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In this article we present a systematic derivation of the Maxwell-Bloch equations describing amplification and laser action in a ring cavity.
We derive the Maxwell-Bloch equations for a two—level medium and discuss their applicability to standard three— and four—level systems.
After discusing amplification, we consider lasing and pay special attention to obtaining the laser equations in the uniform field approximation.
Finally, the connection of the laser equations with the Lorenz model is considered.
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En este aitulo presentamos una deduatisisteratica de las ecuaciones de Maxwell-Bloch que describen la amipligda emisbn laser

en una cavidad en anillo. Deducimos las ecuaciones de Maxwell-Bloch para un medio de dos niveles y discutimos su aplicabilidad a sistemas
estindar de tres y cuatro niveles. Tras analizar la amgimaonsideramos la emisi laser, prestando especial atémca la deducéin de

las ecuaciones dedser en elimite de campo uniforme. Finalmente, consideramos la coneade las ecuaciones dékler con las de modelo

de Lorenz.

Descriptores:Amplificacion; teofa del hser; modelo de Lorenz-Haken.
PACS: 42.55.-f; 42.55.Ah; 42.50.-p

1. Introduction namely ring and linear, that differ in the boundary conditions
that the cavity mirrors impose on the intracavity field. In ring
Laser theory is a major branch of quantum optics and thergesonators the field inside the cavity can be described as a
are many textbooks devoted to that topic or that pay speciataveling wavé. On the other hand, in linear (also named
attention to it (seee.g, [1-12]). In spite of this we believe Fapry—Perot—type) resonators, the field is better described as
that there is room for new didactic presentations of the basig standing wave, which requires a more complicated mathe-
semiclassical laser theory equations, as some aspects are Redtical description than the case of the traveling wave.
properly covered in the standard didactic material or are scat- e amplifying medium can be solid, liquid, gas, or
tered in specialized sources. The clearest example concerpiisma. Nevertheless, most cases are well described by con-
the uniform fig{d Iimit apprqximat!on [13], which iS_ usually sidering that the amplifying medium consists of a number of
assumedb initio without discussion, and when dlscussed,atoms, ions or molecules of which a number of states (energy

ase.g. in [7], itis done in a way that permits relevant sim- |eyels), with suitable relaxation rates and dipolar momenta,
plifications. In fact, this important approximation has found

a correct form only recently [14]. Another important aspect .

that is usually missed in textbooks is the applicability of the mirrors
standard two—level approximation to the more realistic three— (optical cavity)
and four—level schemes. Certainly this matter is discussed in

some detail in [10], but we find it important to insist on this

as it is usually missed and may lead to some misconceptions

as we discuss below.

There are many good general textbooks on the fundamen laser light
tals of laserse.g.[3,4,6,11], and we refer the reader to any of
them to get an overview on the general characteristics of th Active medium ‘
different laser types. Here it will suffice to say a few words
on the structure of the laser.

A typical laser consists of three basic elements: an op-
tical cavity, an amplifying medium, and a pumping mecha-
nism (see Fig. 1). The optical cavity (also hamed resonator .
or oscillator) consists of two or more mirrors that force light pumping
to propagate in a closed circuit, imposing a certain modal
structure on it. There are two basic types of optical cavitiesFIGURE 1. Diagram of a typical laser in a Fabry—Perot cavity.
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are involved in the interaction with the electromagnetic field.2. The field equation

It is customary to adopt the so-called two-level approxima- ) . o

tion, i.e., to assume that only two energy levels of the am-Maxwell's equations for a nonmagnetic material without free
plifying medium are relevant for the interaction. Actually a charges yield the wave equation [1]

minimum of three or four levels are necessary in order to ob- V2E — ¢ 20%E — V (V - E) = 1100>P. 1)
tain population inversion, and we discuss below how the two-

level theory applies to these more complicated level Schemeg_hroughout this article we shall assume that the electric field
E is a plane wave propagating along thaxis, and write it

Then there is the pumping mechanism. This is highlyIn the form

specific for each laser type but has always the same purpose: E(r,t) = %eg (2,t) eilhz=wt) 4 e 2)
to create enough population inversion for laser action. When

modeling radiation-matter interaction inside the laser cavity,Wheree is the unit polarization vector (fixed polarization is

one can usually forget the specifics of the pumping mecha@ssumed), and

nism (whether it is an electric current or a broadband opti- kE=w/e (3)
cal discharge or whatever) and describe it through a suitable i i )

pumping parameter. In this point, the consideration of two- V€ note thatv is an arbitrary reference (carrier) frequency.
three- or four-level atomic schemes turns out to be important, ©f instance, if light is perfectly monochromatic with fre-

as it is here where the pumping mechanism affects the matflUencywo, we can still choose # w, as we allow the com-
ematical description as we show below. plex amplitudef (z, t) to be time and space dependent. The

situation is even clearer when dealing with light whose spec-

. , trum has some finite width: In this case even the concept of
Laser physics studies all of these aspects of lasers, b"‘ﬁght frequency” is ill-defined, and clearly can be chosen
here we shall not deal but with the mathematical descriptio%rbitrarily.
of the interaction between light and matter inside the laser Given the form (2) for the electric field, by consistency
cavity. In this article we shall provide a systematic deriva—With the wave equation, the polarizatihmust read
tion of the semiclassical laser equations for an important and
simple case: the homogeneously broadened ring laser, which P (r,t) = 1eP (z,1) "0 4 cc.. (4)
plays the role of a paradigm in laser physics. We shall not

! . . ; ) Now one must substitute these expressions into the wave
consider the important issues of inhomogeneous broadenlné;quation and perform tt@lowly Varying Envelope Approxi-
or linear optical resonators, because we wish to keep th

. . . . %ation(SVEA) that consists in assuming that
derivation as simple as possible (but not simpler!).

MU < wd U < w2, (5)

A;s stated, we shall use semicla;siqal the'pey,we ;hall _ 02U < kd,U < kU, (6)
consider a classical electromagnetic field in interaction with
a quantized medium. The quantization of the medium is necfor U = & or P. The physical meaning of this important
essary in order to correctly describe absorption and amplifi@pproximation is clear: one considers that temporal (spatial)
cation as the classical theory (which models matter as a cokariations of the amplitudeis contain temporal (spatial) fre-
lection of forced and damped harmonic oscillators) cannot b&uencies that are much smaller than the carrier frequency
used for that. With respect to the quantization of the field, ittwavenumber). In other words: the amplitudésare as-
is not necessary if one (i) is not interested in the field fluc-sumed to vary on time (space) scales much slower (longer)
tuations, and (i) accepts a heuristic description of relaxatiorihan the optical frequency (wavelength). Obviously this ap-
phenomena (|n particu|ar of Spontaneous emission)_ In anprOXimation excludes the (l|m|t) case of ultrashort pulses
case, the quantum theory of the laser requires the use of coriontaining only a few cycles of the field, but overall it is very

plicated mathematical techniques and falls outside the scopecurate in general, even for short pulses as soon as a suffi-
of our interests here. cient number of cycles enter within the pulse width.

After performing the SVEA and multiplying the resulting
equation by /2iw, one readily obtains

P, @)

After this introduction, the rest of the article is organized
as follows: in Sec. 2 we derive the field equation; in Sec. 3 (8 + ¢d.) & = i
we derive the matter equations for two-, three-, and four-level 2e0
atoms or molecules; and in Sec. 4 we connect these with thehich is the field equation of interest. Let us remark that the
field equation and write down the Maxwell-Bloch equations.SVEA is a fundamental approximation in laser theory, as it
Then Secs. 5 and 6 are devoted to the analysis of amplifallows us to transform the original wave equation, which is a
cation and lasing, respectively. In Sec. 7 we present a cleaecond-order partial differential equation (PDE), into a first-
derivation of the uniform field equations, and in Sec. 8 weorder PDE.
present the “Lorenz” form of the laser equations. Finally, in  Now we need to calculate the source tefrand we do
Sec. 9 we present our conclusions. this in the next section.
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3. The matter equations: optical Bloch equa- wherer denotes the position of the atom (which is not quan-

tions tized in the theory) and the operatdr= —ef,;, —e being

the electron charge ang),; the vector position operator of

The wave equation (7) relates the slowly varying electric fieldthe electron relative to the point-like nucleys.acts on the
amplitude& with its source, the slowly varying polarization atomic variables whereas in this semiclassical formalism the
amplitudeP. We discuss in this section how this last quantity field E is a c-number. In the chosen basis ordering the matrix
is determined. First we introduce the two—level atom modeform for this Hamiltonian reads
and derive the evolution equation for its density matrix, the
so-called optical Bloch equations. Next, the density matrix is I ey -E(r,t) —pg -E(r,t)
shown to yield the information necessary for computing ime (7, 8) = —pqy-E(r,t)  —pqq - E(r,t)]’
which allows us to write a closed set of equations describ-
ing the coupled evolution of field and matter, the Maxwell- where the matrix elements
Bloch equations. Then we consider the case of three- and
four-level atoms, which is a more realistic approximation to
actual lasers. After deriving their corresponding Bloch equa-
tions, we discuss Fhe conditions under which the two-level _ —e/dg’l"at W (Fat) Fartn (Fat) » (14)
model can be applied to three- and four-level atoms. In par-
ticular this is a necessary step for correctly understanding the

(13)

o = (m| f[n)

meaning of the pump parameter. andi,, (T.;) is the wavefunction (in position representation)
of the atomic statén). (Note thatu,,,, = u;,,.) We now

3.1. The two—level atom model recall the parity property of atomic eigenstates: all atomic
eigenstates have well defined parity (even or odd) due to the

3.1.1. Hamiltonian central character of the atomic potential. This means that

I . . = = 0 and then, in order to have interaction, we
The Hamiltonian of the system consists of two pieces: on(#]11 M2z

. . ust consider stated) and |2) with opposite parity (this
describing the atom or molecule in the absence of electro- &) 12) PP parity (

maanetic interaction. and the other describing the action Olf the basic selection rule of atomic transitions in the elec-
9 oL : . 9 ric dipole approximation). Hence the interaction Hamilto-
the electromagnetic field on this atoie.

nian (13) becomes
H (I', t) = Hat + Hint (I', t) . (8)

0 V(r,t
The material medium is assumed to be a system of identical Hing (1,1) = | (r, ) (0 ) : (15)

two-level atoms or moleculese, it is assumed that the ma-
terial medium is homogeneously broadened. We denote b\X/here we have introduced the notation
|1) and|2) the lower and higher energy levels, respectively,
and byws; the transition frequency of one of these atoms.

This means that the atomic Hamiltoniah; satisfies V(r,t) = —py - E(r,1). (16)

Hay [2) = +3hwn [2), (9)  Taking into account the form of the electric field, Eq. (2),
Hy |1) = —Lhwoy |1), (10) V (r,t) becomes

where we have chosen the arbitrary (and unimportant) en-v (r.t) = —ha (z,t) " F*=“D —p3 (2, ) e F= =0 (17)
ergy origin in such a way that it lies halfway between both

states energies (see Fig. 2). The matrix representation f%here we have defined

this Hamiltonian thus reads

+1 hwsy 0 _Hxn-©

Hy = |2 11 o (z1) E(z,1),

¢ 0 7%7&021 ’ ( ) 2h

where the level ordering has been chosen t¢|bg, [1)}. B(z,t) = %5* (2,1). (18)

The interaction Hamiltoniar;,,; is taken in the electric

dipole approximation. Roughly speaking, this approximationyye note thapa is usually referred to as the (complex) Rabi
is valid when the light wavelength is much longer than thefrequency of the light field.

typical dimensions of the electronic cloud, which is on the or- Finally the total Hamiltoniar#, Eq. (8), for a two-level

der of 1A. Thus the approximation is justified in the infrared e : . . .

L . . _—.atom located at positioninteracting with a light field, reads
and visible parts of the spectrum and even in the ultraviolet.
This interaction Hamiltonian reads 1
+5hway V (r,t)

H(r,t) = V¥ (r,t) *%hwm ’

Hiy (r,t) = —f1- E(r,t), (12) (19)
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3.1.2. The density matrix. Evolution the time scales of the free system are large as compared with
the optical periods. Now, if the interaction is turned on we

The HamiltonianH can be used to write the Sdiufinger  gsee in Egs. (23)—(25) that slowly varying terms (those pro-

equation for the atomic wavefunction. Instead, we use hergortional toa or o*) appear, as well as high frequency terms

the density matrix formalism as it is the most appropriatepscillating asexp [+2i (kz — wt)] (the terms proportional to

in order to incorporate damping and pumping terms into the; or 3+). Clearly the atom cannot respond to the latter and

equations of motion, something we shall do in the next subpne can discard them. This is the RWA, which can be easily

section. In the chosen basis ordering, the density matrix gemonstrated by using perturbation theory.

representing a two—level atom located-d@tikes the form After performing the RWA, Egs. (23)—(25) become

_ |22 (rt)  par (b)) (20) Oip22 = i (012 — a*021), (27)
P12 (I‘, t) P11 (I‘, t)

Oip11 = —i (o2 — @’ 0921) , (28)
The meaning of the matrix elements is as follows;,, . .
denotes the probability)(< p,.,, < 1) that the atom occu- Qro12 = —16012 + ia” (p22 — p11),

p(r,t)

< (29)

pies statgm), and pmy, (= py,,,,) IS the coherence between which is the standard form of the optical Bloch equations for

the two atomic states, which is related to the polarization in4 single atom.

duced in the atom by the light field (see below). The evolu-

tion of p is governed by the Schdinger-von Neumann equa- 3.1.3. The population matrix

tion We are dealing with a situation in which there is not a sin-
ihowyp = [H, p). (21)  gle atom or molecule interacting with the light field but a

very large number of them, so that some ensemble averag-

Upon substituting Egs. (20) and (19) into Eq. (21) one ob-ng must be performed. The ensemble averaged density ma-

tains a set of equations which is simplified by defining theyix is called the population matrix [1], although the name

new variables “density matrix” is more frequently used, obscuring the dif-

ferences between the two operators. Here we are not going to

introduce the population matrix rigorously and we refer the

This is motivated by the functional dependence of the noninterested reader to [1] or [8] for further details. _
diagonal elements,» andp»; on space and time under free The population matrix of an ensemble of molecules is de-
evolution (/ = 0). (We note that the above transformation fined as

is equivalent to working in the so'—c'alled intgraction picture p(z,t) = N1 pa (2,1). (30)

of quantum mechanics.) The explicit space-time dependence .. . , . . .
added in Eq. (22) means that the new quantitiggre slowly Here* g is the population matrixp,, is the density matrix for
varying, as will become evident later. In terms of these re-2" aom labeled by, anda runs through all molecules that,
duced density matrix elements, and making use of Eq. (17§t imet, are withinz andz + dz. A is the number of such

the Schadinger-von Neumann equation (21) becomes molecules,. which is as;umed to be indgpenderﬁ andt.
The equation of evolution of the population matrix has two

012 =05 = P12€i(k27wt)' (22)

Orpan = iaos + ifore 2RE=w) 4o (23)  contributions: one of them is formally like the Sdinger—
_ _ 2i(hr—ut) von Neumann equation governing the evolution of the density
dip11 = —iaoz — iforze T Fee, (24)  matrix of a single atom, and the other one describes incoher-

ent processes(g. not due to the interaction with the elec-
tromagnetic field such as pumping and relaxation phenomena
~ [a* + gre?itbz—wt)| = (25)  dueto collisions between atoms or spontaneous emission) [1]

01012 = —ido12 + i (p22 — p11)

— a1 . .
where we have introduced the mistuning, or detuning, param- Opi; = (ih) " [H, p]ij + (FP) i’ (31)

eter (4,5 =1,2). In Eq. (31), the terni'p is the one describing
(26) incoherent processes ahds the Liouville (super)operator.
Consider the situation depicted in Fig. 2. It corresponds

Note that; (p22 + p11) = 0, which implies the conservation o the following matrix elements for the operat(d?p):
of probability.

(5=w—w21.

We now make a most important approximation, widely (fp) = —vaPa2 + Y12P11 + A2,
used in quantum optics, namely the Rotating Wave Approxi- 22
mation (RWA). An inspection of Egs. (23)—(25) shows that, (m) _ (F ﬁ)* — —v1 pa1 (32)
in the absence of interactiod (= 0, i.e. « = 5 = 0 in the 21 12
new notation),n,2 andp;; are constant and,» = o3; 0s- (F _) s _ A\
cillate at the low (non optical) frequendy This means that L) VPt 21p22 AL
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|2> In the two-level laser model, internal relaxation processes
+ (those governed by,; andy;2) are usually neglected, and it
ext ® . .
’Y2 21 is further assumed that the two lasing levels relax to the exter-
nal reservoir at the same rajg = v5** = v{**. Itis easy to
,Y ——————— n=0 see that in this simplified description of relaxation processes,
21 the pumping rates

0
21 A =P (39)
N
rY ext with p? the population of leve|i) in the absence of fields
1 (ov = 0). Moreover, in this particular cagk (ps2 + p11) =0
and so a single equation is needed for the description of the
FIGURE 2. Diagram of the two—level atom energy levels including populations evolution. The population difference is then de-
relaxation rates (see text). fined as

where d = pa3 — p11, (40)

o = Sy, (33) and Egs. (36-38) simplify to

7 ="+ e (34) Oed =) (do — d) +2i (@012 —a’om),  (41)
In the above expressions;; describes the relaxation rate Q12 = = (y1 +i0) 012 +ia’d, (42)
from level i) to level|j) (that is, the pass of population from where
level|:) to level|;) due to collisions), ang¢** the relaxation 0 0
rate from levelli) to some other external level (see Fig. 2). do = paa — Pia (43)
The term),; is the pumping rate of levél), i.e, it describes

i X ) : is the population difference in the absence of fields, that is,
the increase of population of levig} due to the pumping pro-

, o ! X -~ the pump parameter. This is the simplest way of modeling
cesses. Notice that it is not specified where this population ISumping. Clearlyd, > 0 implies an inverted medium (with

coming from, as only the dynamics of the two lasing levely, |5 461 number of excited atoms than of atoms in the funda-
populations is being described. We shall come back to thi§, ot state). If pumping is abseif = —1. Note thatd,
important point in the following subsection. appears as a free parameter, that we can take to be positive or

. The value of the different decay constants appearing ifyegative, although we have not yet discussed how it could be
I'p depend strongly on the particular substance and operating, n+rolied.

conditions. In any case, it is always verified that

3.1.4. Rate equations

1
7L 25 (2 +m), (35) o _ .
It is interesting to write down Egs. (36) to (38) when

which reflects the fact that the coherengeis affected not  v1 > 71,72, 712, 721, 6 as in this case the adiabatic elimi-
only by the relaxation mechanisms affecting the populationspation of the atomic polarization is justified (see Appendix
but also by some specific collisions, known as dephasing cold). This adiabatic elimination consists in makifigr;> = 0,
lisions, which do not affect the populations. and then Egs. (36) to (38) reduce to

With the above form for the Liouvillian, the population

matrix equations of evolution read Oup2z = Ao = 2p22 + 2o — Rlp2 —p1r), - (44)

Op11 = M1 — y1p11 21022 + R(paz — p11),  (45)
Orp2o=—"2p22+V12p11+ 2 +i (o12—"021),  (36)

‘ i with R = 2|al? /..
Gepri=—r1p11t721p22t A ~i (@012 —a"0m1),  (37) These Lq‘u;gons are known as rate equations and are
o1y = — (7L + i0) 012 + ia* (pag — p11) (38)  widely used in laser physics, as in most laser systems the
condition for adiabatic elimination is met. Let us remark that

where we have removed the overbar in order not to comrate equations appropriately describe the interaction of a light
plicate the notation unnecessarily . N@y can be under- field with a two-level system in two limiting cases: when the
stood as the fraction of atoms occupying leléig| i.e., it is  atomic polarization can be adiabatically eliminated, as we
the population of this level. Notice that in Egs. (36) to (38) have discussed, and also when the field is broadbaag (
O¢ (p22 + p11) # 0 in general, what reflects the fact that the incoherent) in which case the factBrhas a different expres-
system formed by the atomic levef®) and |1) is an open sion from the one we have derived but again depends on the
system in which population is gained and lost through incosquare of the field amplitude [15]. We shall make use of these
herent processes. equations in the following subsection.
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3.2. Three-level and four-level atom models
Y 13>

As we already commented in the introduction, actual lasers
are based on a three-level or four-level scheme rather than ¢ 'Y
two-level one, the extra levels describing the reservoirs from ’Y31 32
which the pump extracts atoms and to which damping sends
atoms. In fact these extra levels are necessary for obtaining |2>
population inversiond, > 0), which is a necessary condi-
tion for amplification and lasing, as we shall show below. Al- R
though these extra levels do not participate directly in laser laser
actiorf’®, the description of their indirect participation is es- rY
sential in order to correctly describe pumping and decaying 21 ﬁeld
processes. Here we shall derive the Bloch equations for three:
level and four-level atoms interacting with a laser field and an v 1
incoherent pump, and connect these equations with the two- | >
level laser equations derived in the previous section. FIGURE 3. Diagram of a three—level atomR represents the in-
coherent pumping and the laser field interacts with|the— |1)
3.2.1. Bloch equations for three-level atoms transition. The arrows indicate decay processes.

Consider the three-level atom scheme depicted in Fig. 3, Letus further assume thags > v21,7v31,7.1, R, as oc-
which can be regarded as an approximate description of, faggurs in usual three-level lasers. Then we adiabatically elim-
example, the relevant atomic levels of the¥Cor the EF+  inate the population of leve8). By makingd;ps; = 0, we
ions that are the active ions in Ruby and Erbium lasers, regét

spectively. On these ions, the population is excited from the Rp11
lower state|1) to the upper staté3) by the pumping mech- P33 a2
anism. Then the population is transferred from lef@lto
the upper lasing leveR) (which is long-lived) by relaxation
processes, which are extremely fast in these ions.

We shall model the pumping transitigh) «— |3) via
rate equatiori§ like Egs. (44), (45), and the interaction of
the monochromatic field with transitidth) «—— |2) with the
already derived Bloch equations for a two-level atom. As for ~ 9dt=R — 21 — (R+721) dt + 2i (ao12—a"021), (51)
the relaxation processes, we describe them heuristically (see

(50)

This equation shows thatspss is a finite quantity; that is,
p33 is vanishingly small in the limit we are considering. Then
we can neglecpss in Eq. (48) and putysapss = Rp1n

in Eq. (47), further noticing that after the approximation
Ot (p11 + p22) = 0, we can write the simplified model

Fig. 3). Then we can model these processes with the follow- Orrz = = (YL +10) 12 Fia’d, (52)
ing set of Bloch equations: whered = (pa2 — p11). These are appropriate Bloch equa-
tions for most three-level systems.
Otp3s = — (731 + v32) p33 + R (p11 — p33) , (46) We can now compare these equations that describe three-

9 B . . 47 level atoms with Eqs. (41) and (42) that describe two-level
tp22 = —Y21p22 + Ys2pss i (a0 —atom), (A7) giomsina simple and usual limit. It is clear that they are iso-

dip11 = Yo1paz + Y31p33 + R (pss — p11) (48)  morphic. Then we can conclude that incoherently pumped
. . three-level atoms can be described with the standard two-
—i(ao1z —a’oa1), level atom Bloch equations by making the following iden-
8010 = — (Y1 +16) 0a1 +ia* (pas — p11) s (49) tifications:
. o _ v — R+ 71, (53)
whereR is the rate at which ions are pumped by the incoher-
ent pump field from levelll) to level|3). Let us remark thatin do — R— 021 (54)
writing Egs. (46) to (48): (i), we have taken into account all R+ 7y

possible transitions due to incoherent processes with suitablotice that (i) the decay ratg, is pump dependent for three-
relaxation rates as indicated in Fig. 3; and (ii), the incoherentevel atoms, and (ii) that the pumping ratg depends in a
pumping of population from levél ) to level|3) is modelled nonlinear way on the actual pump paramefer In Fig. 4

by the termR (p11 — p33) appearing in Egs. (46) and (48) we represend, as a function of the actual pumping parame-
with R proportional to the pump intensitye., we have de- ter R; notice that increasing by a factor ten, say, does not
scribed the interaction of the pump field with the pumpedmean doing so iny. Apart from this, we have shown that an
transition by means of rate equations similar to Egs. (44)ncoherently pumped three-level medium can be described as
and (45) but taking\; = 0 as all incoherent processes have a two-level one when the adiabatic eliminations we have as-
been consistently taken into account. sumed are justified, which is the usual situation.
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1 T T T I ]=4d -
:4lev§l,—-‘|"_L I i
7 i

dy ol / 3level —

1 ' DT R B B
0 2 4 6 8 10

R/y

FIGURE 4. Dependence of the effective pump parameigron
the normalized actual pump strengity~ for three- (full line) and
four-level (dashed line) lasers.= ~,; for the three-level laser and
v = 720 + 21 for the four-level laser.
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FIGURE 5. Diagram of a four-level atomR represents the inco-
herent pumping and the laser field interacts with [thle — |1)
transition. The arrows indicate decay processes.

YSO

3.2.2. Bloch equations for four—level atoms

dtp11 = —Y10P11 + Y21p22 + V31033

+i(ao12 —a*oq1), (57)
dtpoo = Y10p11 + Y20p22 + V30033 — R (poo — p33) (58)
Oro12 = — (7L +10) 021 + 1™ (p22 — p11) - (59)

We can now proceed in a similar way to what we did with
three—level atoms: Let us assume thatis much larger than
any other decay rate and adiabatically eliminate Now we
get

R

P33 ~ p007 (60)

Y32
and, neglecting the termss; pss3, v30033 and Rps3, we are
left with

Orp2z = — (720 + 721) p22 + Rpoo

+i(ao2 —a*o9), (61)
O:p11 = —Y10P11 + Y21p22 + i (012 — @Fo21),  (62)
9tpoo = Y10p11 + V20022 — Rpoo (63)
Oro12 = — (7L +10) 021 +ia” (p22 — p11) - (64)

Now we must take into account that the lower lasing level
[1) usually relaxes very fast towards leye). This means
thatp;; ~ 0 and consequently that = pas — p11 =~ poo.
Taking this into account and also thafy + p22 ~ 1 in this
approximation, we are left with

Oipaz = — (720 + 721 + R)d+ R
+i(ao12 — a*oa1), (65)
Oro12 = — (yL + 10) 091 + i d. (66)

We see that, after the adiabatic eliminatiowgf andp1,
the four-level Bloch equations are isomorphic to Eqgs. (41)
and (42), which describe two-level atoms. Then we can ap-
ply the two-level description to a four-level atom by making
the following identifications:

Y| — Y20 + Y21 + R, (67)

Consider now the four-level atom scheme shown in Fig. 5. R

It can be regarded as an approximate description of, for ex-

ample, the relevant atomic levels of tNel® ion that is the

do (68)

_ —
Yoo +721 + R

active ion in Nd-YAG or Nd-glass lasers. Assuming, as forAgain, as was the case for three-level lasers, the population
three-level atoms, that the pumping field acting on the transid€cay ratey and the pumping rai, of the two-level theory
tion |0) — |3) can be described by rate equations, we are leffnust be reinterpreted when applied to four-level lasers.

with the following optical Bloch equations:

Oip33 = — (30 + Y31 + ¥32) p33 + R (poo — p33), (55)
Opaz = — (Y20 + Y21) p22 + V32033
+ Z (050'12 — 04*0'21) ; (56)

Once we have shown that the two-level theory of
Egs. (41) and (42) can be applied to three- and four-level
lasers by suitably interpreting the parametersand dp.
From now we shall always refer to the two-level model but
the reader must keep in mind that the transformations we have
derived must be taken into account when applying this theory
to three- and four-level lasers.
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4. The Maxwell-Bloch equations 5. Amplification

Once the field equation (7) and the optical Bloch equationsyy,o simplest issue that can be studied within the de-
for matter dynamics Eqs. (41) and (42) have been deriveq,g|oped formalism is the amplification of a monochro-
we only need to connect them in order to obtain a closed sg},4tic light beam after traveling some distance along a
of equations for the analysis of amplification and laser dy-adium.  If we identify w with the actual light fre-
namics. , o quency, theit (z,t) = & (z) [see Eq. (2)], which implies that
Under the action of the light field, each atom develops, , ;'  (+). On the other hand, after a short transient (of
an electric dipole. As the number of atoms contained in g6 order of the inverse of the decay constants), the atomic
small volume (small as compared with the light wavelength)System will have reached a steady configuration, which is

is always large, one can assume that at each spatial position,g req by the presence of damping. Thus, after that tran-
there exists a polarization given by the quantum-mechanicalient one can ignore the time derivatives in the Maxwell-

expectati_on value of t_he electric _dipole mc_)ment op_erﬁtor_ Bloch equations. Solving for the material variables (41)—(42)
When using the density (population) matrix formalism, this;, steady state, one has

expectation value is computed as the trace

- 2 2
P (I‘, t) = NTr (p (1‘7 t) u‘) ’ (69) ds = dp Vit 0 5 , (77)
62 4+93 +4yLlal” /y

whereN denotes the number of atoms per unit volume. Mak-

ing use of Eq. (20) and of the matrix form for the dipole e

O21,s = dox s, (78)
moment operator 2+~ + 4y lal” /)
N 0 . N
n= LL MS 1} ) where the subscript” refers to the steady state. Substituting
12 the result into the field equation (73) one has
one has
da d + 10
P (r,t) = N [py9p21 (r,8) + c.c], (70) =g L (79)

_— = — .
dz ¢ 5242 + 4y, |o?
which, making use of definitions (22), reads

This equation governs the spatial variation of the field ampli-

P(rt)=N [“12021 (r,) ™= eel, (1) ydea along the atomic medium.
which, compared with Eq. (4) yields

P (28) = 2N (gy - €) 021 (1,1). (72)  5.1. Weak field limit
We finally come back to wave eq. (7), multiply it by gefore considering the general solution, let us concentrate

(Kay - ) /2h, and make use of Egs. (18) and (72) t0 0b-fis on the weak field limit, defined da|* < v,v/4. In
tain the final field equation, which we write together with the 1his case the last term of the denominator in Eq. (79) can be

Bloch Egs. (41)—(42) for the sake of convenience ignored and the solution reads
Oa da |
rn + €, = 19021 (73)

a(z) = a(0)exp

. . a2 . (1+i5)z . (80)
0012 = — (yL +i0) 012 + ta’d, (74) 14+ (6/v1) gan

Opd = 7| (do —d) +2i(a012 —@%o21) . (75)

where we have introduced the radiation-matter coupling con-

stant o= 29 81)
YL
— AM_ (76)
2e0h andg given by Eq. (76). Parameteris responsible for the

Note that Eqs. (73) to (75) form a closed set of equationg@ttenuation (whem < 0, i.e, whend, < 0) or amplifica-

that completely determines, self-consistently, the interactiofion (@ > 0, i.e, do > 0) of the light along its propagation
between a light field (of amplitude proportional to[see  through the material. In case of attenuation, the inverse

Eq. (18)]) and a collection of two-level atoms. This set of iS known as penetration depth. In case of amplificatiore-
equations is known as the Maxwell-Bloch equations for aceives the name of small-signal gain per unit length. (Note
two-level system, which can be applied to three- and fourthat ford = 0, | (2)|* = |a (0)|” exp (az).)

level systems by introducing the parameter changes (53), (54) On the other hand, the imaginary exponent corresponds to
and (67), (68), respectively. a correction to the light wavenumber. In fact, noticing that
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is proportional to the field amplitud@ and recalling Eq. (2), sl L L L T
one has that the actual wavenumber is 20 — weak field T
o 4 - approximation I ]
ket = k + Ok, (82) s - ,' / 7
and consequently the refractive index= ck.s/w reads @ 10 __ f , ’ __
3 = P
ck dOg (6/’VJ_) _ 05— ! 7 strong fied —
n = ; + w1 3 3 2L / , 7 approximation _
L1+ (0/71) o llal Tl oLl
doN el* (8 0 2 4 6 8 10 12 14 16 18 20
— 1 4 0 “‘1’21 ‘ ( /’YJ_) o2 (83) /
2e0hyL 14 (6/v1) 2z,

which has the same qualitative behavior as the classical xcyre 6. Field intensity during amplification as a function of the
pression obtained from the (harmonic oscillator) Lorentznormalized distance/zpq, with 2,4 = a~ ' the penetration depth.

model [5]. The dashed lines correspond to the weak and strong field approxi-
mations, Eqgs. (80) and (86), respectively.
5.2. Strong field limit

In the opposite limit, namelya|” > 1 /4,6%, Eq. (79) Output

becomes
da 7 dog ) «@
— = 1 — ] —. 84

dz 4c Jrzw_ la)? (84)

Multiplying this equation byn* and taking the real part of
the resulting equation, one has

dlof* _ yjdog _ yy2a

85
dz 2c 4 (85)
whose solution reads

o (2)? = o (0) + T2 (86)

Again, amplification requires > 0, e.g, dy > 0. This result
means that, for strong fields, there exists saturation: the anf<IGURE 7. Diagram of the ring cavity. The active medium is
plification (wheneverl, > 0) persists but it idinear in the  placed in the regio® < z < L.,. The black cavity mirrors are
propagation distance, as opposed to the weak field limit, ifperfectly reflecting whilst the grey mirror has a finite reflectivity
which amplification occurs exponentially, see Eq. (80) The arrows indicate the propagation of the intracavity and output
’ ' ' fields.

5.3. General solution . . - .

which does not permit an explicit expression far(z)|. In

In order to consider the general case, it is convenient to use@ny case, Eq. (88) shows tHat(z)| ™" d |a (z)| /dz has the

polar decomposition for such as same sign ady, so thatd, > 0 implies amplification. In
() Fig. 6 the solution of Eq. (90) is represented as a function
a(z)=la(z)|e : 87)  ofz together with the weak and strong field approximations
Substituting this expression into Eq. (79) and separating if€"ved above. _ .
into its real and imaginary parts, one obtains " tAs for Eq. (89), the phase can be determined by noticing
a
d‘a| _ ’YJ_d()g |Oé| (88)
dz ¢ 8243 +dyilaf’ /v 7dd|¢| — dd¢|/i§ — 51|, (91)
o ol /az YL |
@ _ 5dog 1 (89)
dz ¢ 8242 +dy ol /| from which
Equation (88) can be integrated to yield 6= o+ i n o (2)] ' ©2)
Y1 a(0)]

a(z Y
(2 +6%) In IaEO;I + 2% [|a ()% = |a(0)|2}
I Note that, on resonancé € w — ws; = 0) there is no phase

’Mdogz (90) variation along the propagation direction (apart from the orig-
’ inal phaseékz).
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6. Lasing Now using the polar decomposition (87) one has

Unlike from the previous analysis, in which we assumed la (0))° = R?|a (L), (99)
that a given field (whose frequency and initial amplitude are

known data) is injected into the entrance face of a material, ¢(0) = ¢ (L) + kLc + 2mm, (100)

the light field in a laser is not fixed externally but is self- ) )

consistently generated by the medium, through amplificatior’” being an integer.

and must satisfy the boundary conditions imposed by the cav-

ity. As the model we have developed considers a traveling.2.1. Determination of the laser intensity

wave (moving in one direction), the following analysis ap-

plies only to ring lasers in which unidirectional operation canlLet us first analyze the laser intensjty”. (In fact the laser
take place (in lineare.g. Fabry—Perot, resonators there areintensity is proportional td€|*, but remember thaf o a,
two counterpropagating waves that form a standing wave, and sol€|* o« |a/|>.) We note that, as we are dealing with a

more complicated case that we shall not treat here). field whose amplitude is time-independent, the analysis of
amplification performed in the previous section is directly

6.1. Boundary condition applicable. Making use of Eq. (99), Eq. (90) becomes, for

We assume that the medium is of lendth and that the cav- 2=t

ity has a length.. (see Fig. 7). We take = 0 as the entrance MdogL 1 ( 2 52) InR-2

face of the amplifying medium. The boundary condition im- c mT UL

posed by the resonator reads +2£ (1 B Rg) o (Lm)|27 (101)

E (0,t) = RE (L, t — Al), (93) il

whereR represents the (amplitude) reflectivity of the mirrors Which, after trivial manipulation yields

(0 < R? < 1 gives the fraction of light power that survives

after a compl i i 2 _ 20 [ImR?| 2
plete cavity round trip) and lo (L) | = 1 1 2 (r—1-A%), (102)
A _ LC - Lrn 94
t=— 44 Wwhere we mad&n R 2 = |InR?| (remember thaR? < 1),

is the time delay taken by the light to travel from the exit facea,nd we have defined two |mportant par'ameters, the adimen-
of the medium back to its entrance face after being reflecteaIonal pumpr and the normalized detuninfy through
by the cavity mirrors. 2dog L aLy,
Making use of Eq. (2), and after little algebra, the bound- T emRY Ry’ (103)
ary condition (93) reads 7L

) _
1 (104)
YL pan

£(0,t) = Rexp[i (kLm + wAL)| E (L, t — At), (95) A=

which, upon using Eq. (94) and recalling that w/c (this

e A We note that the adimensional parametds proportional
was our choice in writing Eqg. (2)), reads

to the gain properties of the medium and inversely propor-

£(0,t) = Releg (L, t — AL). (96) tional to the damping properties of the system. In fadt,,

gives the small-signal single-pass gain along the amplifying

Finally, multiplying this equation byu,, - €) /2hand recall- medium (remember that, Eq. (81), is the small-signal gain
ing Eq. (18), one has per unit length). Thus acts as an effective pumping parame-
ter, as will become clear next. Equation (102) determines the
value of the field intensity at the exit face of the amplifying
medium. Clearly, in order to be meaningflt, (L, )|* > 0,
which implies

a(0,t) = Re*eq (L, t — At). (97)
We analyze next the monochromatic lasing solution.

6.2. Monochromatic (singlemode) emission )
T>Ton =1+ A (105)

We note that the frequeney appearing in the field expres-

sion (2) is by now unknown. Under monochromatic opera-Thus parameter must exceed a given threshold (the lasing
tion the laser light has, by definition, a single frequeritwe  thresholdr,,,) in order for the laser to emit light. This is why
takew to be the actual lasing mode frequentlye field am-  r is called the “pump parameter” (there is a minimum pump
plitude must then be a constant in tig, « (z,t) = «(z),  required for the system to start lasing).

as in the previous analysis. Thus Eq. (97) becomes What we have obtained is the field intensity at the faces
ik of the active medium, Egs. (99) and (102). But it is also in-
a(0) = Re™a(Lm) . (98) teresting to analyze how this intensity varies along the active
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medium. Thus, after using Eqgs. (99), (103) and (104), wendicates that there exists a family of solutions (labeled by the

write down Eq. (90) in the form integern). As we show next all these solutions have, in gen-
9 eral, different lasing thresholds. From Eq. (111), the lasing
rInR2| 2 = (14 A2 2B threshold (105) can be finally determined as
Ly R2? | (Ly,)| )
We — wa1 + n2re
2 2 2 _ Lc
-R Ly)|"|, (106 Ton =14+ | ———=| . 113
oo eGP =R a(Zu)] 108) ( . ) (113)

with |a (Lw)|* given by Eq. (102). This equation can be Now, the difference between the cavity and atomic transition
solved numerically, and in Fig. 8 we represent its solutionsrequencies is obviously smaller than the free spectral range,
for fixed parameters and several values of the reflectRity  e.g, |we — wa1| < 2mc¢/ L. This means that,,, is minimum
showing that ask? approaches unity the solution becomesfor n = 0 and also that the frequency of the amplified mode,
progressively uniform. This fact suggests that®t — 1,  wy, is given by

it must be possible to rewrite the laser equations in a simpler

way, as in this limit the steady state is independent.oiVe wo = w’ (114)
shall come back to this point in the next section. But first we K41

shall continue analyzing the laser steady state. which is thepulling formula The result is that the laser fre-

quency is a compromise between the cavity and atomic tran-
sition frequency. Notice that for a "good cavity?, < v,
Even if it can seem that we know the lasing intensity value the laser frequency approaches the cavity frequency, whilst
the fact is that we still do not know the value of the lasingfor a "bad cavity”,7, < «, the laser frequency approaches
frequencyw and thus the value ak. This problem is solved that of the atomic transition. This is quite an intuitive result
by considering the phase boundary condition (100). First wéndeed.

recall Eq. (92), which we write in the form

Lu)|®
L) — 60 =tamm 2Eml 1A g2 (107 .
¢ (Lm) = ¢(0)=3A1n 2 | . | (107) Let us analyze the relevant casg = wo1, corresponding to

o (0)]
. . cavity exactly tuned to the atomic resonance. In this case
where Eq. (99) has been used in the last equality. Comparlf}l"3 pur)r/1p musi/satisfy

son between Egs. (100) and (107) yields

2
%A |lnR2| =2mm — kL. (108) r>ron =14 [QW:| n?, (115)
(k+7v1) Le

6.2.2. Determination of the laser frequency

6.2.3. The resonant case

We now introduce the wavenumbky and frequencyw. of ) _ _ )
the cavity longitudinal mode closest to the atomic resonance2nd the lasing mode with lowest threshold is that with: 0,
As we are dealing with a cavity longitudinal mode, it must be@s discussed above. Henageresonancgthe basic lasing so-

true, by definition, that lution has a threshold given by, = 1, and its frequency is
w = w. = wy (see Eq. (111) fon = 0).
k. = 2rmc/Le, we = cke, (209) The amplitude of this lasing solution verifies Eq. (79)

. . . . . Withézw—wgle:
m. being an integer. Substituting these quantities into

Eq. (108), t das  d 1
q. (108), one gets o _dw L g
L. Z yicl+ ||
IA|InR?| = (we —w) == + 2n, (110) T
c

We note that we have introduced the subscripté empha-

wheren = m — m. is a new integer. We finally recall ;o yhat this amplitude: corresponds to the steady lasing

Eq. (104) so that Eqg. (110) yields the following value for the

| ¢ i solution.
aserirequency: Finally, the “intensity” of the laser light at the exit of the
= KWwa1 + Y1 We n Y1 27rc7 (111) active medium is given by Eq. (102) with = §/v, = 0:
K+71 k+71 Le )
. 2 ML |1HR |
where we have defined las (L) |” = 1 -2 (r—1). a17)

c |1n Rz‘ . .
K=—0r—) (112) We note that there is no phase variation of the laser complex
¢ amplitudeay along the medium (see Eq. (89) with= 0).
which is known as theavity damping ratdor reasons that We shall make use of these expressions in the following sec-

will be analyzed in the next section. We note that Eqg. (111}ion.
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lasing solution (independent of time) so that
a5 (0) = Rag (L) - (122)

These equations form the basis of our study.

o(z) 2y,

7.1. Afirst change of variables

In order to make the boundary condition isochronous, we in-
troduce the following change of variables [7]:

4 — —

FIGURE 8. Intracavity field intensity as a function of distance for o (2,8) = alzt—1), (123)
ggur:e v1,A = 0,7 = 1.5 and the values oR marked in the ohy (2,t) = 01 (2,6 —7), (124)

d (z,t)=d(z,t —T), (125)
7. The laser equations in the uniform field with 7 = zAt/L,, andAt = (L. — Ly,) /¢, EQ. (94). The

limit new variables satisfy

In this section, we wish to find a simpler model that will O _ 67&, (126)
allow us to study laser dynamics and instabilities in an ot ot
easy way. The desired model is known as the Lorenz-Haken da 0a' At 0/ 127
model, and can be rigorously derived from the Maxwell- 92 Oz T Ly, Ot (127)

Bloch Egs. (41)—(42) and (73) in the so-called uniform field o . ) ) )
limit, which we now consider. This limit assumes that the @nd similar expressions for the material variables. Substitu-

cavity reflectivity is closest to unityR? — 1 in all previous  tion of the previous relations into Egs. (118)—(120) yields
expressions). For the sake of simplicity [16], the derivation L. 9o/ 90/
C

will be done in the resonant case, where the cavity is tuned in +c—— =igoh,, (128)
. o L, Ot 0z
such a way that one of its longitudinal modes has a frequency
w. that exactly matches the atomic resonance frequengcy doyy / oy
. . . = —7y105 —iad, (129)
In this case the analysis done in Sec. 6.2.3 suggests we choose ot
the value of the arbitrary frequencyasw = w, = wa;. (We ad’ , o,
recall that we can freely choose this value. If this election is 5 = i (d —do) +2id’oypte.c., (130)

“wrong”, the laser equations will yield an electric field ampli- _
tudea which contains a phase factor of the foesp (—iw’t) ~ Where we used Eq. (94). According to Eq. (121), the new

that will define the actual laser frequency_) variables SatiSfy the fOllOWing bOUndary condition
First we recall the Maxwell-Bloch Egs. (73)—(75) for
5_o as. (13)(79) o’ (0,1) = R (Lun, 1) (131)
Oa da 118 which is nowisochronous We note that the definition of the
B TCa, T Wor (118)  hew variables is mathematically equivalent to “bend” the ac-
9021 tive medium on itself so that its entrance £ 0) and exit
5 = Loz —iad, (119)  faces ¢ = L,,) coincide.
% = (do — d) + 2i (ao12 — a*021), (120) 7.2. A second change of variables
which are to be supplemented by the boundary condition (97 ow we define another set of variables by referring the previ-
with k = k. = we/c (see Eq. (3)) so that = 2rm./L us ones to their monochromatic lasing values analyzed in the

revious sections. The steady values of the material variables
ave been calculated in Sec. 5, Eqgs. (77) and (78), which,
particularized to the cage= 0 we are considering, read

[see Eq. (109)]. With these assumptions the boundary condE
tion (97) becomes

a(0,t) = Ra (L, t — At). (121) 1
dy (2) = dg—————, (132)
We note that this boundary condition is not isochronous (it 1+ L] ||
relates values of the field amplitude at different times) and —idyos 1
this makes the analysis difficult. We note for later use that o215 (2) = o 5 (133)
this boundary condition applies, in particular, to the steady T * YL s
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We note that these quantities aredependent as isy,  After using the steady state equations (132) and (133), these
Eqg. (116). In particular we define the new variables through expressions can be written as

o (2,
F(Z7t): vr—1 065((2))7 (134) CP:')/J_7 (148)
Peyt) = vim 122t E0) 135 Do =1+ fal, ope)= 2% )
LY =V o215 (2)’ YL o yL(r—1)
!
D (z,t) = dd('z’ §) , (136)  Up to this point, the equations féf, P, andD are equivalent
s (2

to the original Maxwell-Bloch equations, as no approxima-
whereq verifies Eq. (116). The equations fét P, D are  tion has been made.
obtained from Eqs. (128)—(130). First the equation fois
computed. From its definition we have
/
e
S We now study the behavior @f'r, Cp and Dy in the case
oF i1 ( 1 0/ B g’i dozs) ' (138) when the <_:a_vity mirrors have a very good qual_ii;g_, vyhen
0z as 0z as oy dz the reflectivity R is very close to unity. In this limit, the
boundary condition (122) says that (0) ~ a5 (L., ). Onthe
other hand, the steady state equation (116) tells uidlg&t
is a monotonic increasing function of Under these circum-

7.3. The Uniform field limit

(137)

Making use of these and of Eq. (116), we build the following
equation forF':

L. OF OF  Vr—1, stances, one can assume, to a very good approximation, that
L. ot Tl TW a2 las (2)|? is a constant along the amplifying medium. (These
d 1 facts can in fact be seen in Fig. 8.) In this case its value co-
7Lgﬁp (139) incides, for instance, with its value at the medium exit face,
VL1 o o] las (L )|?, which is given by Eq. (117):
which by using the definition o and of Eq. (133) trans- ‘1 R2’
. n
forms into las (2)]> ~ ’Y"ZL 72 (r—1), Vz.
or + or Cr(2)(P-F) (140) B
- Tva-=C0F (2 —1I),
ot 0z But, as we are considering the linMiR — 1, the quo-
where tient In R?| / (1 — R?) also tends to unity, as can be easily
cL checked, and we finally have
v = L“‘, (141)
¢ 2 ML
dog L 1 las (2)" = ——(r—1), V= (150)
Cr(2) = 0Zm 2 (142) 4
F 1 3
YL Lc 1 —+ |Ots‘
YL

This space uniformity of the laser intensity along the ampli-
(Note thatv < ¢ has the dimensions of a velocity.) The equa-fying medium wherR — 1 is the reason for the namé&hi-
tions for the material variables are easier to obtain. Makform Field Limif'. (We note that in the literature the uniform
ing use of the definitions of’, P and D, and making use of field limit has been customarily associated not only with the

Egs. (129) and (130) we obtain high reflectivity condition but also with the small gain condi-
P tional,, — 0. We see here that the latter condition is com-
e —v1. P+ CpFD, (143)  pletely superfluous.) Substitution of (150) into Eqgs. (142)
oD and (149) yields:
= =N (D —=Do) = (CpFP" +CpF*P), (144)
ot C ( )_ dO.ng

where Flz)= yirLe’

Cp(2) = —iasds, (145) Dy (z)=r, Cp(z) = ’gl, Vz. (151)
021,
Do (2) = @’ (146) Finally, making use of definitions (103) and (112} sim-
ds ply reads:
Cp (z) = —20sT50.s 147
0 ()=o) (147) Cr(2)=r, Ve (152)
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7.4. The laser equations in the uniform field limit detuning, it can be demonstrated that the laser equations in

o ) ~ the uniform—field limit read [16]
Substitution of expressions (148), (151) and (152) into

Egs. (140), (143) and (144) yields %IZ ; f;é — k(P F), (157)
ot 0z S =L IFD = (1+iA) P, (158)
P
= =+, (FD-P), (154) oD
aat = = [r—D—1(FP*+F*P)], (159)
D

— = —-D-i(FP*+ F*P)]. 155
ot al [r 2 ( + )} (155) whereA, = (w. — wa1) /. is the atom—cavity detuning pa-

We finally need to consider the boundary condition that apfameter. These equations are complemented with the periodic
plies to these equations by considering the definition (134poundary condition

for F
F(0,t) = o’ (0.7) F (L, t) = @' (L, t) F(0,2) = F(Lm,?). (160)
’ as (0) ’ as (L) The fact that the boundary condition is periodic means
Making the quotient of these quantities we have that the field can be written in the form
F(0,t)  as(Lm) o (0,1) +00 4
F(Lmt) s (0) o (L t)’ F(zt)= > Fp(t)e™, (161)

which, by making use of Egs. (122) and (131), yields

whereq,, = m2x/L,, with m an integer. This means that
F(08) = F(Lm,1). (156) the intracavity field is, in general, a superposition of longitu-

We thus see that the boundary condition for the field amplidinal modes of the emptye(g, without amplifying medium)

tude isperiodic (we note that this is not due to the uniform Cavity. In order to see this clearly, let us solve Eq. (157) for

field limit but to the very definition of"). This is of great the empty cavity and ignoring cavity lossesg, Eq. (157)

importance as it will allow us, owing to the Fourier theorem, With its right-hand side equal to zero. Its solutions have the

to decomposé’ in terms of periodic functions. form
Before  studying the Maxwell-Bloch equa- too
tions (153)-(155), let us demonstrate tligt P, and D, are F(z,t) = Z B, eilamz—wnt) (162)

equivalent to the original variables, apart from constant scale
factors. From definitions (134), and using the uniform field

limit results developed in the previous section, we have ~ With wy,,=vg,,,. Now we must notice that the actual field
is not F(z,t) but F(z,¢t—7), with r=zAt/L,, and

m=—0o0

F(z,t) = a (z,t), At= (L. — Ly,) /¢, as we introduced new fields in Egs. (126)
VL and (127) (remember that the field is proportional to the
r T, field o’ which is different from the actual field). Thus, the
P(z,t) = 21*0 o (z,1), actual field (we will not introduce a new symbol for it) is
T I
D =—d .
(z,t) dod (z,1) F(zt) = Z P

m=—0o0

ThusF has the meaning of a laser field amplituéehas the
meaning of material polarization ard has the meaning of
population difference.

Equations (153)—(155) allow us to study two types of oo
laser operation: singlemode and multimode. The method for - Z Frexp[i (kmz — wnt)], (164)
deriving the laser equations in the uniform field limit we have

Le — Lin

I — wmt)] (163)

X exp [z (qmz — Wm?

followed here was presented in [14] (see also [16]), where an -
application to multimode emission was addressed. From nowvith
on we shall concentrate on the singlemode laser.
wWm Le — L 2mce
km = qm — —— Li = mf, (165)

8. The single-mode laser equations
wherew,, = vq,, has been used. Eqg. (165) shows clearly

In the previous section we have derived the laser equatiorthat the actual field appears decomposed into empty—cavity
in the uniform field limit for a resonant laser. For arbitrary modes.
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Thus Egs. (157)-(159) can describe multilongitudi- equations reduce to only three real equations,
nal mode emission whedF'/0z is non-null and, when .
0F/0z = 0, this model can describe only singlemode emis- E=r(P-E), (173)
sjon. The questiqn now is: Should we keep the spatial dgriya— P=~.(ED - P), (174)
tive always? Or, in other words, when will the laser emit in
a single mode and when in several longitudinal modes? In D= v (r—=D —EP), (175)
1968 Risken and Nummedal [17] and, independently, Gra-
ham and Haken [18], demonstrated that Egs. (157)-(159yhereP = Pr..
predict the existence of multilongitudinal mode emission if ~ 1he above set of equations is usually known as Haken—
certain conditions are verified. We are not going to treat thd-0renz equations. The reason for this name is the following:
Risken—-Nummedal-Graham—Haken instability here (see, foket us define the adimensional time= ~, ¢, and the new
example [7,9, 10, 12] or [16] for a recent review), it will suf- Variables and normalized relaxation rates
fice to say that for multilongitudinal mode emission to occur

the two necessary conditions are: (i) a large enough pump X=F Y=Pb Z=r-D, (176)
value (in resonance) = 0, » must be larger than nine and o= K b— ﬂ‘ (177)
remember that the laser threshold in these conditions, given L’ gan

Eqg. (105), equals unity; out of resonance even more pump

. ) ! : ¥hese new variables satisfy
required), and most importantly; (ii) the cavity length must

be large, unrealis_,t?cally Iarge_ fpr common !a;ers. Th.e.n for iX — o (Y - X), (178)
short enough cavities (and this is not a restrictive condition at dr

all for most lasers) the laser will emit in a single longitudinal d

mode. In this case, the spatial derivative in Eq. (157) can be EY =rX =Y+ X7, (179)
removed and we are left with the Maxwell-Bloch equations d

for a singlemode laser. We must insist that all this is true —Z=b(Z-XY). (180)

for homogeneously broadened lasers and cannot be applied dr

to inhomogeneously broadened ones, see [16]. These are the Lorenz equations [19], which are a very sim-

So for singlemode lasers we can tak&/dz = 0. It plified model proposed by Edward N. Lorenz in 1961 for
is particularly interesting to write down the singlemode laserthe baroclinic instability, a very schematic model for the at-
equations in resonancé( = 0). Let us write the field and Mosphere. They constitute a paradigm for the study of de-

atomic polarization in the following way: terministic chaos as they constitute the first model that was
found, by Lorenz himself, to exhibit deterministic chaos. It
F=Ee”, P=(Py+iPyy,)e", (166)  Was Herman Haken who, in 1975 [20], demonstrated the as-

tonishing isomorphism existing between the Lorenz model
with E a real quantity. Now Egs. (157,158), with, = 0,  and the resonant laser model that we have just demonstrated.

read After this recognition, the study of deterministic chaos in
lasers became a very active area of research (see, for exam-
E=#k(P.—E), (167) Ple [2,7,9,10,12]).
The Haken-Lorenz model exhibits periodic and chaotic
b= HP'im’ (168) solutions, and several routes to chaos can be found in its dy-
E namics. The equations can easily be numerically integrated,
P =~ (ED — P..)+ Py, (169) e.g.with Mathematica, and we refer the interested reader
) . to [2,7,9, 10, 12] for suitable introductions into these fas-
Pim = V1L Pim — ¢ Pre, (170)  cinating subjects. Here we shall only briefly comment on a

particular point.
where the dot means total derivative with respect to time. By  Equations (173), (175) have two sets of stationary solu-
suitably combining the first, second and last equations, ongons: the laser off solutionf = P = 0 andD = r), and

obtains the lasing solution = P = +v/r —1 andD = 1) that
. . exists forr > 1. A linear stability analysis of this last solu-
Pim i E_ (k+71), (171) tion s_howg that it becomes un;table Wh@h L+ (this
Py E condition is know as "bad cavity” condition) and> rgyp
. with
from which

. H(H+3’}/L+’Y||)
HB —
: (172) K= (yL+)

. whose minimum value i8 for ), = 0 andx = 3, . Notice
and sop — 0 also. Thus, in resonance, the singlemode lasethat, as we are considering the resonant case for which the

: (181)
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lasing threshold is,,, = 1, rzp = 9 means that the adimen- analysis of the stability of the stationary laser solution (see,
sional effective pump must be, at least, nine time above the for example, [2,7,9, 10, 12]) which we do not deal with here
instability threshold. for the sake of brevity.

From Eqg. (181) we can say that the singlemode solution
is always stable for good cavities & v, + ;) and also for
bad cavities if the pump is smakt & g ), but for bad cav-

ities and a large pump, the stationary solution becomes Ufrhis work has been financially supported by the Spanish
stable (through a Hopf bifurcation) and a self—pulsing occur§jinisterio de Ciencia y Tecnolég and European Union

(e.g, chaotic oscillations). The condition> ryp (remem-  FEpDER (Project FIS2005-07931-C03-01).
ber thatryp > 9) is usually considered a very restrictive

condition (we insist, the laser should be pumped nine times )

above threshold, and this is quite a large pump value!) butwé  Appendix

have seen that we must be careful when interpreting the pump . . . .
parameter-. In fact, if one considers a three-level laser and'n this Appendix we demonstrate that the adiabatic elimina-
uses Egs. (103), (112), (53) and (54), one can write Eq. (18150n of the atomic coherence in Eqgs. (41,42) consists in mak-
in terms of the actual pump strength and decay rate and getd d:o12 = 0. _ _

that the instability threshold to lasing threshold pumps ratio Consider the evolution equation

Acknowledgements

can be very close to unity. d
We can show this easily. Let us recall Eq. (103), which /O =) +9(), (A1)
relates the adimensional effective pump parameteith the
inversion in the absence of fields: which must be complemented with the evolution equation for
g (t). Notice that Eq. (A.1l) coincides with Eq. (42) for
r = Gdy (182)  f(t) = oiaexp (idt), g (t) = ida* exp (i6t), andy = ;.
29L Now we define the new variable= f exp (t) that satisfies
= _9om _ 183)
vic|lnR2|’ ( d -
&f =evg (1), (A.2)

as well as Eq. (54), which relatel to the actual physical
pump parameteR in three-level lasers. By taking into ac- from which
countthatr,, = 1 andrgpg = 9, itis easy to see that

t
Bip _ (G+9)(G-1) (184) Fo=ro+ [arers ). (A3)
R3L (G+1)(G-9) A
which for a largeG simplifies to and so
3L
B 145 40 (G72), (185) /

R3E G Ft)=f(0)e "+ / at'e g ). (A4)
e.g, for three—level lasers the “very restrictive” condition 0

rgp = 9 turns out to be an easy condition in terms of
pumping @35 /R3L = 1 + ¢) when the gain parameté,
Eq. (183), is large enough.

9. Conclusion £t :% [g (t) —/dt'e_”(t_t/>;ﬂ9(t’)] . (A5)

0

Integrating by parts and ignoring the first (decaying) term,
one obtains

In this article we have presented a self-contained derivatioq.
of the semiclassical laser equations. We have paid particular
attention to: (i) the adequacy of the standard two-level model 1 1d 1 d2
to more realistic three- and four-level systems; and (i) the /() =— { L@ T rae
- . . . . S ¥ ydt 2 dt

derivation of the laser equations in the uniform field limit.

We think that our presentation could be useful for a relativelyand thus for large enoughy, one can approximate
rapid, as well as reasonably rigorous, introduction to standard (¢) ~y g (t), which is the result one obtains by making
laser theory. This should be complemented with a detailedd/d¢) f (t) = 0in Eq. (A.1), as we wanted to demonstrate.

hen, after repeatedly integrating by parts, one finally obtains

- } g(t),  (AB)
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