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Recibido el 3 de marzo de 2006; aceptado el 22 de mayo de 2006

The electromagnetic multipole expansion presented in this paper is complete on two accounts:i) It is valid for all points in space, and
ii) it recognizes the existence of toroidal moments. The electromagnetic field due to alternating poloidal currents in a toroidal solenoid is
evaluated exactly via the solution of the inhomogeneous vector Helmholtz equations, using the outgoing wave Green function technique and
the Debye potentials for sources and fields. The physical meaning of the toroidal moments can be appreciated when they are compared with
the familiar electric and magnetic moments; the analysis of the long-wavelength limit of the exact results also explains the previous neglect
of the toroidal moments. The magnetostatic limit and the point source limit are also physically and didactically interesting.
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El desarrollo multipolar electromagnético que se presenta en este artı́culo es completo por dos razones:i) es v́alido para todos los puntos del
espacio, yii) reconoce la existencia de momentos toroidales. El campo electromagnético producido por corrientes poloidales alternas en un
solenoide toroidal se evalúa exactamente a través de la solución de ecuaciones de Helmholtz inhomogéneas, usando la técnica de la función
de Green de onda saliente y los potenciales de Debye para fuentes y campos. El significado fı́sico de los momentos toroidales se destaca
al compararlos con los momentos eléctricos y magńeticos familiares; el ańalisis del ĺımite de longitud de onda grande de los resultados
exactos también explica la ignorancia previa de los momentos toroidales. El lı́mite magnetostático y el ĺımite de fuente puntual son también
interesantes fı́sicamente y did́acticamente.

Descriptores: Radiacíon electromagńetica; desarrollo multipolar; momentos eléctricos, magńeticos y toroidales.

PACS: 41.20 Jb

1. Introduction

The standard presentations of the multipole expansions of
electrostatic, magnetostatic and electromagnetic fields in the
textbooks are usually incomplete since they are restricted to
the regions outside localized sources [1-6]. Two articles may
be cited from the didactic literature making up for this incom-
pleteness; one of them deals with the complete vector spheri-
cal harmonic expansion for Maxwell’s equations [7], and the
other gives the multipole expansions outside and inside the
sources for the electrostatic and magnetostatic cases [8].

Another gap in the textbooks is the absence of any men-
tion about toroidal moments. It will soon be fifty years
since the violation of parity was established in the weak in-
teractions, and the introduction of the anapole moment by
Zel’dovich in his note on “Electromagnetic interaction with
parity violation” [9]. The Russian authors have been ac-
tive investigating the multipole expansion in classical and
quantum field theory, the electromagnetic fields of toroidal
solenoids and correspondingly the existence and importance
of toroidal moments [10-13], in the ensuing period. It is time
that the study of such topics should be incorporated into the
advanced courses in electrodynamics.

This paper presents a complete electromagnetic multi-
pole expansion valid for all points in space, with emphasis
on the presence of toroidal moments on the same footing as

the familiar electric and magnetic moments. Section 2 pro-
vides the theoretical framework for the study, including as the
starting point Maxwell’s equations for harmonic time vary-
ing sources, and their transformation into inhomogeneous
Helmholtz equations. The corresponding solutions are con-
structed by using the outgoing wave Green function and its
spherical multipole expansion, as well as the Debye poten-
tials in order to exhibit the longitudinal and transverse com-
ponents of the respective vector sources and fields [14]. Sec-
tion 3 is devoted to the construction of the magnetic field
due to poloidal currents in a toroidal solenoid with a circu-
lar ring sector cross section in each meridian plane, including
the multipole expansion, the Debye potentials, the dynamic
toroidal multipole moments, the long wavelength limit, the
magnetostatic limit, and the point source limit. Section 4
contains a discussion about the main new results and some
of their consequences.

2. Maxwell’s equations and Debye potentials

The charge densityρ, the current density~J , the electric in-
tensity field~E and the magnetic induction field~B are related
by Maxwell’s equations [1-6]:

∇ · ~E = 4πρ (1)

∇× ~E =
iω

c
~B (2)
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∇ · ~B = 0 (3)

∇× ~B =
4π

c
~J − iω

c
~E, (4)

corresponding to Gauss’ law, Faraday’s law, nonexistence of
magnetic monopoles, and Ampére-Maxwell’s law, for har-
monic time variationse−iωt with frequencyω for the sources
and fields. Hereω/c = k is identified as the wave number.

Equations (1-4) are a set of linear coupled equations for
the fields. They can be decoupled, by taking the curl of
Eqs. (2) and (4) and using the remaining Eqs. (1) and (3),
to obtain the respective Helmholtz inhomogeneous equations
for the electric and magnetic field:

(∇2 + k2) ~E(~r) = 4π∇ρ− 4πiω

c2
~J(~r) (5)

(∇2 + k2) ~B(~r) = −4π

c
∇× ~J(~r). (6)

Equation (6) shows that the magnetic induction field is
determined by the transverse component of the current den-
sity. In contrast, Eq. (5) shows that the electric intensity field
is determined by the gradient of the charge density and both
longitudinal and transverse components of the current den-
sity.

The solutions to Eqs. (5), (6) can be constructed with the
help of the Green function of the Helmholtz equation

(∇2 + k2)G+(~r;~r ′) = −4πδ(~r − ~r ′). (7)

The outgoing wave Green function and its multipole ex-
pansion are given by

G+(~r;~r ′) =
eik|~r−~r ′|

|~r − ~r ′| = 4πik

∞∑

l=0

jl(kr<)h(1)
l (kr>)

l∑
m=0

(−)mN2
lmPm

l (cos θ′)Pm
l (cos θ)(2− δm0) cos m(ϕ− ϕ′). (8)

The particular solutions to Eqs. (5) and (6) involve the
integrations of the respective sources and the Green function

~E(~r) = −
∫

dv′∇′ρ(~r ′)G+(~r;~r ′)

+
iω

c2

∫
dv′ ~J(~r ′)G+(~r;~r ′) (9)

~B(~r) =
∫

dv′∇′ × ~J(~r ′)G+(~r;~r ′). (10)

Use of the multipole expansion of the Green function of
Eq. (8) in Eqs. (9) and (10) leads to the corresponding gen-
eral and exact expansion of the electromagnetic field. The
particular application to the toroidal solenoid is made in the
following section.

The Debye potentials, as has been pointed out by
Gray [14], are useful for exhibiting the decomposition of the
source and force fields into their longitudinal and transverse
(toroidal and poloidal) components, including the relation-
ships among them. The gradient of the charge density is a
longitudinal field, since its curl is identically zero. The cur-
rent density field may be written as

~J(~r) = ∇iL(~r) +∇× [~riT (~r)] +∇×
{
∇× [~r × iP (~r)]

}

= ∇iL(~r)− i~liT (~r)− i∇×~liP (~r), (11)

where the second line makes use of the angular momentum
operator~l = −i~r ×∇. The continuity equation satisfied by

the source densities,

∇ · ~J(~r)− iωρ(~r) = 0, (12)

involves only the longitudinal component of the current den-
sity; in terms of the corresponding Debye potential, it be-
comes

∇2iL = iωρ, (13)

showing that this potential and the charge density are related
through Poisson’s equation. On the other hand, the curl of
the current density,

∇× ~J(~r) = −i∇×~liT (~r)− i∇× [(∇×~l)iP (~r)]

= −i∇×~liT (~r)− i~l[−∇2iP (~r)] (14)

shows that its toroidal and poloidal Debye potentials are
−∇2iP (~r) and iT (~r), respectively. The second line of
Eq. (14) is obtained by performing the triple vector prod-
uct and using the orthogonality of the divergence and angu-
lar momentum operators, as well as the commutability of the
Laplace and angular momentum operators.

The use of Eqs. (11) and (14) together with the symmetry
properties of the Green function and the hermiticity proper-
ties of the gradient and angular momentum operators allow
us to rewrite Eqs. (9) and (10) to exhibit the longitudinal and
transverse components of the respective force fields,
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~E(~r) = −∇
∫

dv′[ρ(~r ′)− iω

c2
iL(~r ′)]G+(~r;~r ′)− i~l

∫
dv′[− iω

c2
iT (~r ′)]G+(~r;~r ′)

− i∇×~l

∫
dv′[− iω

c2
iP (~r ′)]G+(~r;~r ′) (15)

~B(~r) = −i~l

∫
dv′[−∇′2iP (~r ′)]G+(~r;~r ′)− i∇×~l

∫
dv′iT (~r ′)]G+(~r;~r ′). (16)

The corresponding Debye potentials can be immediately
read off from these equations in analogy with Eq. (11):

eL(~r) =
∫

dv′[ρ(~r ′)− iω

c2
iL(~r ′)]G+(~r;~r ′) (17)

eT (~r) =
∫

dv′[− iω

c2
iT (~r ′)]G+(~r;~r ′) (18)

eP (~r) =
∫

dv′[− iω

c2
iP (~r ′)]G+(~r;~r ′) (19)

bL(~r) = 0 (20)

bT (~r) =
∫

dv′[−∇′2iP (~r ′)]G+(~r;~r ′) (21)

bP (~r) =
∫

dv′iT (~r ′)]G+(~r;~r ′). (22)

Equations (18) and (22) show that toroidal currents pro-
duce toroidal electric and poloidal magnetic fields, while
Eqs. (19) and (21) show that poloidal currents produce
poloidal electric and toroidal magnetic fields. Also Eq. (17)
shows that the charge density and the longitudinal currents
are the sources of the longitudinal electric field.

3. Electromagnetic field of toroidal solenoids

This section starts by defining the toroids with a circular ring
sector cross section in each meridian plane, and the alternat-

ing poloidal currents in the corresponding solenoids. The curl
of the current density is evaluated and used in Eq. (10) to-
gether with the multipole expansion of the Green function,
Eq. (8), in order to obtain the multipole expansion of the
magnetic induction field. The electric intensity field can be
evaluated by the integration of Eq. (9), but here it is prefer-
able to obtain it through Eq. (4). The toroidal character of
the magnetic field and the poloidal character of the electric
field are explicitly exhibited, obtaining the multipole expan-
sions of the respective Debye potentials along the way. The
analysis focuses on the completeness of the multipole ex-
pansion [14], including the so-called toroidal moments [5].
Then the limiting situations of long wavelengths, including
the magnetostatic case and the point source case, are studied
in particular.

3.1. The multipole expansion

The toroid with a circular ring sector cross section is defined
by its inner spherical ring (r = a, θ2 < θ < θ1, ϕ), its up-
per conical ring (a < r < b, ϑ = θ1, ϕ), its outer spherical
ring (r = b, ϑ1 < θ < ϑ2, ϕ), and its lower conical ring
(b > r > a, θ = ϑ2, ϕ). The alternating poloidalIe−iωt

current in the toroidal solenoid with N turns has the density

~J(~r, t) =
NIe−iωt

2πr sin θ

{
r̂

r

[
δ(θ − θ1)− δ(θ − θ2)

][
Θ(r − a)−Θ(r − b)

]

+θ̂

[
δ(r − b)− δ(r − a)

][
Θ(θ − θ1)−Θ(θ − θ2)

]}
, (23)

where the Dirac delta functions define the coil elements along which the current flows and the Heaviside step functions define
the extent of such elements. The curl of the current density,

∇× ~J(~r) =
NI

2πr
ϕ̂

{
d

dr

[
δ(r − b)− δ(r − a)

]
Θ(θ − θ1)−Θ(θ − θ2)

sin θ

− 1
r2

d

dθ

[
δ(θ − θ1)− δ(θ − θ2)

sin θ

][
Θ(θ − θ1)−Θ(θ − θ1)

]}
(24)

is toroidal,i.e., in the azimuthal direction, and invariant under rotations around the axis of the toroid.
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As already anticipated, the complete multipole expansion of the magnetic field follows from the combinations of Eqs. (10),
(24) and (8),

~B(~r) =
NI

2πc

∞∫

0

π∫

0

2π∫

0

r′2dr′ sin θ′dϑ′dϕ′
ϕ̂′

r′

{
d

dr′

[
δ(r′ − b)− δ(r′ − a)

]
Θ(θ′ − θ1)−Θ(θ′ − θ2)

sin θ′

− 1
r′2

d

dθ′

[
δ(θ′ − θ1)− δ(θ′ − θ2)

sin θ′

][
Θ(r′ − a)−Θ(r′ − b)

]}

4πik

∞∑

l=0

jl(kr<)h(1)
l (kr>)

l∑
m=0

(−)mN2
lmPm

l (cos θ′)Pm
l (cos θ)(2− δm0) cos m(ϕ′ − ϕ) (25)

The azimuthal angle integration can be done by using
ϕ̂′ = ϕ̂ cos(ϕ′ − ϕ) − R̂ sin(ϕ′ − ϕ) and the orthogonal-
ity of the cosine and sine functions,

2π∫

0

dϕ′ϕ̂′ cos m(ϕ′ − ϕ) = ϕ̂πδm1. (26)

It follows that the magnetic induction field is also az-
imuthal and invariant under axial rotations,i.e., a toroidal
field.

The polar angle integrations are also straightforward, and
according to the selection rule of Eq. (26) are limited to the

terms with m=1 in the sum of Eq. (25). The first integral,

θ2∫

θ1

dθ′P 1
l (cos θ′) = Pl(cos θ1)− Pl(cos θ2), (27)

follows immediately from the relation between the associated
and ordinary Legendre polynomials,

P 1
l (cos ϑ) = sin θ

d

d(cos θ)
Pl(cos θ). (28)

The second integral, involving the Dirac delta functions,
can be done by parts:

π∫

0

dθ′
d

dθ′

[
sin θ′P 1

l (cos θ′)
]

sin θ′P 1
l (cos ϑ′) = − 1

sin θ′
d

dθ′

[
sin θ′P 1

l (cos θ′)
]∣∣∣∣

θ′=θ1

+
1

sin θ′
d

dθ′

[
sin θ′P 1

l (cos θ′)
]∣∣∣∣

θ′=θ2

= −l(l + 1)
[
Pl(cos θ1)− Pl(cos θ2)

]
. (29)

The last line is obtained by again using Eq. (28) and also
the differential equation for the ordinary Legendre polynomi-
als:

1
sin θ

d

dθ
sin ϑ

d

dθ
Pl(cos θ) = −l(l + 1)Pl(cos θ).

The common factor in the polar angle integrals, Eqs. (27)
and (29), should be noted.

The integrations over the radial coordinate are also direct,
but the distinction among the different locations of the field
point must be made. The first integral over the Dirac delta
functions is done by parts:

∞∫

0

r′dr′
d

dr′

[
δ(r′ − b)− δ(r′ − a)

]
jl(kr<)h(1)

l (kr>)

=





{
− d

dr′

[
r′h(1)

l (kr′)
]∣∣∣∣

b

a

}
jl(kr) , r > a

− d
dr′

[
r′h(1)

l (kr′)
]∣∣∣∣

r′=b

jl(kr) + d
dr′

[
r′jl(kr′)

]∣∣∣∣
r′=a

h
(1)
l (kr) , r < a < b

{
− d

dr′

[
r′jl(kr′)

]∣∣∣∣
b

a

}
h

(1)
l (kr) , b < r.

(30)
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The second integral can be explicitly written as

b∫

a

d

dr′
jl(kr<)h(1)

l (kr>) =





b∫
a

dr′
r′ h

(1)
l (kr′)jl(kr) , r < a

r∫
a

dr′
r′ jl(kr′)h(1)

l (kr) +
b∫
r

dr
r′ h

(1)
l (kr′)jl(kr) , a < r < b

b∫
a

dr′
r′ jl(kr′)h(1)

l (kr) , b < r.

(31)

The substitution of the integrals of Eqs. (26)-(31) in Eq. (25) gives

~B(~r) =
NI

c
4πikϕ̂

∞∑

l=1

(−)N2
l1P

1
l (cos θ)

[
Pl(cos θ1)− Pl(cos θ2)

]

×





{
− d

dr′

[
r′h(1)

l (kr′)
]∣∣∣∣

b

a

+ l(l + 1)
∫ b

a
d

dr′h
(1)
l (kr′)

}
jl(kr) , r < a

{
− d

dr′

[
r′h(1)

l (kr′)
]∣∣∣∣

r′=b

jl(kr) + d
dr′

[
r′jl(kr′)

]∣∣∣∣
r′=a

h
(1)
l (kr′)

+l(l + 1)
[ ∫ r

a
dr′
r′ jl(kr′)h(1)

l (kr) +
∫ b

a
dr′
r′ h

(1)
l (kr′)jl(kr)

]}
, a < r < b

{
− d

dr′

[
r′jl(kr′)

]
h

(1)
l (kr′)

]∣∣∣∣
b

a

+ l(l + 1)
∫ b

a
d

dr′ jl(kr′)
}

h
(1)
l (kr) , b < r.

(32)

The radial factors in Eq. (32) can be simplified by integrating the differential equation for the spherical Bessel functions. The
result is

~B(~r) =
NI

c
4πikϕ̂

∞∑

l=1

(−)N2
l1P

1
l (cos θ)

[
Pl(cos θ1)− Pl(cos θ2)

]

×





k2
∫ b

a
dr′r′h(1)

l (kr′)jl(kr) , r < a{
d

dr′

[
r′jl(kr)

]∣∣∣∣
r′=r

h
(1)
l (kr)− d

dr′

[
r′h(1)

l (kr′)
]∣∣∣∣

r′=r

jl(kr)

+k2
∫ r

a
dr′r′jl(kr′)h(1)

l (kr) + k2
∫ b

r
dr′r′h(1)

l (kr′)jl(kr)
}

, a < r < b

k2
∫ b

a
dr′r′jl(kr′)h(1)

l (kr) , b < r.

(33)

It is appropriate at this point to recognize that the standard
multipole expansion of the electromagnetic field [5, 6, 14] is
usually limited to the region outside the sources, correspond-
ing to b < r in Eqs. (30-33). Following Lambert [7], here
we have also obtained the field in the inner regionr < a,
where there are no sources, and in the intermediate region
a < r < b, where the sources are located. All of this has
been done within one and the same calculation by simply dis-
tinguishing among the different locations of the field point. It
is also pertinent to point out that, as is to be expected, the
solutions in the source free regions,r < a andb < r, are
superpositions of solutions of the homogeneous Helmholtz
equations, while the solutions in the region where the sources

are located,a < r < b, involve non-linear combinations of
the spherical Bessel functions and their derivatives or inte-
grals.

3.2. The Debye potentials

Equation (33) may be written in an explicitly toroidal form
by using the representation of the product of the azimuthal
unit vector and the associated Legendre polynomials,

ϕ̂P 1
l (cos θ) =

√
4π

2l + 1
(−i~l)Yl0(θ, ϕ), (34)

so that
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~B(r, θ, ϕ) = −i~l

∞∑

l=1

NI

c
4πik(−)

√
4π

2l + 1
N2

l1

[
P 1

l (cos θ)− Pl(cos θ2)
]
Yl0(θ, ϕ)

×





k2
∫ b

a
dr′r′h(1)

l (kr′)jl(kr) , r < a{[
d
dr (rjl(kr)) + k2

∫ r

a
dr′r′jl(kr′)

]
h

(1)
l (kr)

+
[
− d

dr (rh(1)
l (kr)) + k2

∫ b

r
dr′r′h(1)

l (kr′)
]
jl(kr)

}
, a < r < b

k2
∫ b

a
dr′r′jl(kr′)h(1)

l (kr) , b < r.

(35)

Comparison with Eqs. (16) and (21) gives the identifica-
tion of the summation in Eq. (35) as the multipole expan-
sion of the Debye potentialbT . Notice that the Laplacian in
Eq. (21), because of its hermiticity, may be made to operate
on the Green function, giving, according to Helmholtz equa-
tion, Eq. (7),−k2 times the Green function plus the point
source density term; such a relationship is apparent in the ra-
dial factors of Eq. (35).

As already mentioned at the beginning of this section,
the electric intensity field may be obtained by using Eq. (4),
when the magnetic induction, Eq. (35), and the current den-
sity, Eq. (23), are known. The electric intensity is obviously
poloidal as a result of the application of the curl to the toroidal
magnetic induction and the poloidal character of the current
density itself. The current density may be written in its mul-
tipole expansion form by using the corresponding represen-
tations of the Dirac delta and the Heaviside step functions
in the polar angle, respectively, in Eq. (23). For the sake of
space, the complete expressions~E for and ~J are not written
out explicitly.

3.3. The dynamic toroidal multipole moments

At this point it is more instructive to go on to write the mag-
netic and electric fields in the region outside the external
sphere,b < r, in the form that allows the characterization
of the multipole expansions of the electromagnetic field of
toroidal solenoids,

~B(b < r, θ, ϕ) =
∞∑

l=1

ψl0
~lh

(1)
l (kr)Yl0(θ, ϕ) (36)

~E(b < r, θ, ϕ) =
∞∑

l=1

ψl0
i

k
∇×~lh

(1)
l (kr)Yl0(θ, ϕ), (37)

where

ψl0 = −4πNIk3

c

√
2l + 1

4π

1
l(l + 1)

×
[
Pl(cos θ1)− Pl(cos θ2)

] b∫

a

dr′r′jl(kr′). (38)

Here the explicit value of the normalization constantNl1

has been incorporated.
For purposes of comparison, we transcribe next the cor-

responding general equations for the multipole expansions of
the electromagnetic field [6,14],

~B(~r) =
∑

l

∑
m

[
ψE

lm
~lh

(1)
l (kr)Ylm(θ, ϕ)

+ ψM
lm

(−i)
k
∇×~lh

(1)
l (kr)Ylm(θ, ϕ)

]
(39)

~E(~r) =
∑

l

∑
m

[
ψE

lm

(
i

k

)
∇× lh

(1)
l (kr)Ylm(θ, ϕ)

+ ψM
lm

~lh
(1)
l (kr)Ylm(θ, ϕ)

]
, (40)

where the dynamic multipole moments, in the terminology
of [14], are given by

ψM
lm=

4πik2

cl(l+1)

∫
dv′jl(kr′)Y ∗

lm(θ′, ϕ′)~r · ∇′× ~J(~r ′) (41)

ψE
lm = − 4πik2

cl(l + 1)

∫
dv′jl(kr′)Y ∗

lm(θ′, ϕ′)

×
[
ik~r ′ · ~J(~r ′)− c(2 + ~r ′ · ∇′)ρ(~r ′)

]
(42)

Notice that Eq. (5b) of Ref. 14, equivalent to our Eq. (42),
is missing a factor ofk on its rhs, as can be verified by com-
parison with Eq. (16-91) in Ref. 6.

The comparison of Eqs. (36-38) and (39-42) is direct.
The poloidal component of the magnetic induction field is
absent in Eq. (36) and the toroidal component of the elec-
tric intensity field is absent in Eq. (37), because the dynamic
magnetic multipole moments in Eq. (41) vanish at the source
level due to the poloidal character of the current, Eq. (23).
The vanishing of the integrand in Eq. (41) follows immedi-
ately from the orthogonality of the radial vector and the curl
of the current density, Eq.(24). On the other hand, the dy-
namic electric multipole moments, Eq. (42), are determined
by the radial components of the current density and of the
gradient of the charge density, as well as by the charge den-
sity itself. In the case under study, the charge density is ab-
sent, and the radial component of the current density is the
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first term inside the curly brackets on the rhs of Eq. (23). The
evaluation of the corresponding integral in Eq. (42) leads
to the same value of Eq. (38). In conclusion, the multi-
pole expansions of Eqs. (36,37,38) correspond to the terms
in Eq. (42) involving the dynamic transverse electric multi-
pole moments associated with the radial component of the
poloidal current density,i.e. Eq. (42) withρ = 0.

One might be tempted to add the superscriptE in
Eqs. (36-38) to complete the characterization of the multi-
pole expansion of the electromagnetic field of the toroidal
solenoid. However falling into such a temptation is tan-
tamount to missing the existence of the toroidal moments.
Following Ref. 10, the correct superscript to be added in
Eqs. (36-38) is for toroidal, and Eq. (42) gives an exact rela-
tionship among the dynamic multipole moments of electric,
toroidal and charge types.

ψE
lm(k) = ψT

lm(k) + ψQ
lm(k). (43)

The distinction among these types of dynamic multipole
moments and the connection among them can be traced back
to the different ways of separating the source terms in the in-
homogeneous Helmholtz equations, Eqs. (5,6). In Eqs. (41),
(42) it is recognized that the source factors are the radial com-
ponents of the respective sources in Eqs. (6) and (5). Let
us consider first the unambiguous case of the magnetic mo-
ments. The corresponding source factor in the integrand of
Eq. (41) may be written in terms of the decomposition of the
current density of Eq. (11) in the alternative forms

~r ′ ·
[
∇′ × ~J(~r ′)

]
=

[
~r ′ ×∇′

]
· ~J(~r ′)

= i~l ·
[
∇iL − i~liT − i∇×~liP

]]
= ~̂l 2iT , (44)

where in the first line the dot and cross are exchanged in the
triple scalar product, and in the second line the orthogonality

of the operators is taken into account. Equation (44) shows
that the dynamic magnetic multipole moments depend only
on the toroidal component of the current. On the other hand,
there is room for ambiguity in the case of the electric mo-
ments. In fact, the corresponding source factor taken from
Eq. (5),

~r ′ ·
[
−∇′ρ(~r ′) +

ik

c
~J(~r ′)

]

= −~r ′ · ∇′
[
ρ(~r ′)− ik

c
iL(~r ′)

]
+ i~̂l 2iP (~r ′) (45)

involves both longitudinal and poloidal components of the
source. Taking into account that the basis functions for
the multipole expansions are eigenfunctions of the∇2 and
~̂l 2 operators, it can be recognized that Eq.(41) is in di-
rect correspondence with Eq. (22), while Eq.(42) is re-
lated to both Eqs. (17) and (21). The standard terminology
of Eqs. (39)-(42) of transverse electric and magnetic mo-
ments can be made more precise by making the distinction of
Eq. (43), and recognizing that the magnetic moments arising
from toroidal currents could be appropriately called poloidal
moments, just as the moments arising from the poloidal cur-
rents are called toroidal moments.

3.4. The long wavelength limit

When the sources are confined in a region with a radial ex-
tent that is small compared with the wavelengthλ = 2π/k,
it is usual to approximate the spherical Bessel functions in
Eqs. (34-42) by the dominant terms of their power series ex-
pansions close to the origin. The result of such approximation
is that the dynamic multipole moments, which are defined in
terms of spherical Bessel functions as weight functions in the
integrals of Eqs. (41) and (42), are connected to the static
multipole moments defined in terms of the powers of the ra-
dial coordinate as weight functions,

ψM
lm(k → 0) =

4πikl+2

cl(l + 1)(2l + 1)!!

∫
dv′r′lY ∗

lm(θ′, ϕ′)~r ′ · ∇′ × ~J(~r ′) =
4πikl+2

l(2l + 1)!!
Mlm (46)

ψE
lm(k → 0) = − 4πikl+2

cl(l + 1)(2l + 1)!!

∫
dv′r′lY ∗

lm(θ′, ϕ′)
[
ik~r ′ · ~J(~r ′)− c(2 + ~r · ∇′)ρ(~r ′)

]

= − 4πikl+2

cl(2l + 1)!!

[
1

l + 1

∫
dv′r′lY ∗

lm(θ′, ϕ′)ik~r ′ · ~J(~r ′) + c

∫
dv′r′lY ∗

lm(θ′, ϕ′)ρ(~r ′)
]
Mlm. (47)

Equation (46) is the same as Eqs. (58) and (17) of Ref 14.
The charge part of Eq. (47) is the same as Eqs. (59), (33)
and (32) of Ref. 14, where the last integral is the familiar
electrostatic multipole momentQlm [6, 8]. The part asso-
ciated with the radial component of the current density in
Eq. (47) is usually dropped in the long wavelength approx-
imation, but this is not justified as illustrated in this paper

and Refs. 10 to 13. In the notation of Ref. 10, the dynamic
multipole moments in Eqs. (41), (42) and (43) are normalized
to give the time dependent form factors

Mlm(−k2, t)=
l(2l+1)!!
4πikl+2

ψM
lm(k)e−iωt → Mlme−iωt (48)
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Elm(−k2, t) =
cl(2l + 1)!!

4πkl+1
ψE

lm(k)e−iωt (49)

Qlm(−k2, t)=− l(2l+1)!!
4πikl+2

ψQ
lm(k)e−iωt → Qlme−iωt (50)

Tlm(−k2, t) =
l(2l + 1)!!
4πkl+3

ψT
lm(k)e−iωt. (51)

In terms of these form factors, Eq.(43) becomes

Elm(−k2, t) = k2Tlm(−k2, t) + Q̇lm(−k2, t) (52)

which is the central result of Ref. 10.
The standard systems of electromagnetic sources and

fields [5–7, 14] are described in terms of the charge form
factors, Eq.(50), the magnetic form factors, Eqs.(48) and the
transverse electric form factors, Eq. (49). In the long wave-
length approximation the latter becomes

Elm(−k2, t) = Q̇lm(−k2, t) (53)

as follows from Eq. (52).
However, in systems with poloidal currents like the

toroidal solenoids, Eq. (53) does not hold. Instead of the
transverse electric form factors, it is more general to use the
toroidal form factors of Eq. (51), which are independent of
the magnetic and the charge form factors.

In Secs. 3.3 and 3.4, we have considered the electromag-
netic fields in the regionb < r in order to compare with the
standard available results of Refs. 6 and 14. The treatment of
Sec. 3.1 includes the fields for the remaining regionsr < b,
since we have the complete fields, as Lambert [7] pointed out.
In Sec. 3.5, we study the magnetic induction field in the static
limit ω → 0, k → 0, or infinite wavelength limit. In Sec. 3.6,
the point source limit corresponding also to an infinitely long
wavelength limit, but for a finite frequency, is analyzed.

3.5. The magnetostatic limit

The limit of stationary currents with frequencyω → 0 in the
toroidal solenoids corresponds to the magnetostatic case. It
is clear that Eq. (4) becomes Ampere’s law, Eqs. (6) and (7)
become Poisson’s equation, the Green function of Eq. (8) be-
comes the Coulomb potential, and the spherical Bessel func-
tions are replaced by their power approximations.

We take up the problem at the level of Eq. (33) replacing,

jl(kr<)h(1)
l (kr)|k→0 − irl

<

k(2l + 1)rl+1
<

. (54)

Notice that the common factorik before the sum in
Eq. (33) when multiplied by the factor(−i/k) in Eq. (54)
gives one. For the sourceless regions,r < a and b < r,
the radial integrals are finite, but they are to be multiplied
by the factork2 which vanishes in the static limit. In the
notation of Secs. 3.3 and 3.4, the toroidal form factors are
finite, but the toroidal moments vanish in the inner and outer

regions bounding the toroid. The magnetic induction corre-
spondingly vanishes in both regions. For the region where
the sources are located, the radial factor becomes

[
d

dr
(rl+1)

]
1

rl+1
−

[
d

dr

(
1
rl

)]
rl =

2l + 1
r

. (55)

The coefficient in the numerator of Eq (55) will cancel
the coefficient in the denominator of Eq. (54), and Eq. (33)
takes the form

~B(a < r < b,θ, ϕ) =
NI

cr
4πϕ̂

∞∑
t=1

(−)
2l + 1

4π
P 1

l (cos θ)

×
[
Pl(cos θ1)− Pl(cos θ2)

]

=
2NI

cr sin θ

[
Θ(θ − θ1)−Θ(θ − θ2)

]
(56)

In the first line, the explicit value of the normalization
constant was substituted. In the last line, the sum is iden-
tified with the difference of the Heaviside step functions in
the polar angle, which follow from the completeness of the
orthonormal Legendre basis

∞∑

l=0

2l + 1
2

Pl(cos θ)Pl(cos θi) = δ(cos θ − cos θi)

= −δ(θ − θi)
sin θ

(57)

and its integration

Θ(θ − θi) =

θ∫

0

dθ′δ(θ′ − θi)

= −
∞∑

l=0

2l + 1
2

θ∫

0

dθ′ sin θ′Pl(cos θ′)Pl(cos θi)

= −
∞∑

l=1

2l + 1
2

1
l(l + 1)

sin θP 1
l (cos θ)Pl(cos θi). (58)

In conclusion, the magnetic induction vanishes outside
the solenoid and is azimuthal and inversely proportional to
the radial distance from the axis in the interior. Notice that
the toroidal moments between the two spheres are all differ-
ent from zero, and the summation of all the multipole com-
ponents of the field was carried out in Eq. (56).

3.6. The point source limit

Equations (36), (37) for the electromagnetic field of toroidal
solenoids correspond to the transverse electric fields of
Eqs. (39), (40), with the identificationψE = ψT following
from Eq. (43), since the charge moments vanish in this case.
Consequently, the polarization and angular distribution of the
radiation of each of the multipole components of the field due
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to the toroidal solenoid have the same characteristics as the
radiation of the corresponding transverse electric multipole
fields [6, 14]. The difference is in the amplitudes given by
Eq. (38), in contrast with the usual case dominated by the
charge moments, last term in Eqs. (47).

In the case of a solenoid with small dimensions compared
to the wavelength,i.e. kb ¿ 1, the toroidal moments in
Eq. (38) become

ψT
l0(kb ¿ 1) = −NI

c

√
4π(2l + 1)
l(l + 1)

×
[
Pl(cos θ1)− Pl(cos θ2)

]
k[(kb)l+2 − (ka)l+2]

l + 2
(59)

Since the ratio of the moments of two consecutive multi-
poles is of the orderkb ¿ 1, the component with the lowest
multipolarity is the dominant one. The most dominant of all
is the toroidal dipole withl = 1.

Comparison of Eq. (54) with the corresponding charge
multipole moment of Eq. (47) shows one extra factor of k
for the toroidal moments. This is translated into an addi-
tional factor ofω2 in the power radiated by a toroidal mul-
tipole relative to that of the corresponding electric multipole.
Thus the power radiated by a toroidal solenoid, approximated
as a toroidal dipole, goes asω6, in contrast with the well
knownω4 dependence of electric and magnetic dipoles.

Since the toroidal and electric multipoles of a given or-
der have the same angular momentum and parity properties,
the simultaneous presence of both types of multipoles gives
a frequency dependence of the radiated power that is more
complicated than the corresponding dependence for each in-
dividual type.

4. Discussion

The general elements for constructing a complete multipole
expansion for the electromagnetic field produced by any lo-
calized distribution of charges and currents have been identi-
fied in Sec. 2. They include:

1) Maxwell’s equations (1)-(4) and the corresponding in-
homogeneous Helmholtz equations (5), (6), connect-
ing the electric and magnetic fields and their sources;

2) the outgoing spherical wave Green function and its
spherical multipole expansion, Eq. (8); and

3) the Debye potentials for the sources, Eqs. (11)
and (13), and the fields, Eqs. (15), (16), allowing the
immediate identifications of their respective longitu-
dinal and transverse - toroidal and poloidal - compo-
nents, Eqs. (17)-(19) and (20)-(22).

Specifically, the electric intensity field may have longitudinal,
toroidal or poloidal components arising from a charge density
distribution or a longitudinal current distribution, a toroidal
current or a poloidal current, respectively; while the magnetic

induction field is transverse, and its poloidal and toroidal
components arise from toroidal and poloidal currents, re-
spectively. The electric and magnetic moments studied in
the standard textbooks arise from longitudinal and toroidal
sources; the construction of the fields arising from poloidal
currents in a solenoid presented in Section 3 of this work is a
way to complete the study of the multipole expansion intro-
ducing the toroidal moments.

The complete multipole expansion of the electromagnetic
field arising from alternating poloidal currents in toroidal
solenoids has been explicitly constructed, Eq. (33). The ex-
pansion is complete in the sense of Ref. 7 that the field is
described at all points in space0 < r < ∞, and also in
the sense that it exhibits the existence of the toroidal mul-
tipole moments [10]. In fact, the poloidal currents in the
toroidal solenoids possess vanishing magnetic and charge
multipole moments; the toroidal moments are the moments
of the poloidal currents, just as the magnetic (poloidal) mo-
ments are the moments of toroidal currents. The explicit, ex-
act relationships among the transverse electric, toroidal and
charge multipole moments and form factors are given through
Eqs. (43) and (48-52).

The standard multipole expansion of the elec-
tromagnetic field is formulated in terms of the
set of form factors Qlm(−k2, t),Mlm(−k2, t) and
Elm(−k2, t), or the corresponding dynamic multi-
pole moments, in the long wavelength approximation,
Elm(−k2 → 0, t) → Qlm(−k2 → 0, t). It is in this approx-
imation that the presence of the toroidal form factors is lost.
Reference 10 proposes the use of the alternative set of form
factorsQlm(−k2, t),Mlm(−k2, t), andTlm(−k2, t), which
according to the discussion at the end of our Secs. 3.3 and 3.4
are respectively connected to the charge density and longi-
tudinal component of the current, the toroidal component
of the current, and the poloidal component of the current,
Eqs. (44) and (45). The description of the electromagnetic
field of the toroidal solenoids with poloidal currents requires
these toroidal moments; for such systems the exact values of
the form factors areQlm(−k2, t) = 0,Mlm(−k2, t) = 0 and
Elm(−k2, t) = k2Tlm(−k2, t).

The long wavelength approximation was applied in two
particular cases. In the magnetostatic case of Sec. 3.5,
the multipole expansion of the magnetic induction field in-
volves vanishing components of each multipolarity outside
the solenoid, and the components in the interior of the
solenoid add up to the field being inversely proportional to the
radial distance from the axis. In particular it can be pointed
out that the Zel’dovich anapole in subsection 3.6 corresponds
to a point toroidal solenoid with a stationary poloidal cur-
rent [9]. The toroidal multipole components of the radia-
tion field were analyzed in the point source limit and com-
pared with the standard transverse electric multipole compo-
nents, recognizing the presence of an extra factor ofω2 in
the power radiated by the toroidal moments relative to that of
the corresponding electric moments. Specifically, the toroidal
dipole moment is the dominant dynamical approximation to
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the anapole [15, 16]. The interested reader may find in the
last references some illustrative works on the evaluations of
toroidal dipole moments induced in nucleons, leptons, nuclei,

atoms and molecules, by parity non-conserving weak interac-
tions, and external electric fields.
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