>" "= = A, it can be

the rotation angle) = wt and the matrices shown that Eq.(B2) reduces to
0 —i 0 0 1 0 Wt =T+ (cos¢ —1)S +sin ¢ 4; (B.4)
M=|i o0 0], A=iM.=[-1 0 0], (B1 . , _

“\o 0 o ‘ 0 0 0 81 therefore, by definingi(t) = ¢"V'*, we finally have that
such thatA is real and antisymmetric and therefore Rip) — o8 wtt Sm‘wi 8 85
W't = i¢M,. Using the property of the exponential, we have t)=1- bgw COB” ) (B.5)

oo . ipM,)?  (ipM.)3 ) . ]
e t:el¢Mz=f+l¢Mz+( 2,2) +( 3,Z) +--- (B2) isan orthogonal rotation matrix becaugér)R" (t) = I.
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