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In this article we present a systematic derivation of the Maxwell–Bloch equations describing amplification and laser action in a ring cavity.
We derive the Maxwell–Bloch equations for a two–level medium and discuss their applicability to standard three– and four–level systems.
After discusing amplification, we consider lasing and pay special attention to obtaining the laser equations in the uniform field approximation.
Finally, the connection of the laser equations with the Lorenz model is considered.
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En este artı́culo presentamos una deducción sisteḿatica de las ecuaciones de Maxwell-Bloch que describen la ampliación y la emisíon láser
en una cavidad en anillo. Deducimos las ecuaciones de Maxwell-Bloch para un medio de dos niveles y discutimos su aplicabilidad a sistemas
est́andar de tres y cuatro niveles. Tras analizar la ampliación, consideramos la emisión láser, prestando especial atención a la deducción de
las ecuaciones del láser en el lı́mite de campo uniforme. Finalmente, consideramos la conexión de las ecuaciones del láser con las de modelo
de Lorenz.
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1. Introduction

Laser theory is a major branch of quantum optics and there
are many textbooks devoted to that topic or that pay special
attention to it (see,e.g., [1–12]). In spite of this we believe
that there is room for new didactic presentations of the basic
semiclassical laser theory equations, as some aspects are not
properly covered in the standard didactic material or are scat-
tered in specialized sources. The clearest example concerns
the uniform field limit approximation [13], which is usually
assumedab initio without discussion, and when discussed,
ase.g. in [7], it is done in a way that permits relevant sim-
plifications. In fact, this important approximation has found
a correct form only recently [14]. Another important aspect
that is usually missed in textbooks is the applicability of the
standard two–level approximation to the more realistic three–
and four–level schemes. Certainly this matter is discussed in
some detail in [10], but we find it important to insist on this
as it is usually missed and may lead to some misconceptions,
as we discuss below.

There are many good general textbooks on the fundamen-
tals of lasers,e.g.[3,4,6,11], and we refer the reader to any of
them to get an overview on the general characteristics of the
different laser types. Here it will suffice to say a few words
on the structure of the laser.

A typical laser consists of three basic elements: an op-
tical cavity, an amplifying medium, and a pumping mecha-
nism (see Fig. 1). The optical cavity (also named resonator
or oscillator) consists of two or more mirrors that force light
to propagate in a closed circuit, imposing a certain modal
structure on it. There are two basic types of optical cavities,

namely ring and linear, that differ in the boundary conditions
that the cavity mirrors impose on the intracavity field. In ring
resonators the field inside the cavity can be described as a
traveling wavei. On the other hand, in linear (also named
Fabry–Perot–type) resonators, the field is better described as
a standing wave, which requires a more complicated mathe-
matical description than the case of the traveling wave.

The amplifying medium can be solid, liquid, gas, or
plasma. Nevertheless, most cases are well described by con-
sidering that the amplifying medium consists of a number of
atoms, ions or molecules of which a number of states (energy
levels), with suitable relaxation rates and dipolar momenta,

FIGURE 1. Diagram of a typical laser in a Fabry–Perot cavity.
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are involved in the interaction with the electromagnetic field.
It is customary to adopt the so-called two-level approxima-
tion, i.e., to assume that only two energy levels of the am-
plifying medium are relevant for the interaction. Actually a
minimum of three or four levels are necessary in order to ob-
tain population inversion, and we discuss below how the two-
level theory applies to these more complicated level schemes.

Then there is the pumping mechanism. This is highly
specific for each laser type but has always the same purpose:
to create enough population inversion for laser action. When
modeling radiation-matter interaction inside the laser cavity,
one can usually forget the specifics of the pumping mecha-
nism (whether it is an electric current or a broadband opti-
cal discharge or whatever) and describe it through a suitable
pumping parameter. In this point, the consideration of two-,
three- or four-level atomic schemes turns out to be important,
as it is here where the pumping mechanism affects the math-
ematical description as we show below.

Laser physics studies all of these aspects of lasers, but
here we shall not deal but with the mathematical description
of the interaction between light and matter inside the laser
cavity. In this article we shall provide a systematic deriva-
tion of the semiclassical laser equations for an important and
simple case: the homogeneously broadened ring laser, which
plays the role of a paradigm in laser physics. We shall not
consider the important issues of inhomogeneous broadening
or linear optical resonators, because we wish to keep the
derivation as simple as possible (but not simpler!).

As stated, we shall use semiclassical theory,i.e., we shall
consider a classical electromagnetic field in interaction with
a quantized medium. The quantization of the medium is nec-
essary in order to correctly describe absorption and amplifi-
cation as the classical theory (which models matter as a col-
lection of forced and damped harmonic oscillators) cannot be
used for that. With respect to the quantization of the field, it
is not necessary if one (i) is not interested in the field fluc-
tuations, and (ii) accepts a heuristic description of relaxation
phenomena (in particular of spontaneous emission). In any
case, the quantum theory of the laser requires the use of com-
plicated mathematical techniques and falls outside the scope
of our interests here.

After this introduction, the rest of the article is organized
as follows: in Sec. 2 we derive the field equation; in Sec. 3
we derive the matter equations for two-, three-, and four-level
atoms or molecules; and in Sec. 4 we connect these with the
field equation and write down the Maxwell-Bloch equations.
Then Secs. 5 and 6 are devoted to the analysis of amplifi-
cation and lasing, respectively. In Sec. 7 we present a clear
derivation of the uniform field equations, and in Sec. 8 we
present the “Lorenz” form of the laser equations. Finally, in
Sec. 9 we present our conclusions.

2. The field equation

Maxwell’s equations for a nonmagnetic material without free
charges yield the wave equation [1]

∇2E− c−2∂2
t E−∇ (∇ ·E) = µ0∂

2
t P. (1)

Throughout this article we shall assume that the electric field
E is a plane wave propagating along thez axis, and write it
in the form

E (r, t) = 1
2eE (z, t) ei(kz−ωt) + c.c., (2)

wheree is the unit polarization vector (fixed polarization is
assumed), and

k = ω/c. (3)

We note thatω is an arbitrary reference (carrier) frequency.
For instance, if light is perfectly monochromatic with fre-
quencyω0, we can still chooseω 6= ω0 as we allow the com-
plex amplitudeE (z, t) to be time and space dependent. The
situation is even clearer when dealing with light whose spec-
trum has some finite width: In this case even the concept of
”light frequency” is ill-defined, and clearlyω can be chosen
arbitrarily.

Given the form (2) for the electric field, by consistency
with the wave equation, the polarizationP must read

P (r, t) = 1
2eP (z, t) ei(kz−ωt) + c.c.. (4)

Now one must substitute these expressions into the wave
equation and perform theSlowly Varying Envelope Approxi-
mation(SVEA) that consists in assuming that

∂2
t U ¿ ω∂tU ¿ ω2U, (5)

∂2
zU ¿ k∂zU ¿ k2U, (6)

for U = E or P. The physical meaning of this important
approximation is clear: one considers that temporal (spatial)
variations of the amplitudesU contain temporal (spatial) fre-
quencies that are much smaller than the carrier frequency
(wavenumber). In other words: the amplitudesU are as-
sumed to vary on time (space) scales much slower (longer)
than the optical frequency (wavelength). Obviously this ap-
proximation excludes the (limit) case of ultrashort pulses
containing only a few cycles of the field, but overall it is very
accurate in general, even for short pulses as soon as a suffi-
cient number of cycles enter within the pulse width.

After performing the SVEA and multiplying the resulting
equation byc2/2iω, one readily obtains

(∂t + c∂z) E = i
ω

2ε0
P, (7)

which is the field equation of interest. Let us remark that the
SVEA is a fundamental approximation in laser theory, as it
allows us to transform the original wave equation, which is a
second-order partial differential equation (PDE), into a first-
order PDE.

Now we need to calculate the source termP and we do
this in the next section.
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3. The matter equations: optical Bloch equa-
tions

The wave equation (7) relates the slowly varying electric field
amplitudeE with its source, the slowly varying polarization
amplitudeP. We discuss in this section how this last quantity
is determined. First we introduce the two–level atom model
and derive the evolution equation for its density matrix, the
so-called optical Bloch equations. Next, the density matrix is
shown to yield the information necessary for computingP,
which allows us to write a closed set of equations describ-
ing the coupled evolution of field and matter, the Maxwell-
Bloch equations. Then we consider the case of three- and
four-level atoms, which is a more realistic approximation to
actual lasers. After deriving their corresponding Bloch equa-
tions, we discuss the conditions under which the two-level
model can be applied to three- and four-level atoms. In par-
ticular this is a necessary step for correctly understanding the
meaning of the pump parameter.

3.1. The two–level atom model

3.1.1. Hamiltonian

The Hamiltonian of the system consists of two pieces: one
describing the atom or molecule in the absence of electro-
magnetic interaction, and the other describing the action of
the electromagnetic field on this atom,i.e.

H (r, t) = Hat + Hint (r, t) . (8)

The material medium is assumed to be a system of identical
two-level atoms or molecules,i.e., it is assumed that the ma-
terial medium is homogeneously broadened. We denote by
|1〉 and |2〉 the lower and higher energy levels, respectively,
and byω21 the transition frequency of one of these atoms.
This means that the atomic HamiltonianHat satisfies

Hat |2〉 = + 1
2~ω21 |2〉 , (9)

Hat |1〉 = − 1
2~ω21 |1〉 , (10)

where we have chosen the arbitrary (and unimportant) en-
ergy origin in such a way that it lies halfway between both
states energies (see Fig. 2). The matrix representation for
this Hamiltonian thus reads

Hat =
[
+ 1

2~ω21 0
0 − 1

2~ω21

]
, (11)

where the level ordering has been chosen to be{|2〉 , |1〉}.
The interaction HamiltonianHint is taken in the electric

dipole approximation. Roughly speaking, this approximation
is valid when the light wavelength is much longer than the
typical dimensions of the electronic cloud, which is on the or-
der of 1Å. Thus the approximation is justified in the infrared
and visible parts of the spectrum and even in the ultraviolet.
This interaction Hamiltonian reads

Hint (r, t) = −µ̂ ·E (r, t) , (12)

wherer denotes the position of the atom (which is not quan-
tized in the theory) and the operatorµ̂ = −er̂at, −e being
the electron charge and̂rat the vector position operator of
the electron relative to the point-like nucleus.µ̂ acts on the
atomic variables whereas in this semiclassical formalism the
field E is a c-number. In the chosen basis ordering the matrix
form for this Hamiltonian reads

Hint (r, t) =
[−µ22 ·E (r, t) −µ21 ·E (r, t)
−µ12 ·E (r, t) −µ11 ·E (r, t)

]
, (13)

where the matrix elements

µmn = 〈m| µ̂ |n〉

≡ −e

∫
d3rat ψ∗m (r̂at) r̂atψn (r̂at) , (14)

andψn (r̂at) is the wavefunction (in position representation)
of the atomic state|n〉. (Note thatµmn = µ∗nm.) We now
recall the parity property of atomic eigenstates: all atomic
eigenstates have well defined parity (even or odd) due to the
central character of the atomic potential. This means that
µ11 = µ22 = 0 and then, in order to have interaction, we
must consider states|1〉 and |2〉 with opposite parity (this
is the basic selection rule of atomic transitions in the elec-
tric dipole approximation). Hence the interaction Hamilto-
nian (13) becomes

Hint (r, t) =
[

0 V (r, t)
V ∗ (r, t) 0

]
, (15)

where we have introduced the notation

V (r, t) = −µ21 ·E (r, t) . (16)

Taking into account the form of the electric field, Eq. (2),
V (r, t) becomes

V (r, t) = −~α (z, t) ei(kz−ωt)−~β (z, t) e−i(kz−ωt), (17)

where we have defined

α (z, t) =
µ21 · e

2~
E (z, t) ,

β (z, t) =
µ21 · e∗

2~
E∗ (z, t) . (18)

We note that2α is usually referred to as the (complex) Rabi
frequency of the light field.

Finally the total HamiltonianH, Eq. (8), for a two-level
atom located at positionr interacting with a light field, reads

H (r, t) =
[
+ 1

2~ω21 V (r, t)
V ∗ (r, t) − 1

2~ω21

]
. (19)
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3.1.2. The density matrix. Evolution

The HamiltonianH can be used to write the Schrödinger
equation for the atomic wavefunction. Instead, we use here
the density matrix formalism as it is the most appropriate
in order to incorporate damping and pumping terms into the
equations of motion, something we shall do in the next sub-
section. In the chosen basis ordering, the density matrixρ
representing a two–level atom located atr takes the form

ρ (r, t) =
[
ρ22 (r, t) ρ21 (r, t)
ρ12 (r, t) ρ11 (r, t)

]
. (20)

The meaning of the matrix elements is as follows:ρmm

denotes the probability (0 ≤ ρmm ≤ 1) that the atom occu-
pies state|m〉, andρmn (= ρ∗nm) is the coherence between
the two atomic states, which is related to the polarization in-
duced in the atom by the light field (see below). The evolu-
tion of ρ is governed by the Schrödinger-von Neumann equa-
tion

i~∂tρ = [H, ρ] . (21)

Upon substituting Eqs. (20) and (19) into Eq. (21) one ob-
tains a set of equations which is simplified by defining the
new variables

σ12 = σ∗21 = ρ12e
i(kz−ωt). (22)

This is motivated by the functional dependence of the non-
diagonal elementsρ12 andρ21 on space and time under free
evolution (V = 0). (We note that the above transformation
is equivalent to working in the so-called interaction picture
of quantum mechanics.) The explicit space-time dependence
added in Eq. (22) means that the new quantitiesσij are slowly
varying, as will become evident later. In terms of these re-
duced density matrix elements, and making use of Eq. (17),
the Schr̈odinger-von Neumann equation (21) becomes

∂tρ22 = iασ12 + iβσ12e
−2i(kz−ωt) + c.c., (23)

∂tρ11 = −iασ12 − iβσ12e
−2i(kz−ωt) + c.c., (24)

∂tσ12 = −iδσ12 + i (ρ22 − ρ11)

×
[
α∗ + β∗e2i(kz−ωt)

]
, (25)

where we have introduced the mistuning, or detuning, param-
eter

δ = ω − ω21. (26)

Note that∂t (ρ22 + ρ11) = 0, which implies the conservation
of probability.

We now make a most important approximation, widely
used in quantum optics, namely the Rotating Wave Approxi-
mation (RWA). An inspection of Eqs. (23)–(25) shows that,
in the absence of interaction (E = 0, i.e. α = β = 0 in the
new notation),ρ22 andρ11 are constant andσ12 = σ∗21 os-
cillate at the low (non optical) frequencyδ. This means that

the time scales of the free system are large as compared with
the optical periods. Now, if the interaction is turned on we
see in Eqs. (23)–(25) that slowly varying terms (those pro-
portional toα or α∗) appear, as well as high frequency terms
oscillating asexp [±2i (kz − ωt)] (the terms proportional to
β or β∗). Clearly the atom cannot respond to the latter and
one can discard them. This is the RWA, which can be easily
demonstrated by using perturbation theory.

After performing the RWA, Eqs. (23)–(25) become

∂tρ22 = i (ασ12 − α∗σ21) , (27)

∂tρ11 = −i (ασ12 − α∗σ21) , (28)

∂tσ12 = −iδσ12 + iα∗ (ρ22 − ρ11) , (29)

which is the standard form of the optical Bloch equations for
a single atom.

3.1.3. The population matrix

We are dealing with a situation in which there is not a sin-
gle atom or molecule interacting with the light field but a
very large number of them, so that some ensemble averag-
ing must be performed. The ensemble averaged density ma-
trix is called the population matrix [1], although the name
“density matrix” is more frequently used, obscuring the dif-
ferences between the two operators. Here we are not going to
introduce the population matrix rigorously and we refer the
interested reader to [1] or [8] for further details.

The population matrix of an ensemble of molecules is de-
fined as

ρ̄ (z, t) = N−1∑
aρa (z, t) . (30)

Hereii ρ̄ is the population matrix,ρa is the density matrix for
an atom labeled bya, anda runs through all molecules that,
at timet, are withinz andz + dz. N is the number of such
molecules, which is assumed to be independent ofz and t.
The equation of evolution of the population matrix has two
contributions: one of them is formally like the Schrödinger–
von Neumann equation governing the evolution of the density
matrix of a single atom, and the other one describes incoher-
ent processes (e.g. not due to the interaction with the elec-
tromagnetic field such as pumping and relaxation phenomena
due to collisions between atoms or spontaneous emission) [1]

∂tρ̄ij = (i~)−1 [H, ρ̄]ij +
(
Γ̂ρ̄

)
ij

, (31)

(i, j = 1, 2). In Eq. (31), the term̂Γρ̄ is the one describing
incoherent processes andΓ̂ is the Liouville (super)operator.

Consider the situation depicted in Fig. 2. It corresponds
to the following matrix elements for the operator

(
Γ̂ρ̄

)
:

(
Γ̂ρ̄

)
22

= −γ2ρ̄22 + γ12ρ̄11 + λ2,

(
Γ̂ρ̄

)
21

=
(
Γ̂ρ̄

)∗
12

= −γ⊥ρ̄21, (32)

(
Γ̂ρ̄

)
11

= −γ1ρ̄11 + γ21ρ̄22 + λ1,
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FIGURE 2. Diagram of the two–level atom energy levels including
relaxation rates (see text).

where

γ2 = γext
2 + γ21, (33)

γ1 = γext
1 + γ12. (34)

In the above expressions,γij describes the relaxation rate
from level|i〉 to level|j〉 (that is, the pass of population from
level |i〉 to level|j〉 due to collisions), andγext

i the relaxation
rate from level|i〉 to some other external level (see Fig. 2).
The termλi is the pumping rate of level|i〉, i.e., it describes
the increase of population of level|i〉 due to the pumping pro-
cesses. Notice that it is not specified where this population is
coming from, as only the dynamics of the two lasing level
populations is being described. We shall come back to this
important point in the following subsection.

The value of the different decay constants appearing in
Γ̂ρ̄ depend strongly on the particular substance and operating
conditions. In any case, it is always verified that

γ⊥ ≥ 1
2

(γ2 + γ1) , (35)

which reflects the fact that the coherenceρij is affected not
only by the relaxation mechanisms affecting the populations,
but also by some specific collisions, known as dephasing col-
lisions, which do not affect the populations.

With the above form for the Liouvillian, the population
matrix equations of evolution read

∂tρ22=−γ2ρ22+γ12ρ11+λ2+i (ασ12−α∗σ21) , (36)

∂tρ11=−γ1ρ11+γ21ρ22+λ1−i (ασ12−α∗σ21) , (37)

∂tσ12 = − (γ⊥ + iδ)σ12 + iα∗ (ρ22 − ρ11) , (38)

where we have removed the overbar in order not to com-
plicate the notation unnecessarily . Nowρii can be under-
stood as the fraction of atoms occupying level|i〉, i.e., it is
the population of this level. Notice that in Eqs. (36) to (38)
∂t (ρ22 + ρ11) 6= 0 in general, what reflects the fact that the
system formed by the atomic levels|2〉 and |1〉 is an open
system in which population is gained and lost through inco-
herent processes.

In the two-level laser model, internal relaxation processes
(those governed byγ21 andγ12) are usually neglected, and it
is further assumed that the two lasing levels relax to the exter-
nal reservoir at the same rateγ|| = γext

2 = γext
1 . It is easy to

see that in this simplified description of relaxation processes,
the pumping rates

λi =
ρ0

ii

γ||
, (39)

with ρ0
ii the population of level|i〉 in the absence of fields

(α = 0). Moreover, in this particular case∂t (ρ22 + ρ11) = 0
and so a single equation is needed for the description of the
populations evolution. The population difference is then de-
fined as

d = ρ22 − ρ11, (40)

and Eqs. (36-38) simplify to

∂td = γ|| (d0 − d) + 2i (ασ12 − α∗σ21) , (41)

∂tσ12 = − (γ⊥ + iδ)σ12 + iα∗d, (42)

where

d0 = ρ0
22 − ρ0

11 (43)

is the population difference in the absence of fields, that is,
the pump parameter. This is the simplest way of modeling
pumping. Clearly,d0 > 0 implies an inverted medium (with
a larger number of excited atoms than of atoms in the funda-
mental state). If pumping is absentd0 = −1. Note thatd0

appears as a free parameter, that we can take to be positive or
negative, although we have not yet discussed how it could be
controlled.

3.1.4. Rate equations

It is interesting to write down Eqs. (36) to (38) when
γ⊥ À γ1, γ2, γ12, γ21, δ as in this case the adiabatic elimi-
nation of the atomic polarization is justified (see Appendix
A). This adiabatic elimination consists in making∂tσ12 = 0,
and then Eqs. (36) to (38) reduce to

∂tρ22 = λ2 − γ2ρ22 + γ12ρ11 −R (ρ22 − ρ11) , (44)

∂tρ11 = λ1 − γ1ρ11 + γ21ρ22 + R (ρ22 − ρ11) , (45)

with R = 2 |α|2 /γ⊥.
These equations are known as rate equations and are

widely used in laser physics, as in most laser systems the
condition for adiabatic elimination is met. Let us remark that
rate equations appropriately describe the interaction of a light
field with a two-level system in two limiting cases: when the
atomic polarization can be adiabatically eliminated, as we
have discussed, and also when the field is broadband (i.e.,
incoherent) in which case the factorR has a different expres-
sion from the one we have derived but again depends on the
square of the field amplitude [15]. We shall make use of these
equations in the following subsection.
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3.2. Three-level and four-level atom models

As we already commented in the introduction, actual lasers
are based on a three-level or four-level scheme rather than a
two-level one, the extra levels describing the reservoirs from
which the pump extracts atoms and to which damping sends
atoms. In fact these extra levels are necessary for obtaining
population inversion (d0 > 0), which is a necessary condi-
tion for amplification and lasing, as we shall show below. Al-
though these extra levels do not participate directly in laser
actioniii, the description of their indirect participation is es-
sential in order to correctly describe pumping and decaying
processes. Here we shall derive the Bloch equations for three-
level and four-level atoms interacting with a laser field and an
incoherent pump, and connect these equations with the two-
level laser equations derived in the previous section.

3.2.1. Bloch equations for three-level atoms

Consider the three-level atom scheme depicted in Fig. 3,
which can be regarded as an approximate description of, for
example, the relevant atomic levels of the Cr3+or the Er3+

ions that are the active ions in Ruby and Erbium lasers, re-
spectively. On these ions, the population is excited from the
lower state|1〉 to the upper state|3〉 by the pumping mech-
anism. Then the population is transferred from level|3〉 to
the upper lasing level|2〉 (which is long-lived) by relaxation
processes, which are extremely fast in these ions.

We shall model the pumping transition|1〉 ←→ |3〉 via
rate equationsiv like Eqs. (44), (45), and the interaction of
the monochromatic field with transition|1〉 ←→ |2〉 with the
already derived Bloch equations for a two-level atom. As for
the relaxation processes, we describe them heuristically (see
Fig. 3). Then we can model these processes with the follow-
ing set of Bloch equations:

∂tρ33 = − (γ31 + γ32) ρ33 + R (ρ11 − ρ33) , (46)

∂tρ22 = −γ21ρ22 + γ32ρ33 + i (ασ12 − α∗σ21) , (47)

∂tρ11 = γ21ρ22 + γ31ρ33 + R (ρ33 − ρ11) (48)

− i (ασ12 − α∗σ21) ,

∂tσ12 = − (γ⊥ + iδ) σ21 + iα∗ (ρ22 − ρ11) , (49)

whereR is the rate at which ions are pumped by the incoher-
ent pump field from level|1〉 to level|3〉. Let us remark that in
writing Eqs. (46) to (48): (i), we have taken into account all
possible transitions due to incoherent processes with suitable
relaxation rates as indicated in Fig. 3; and (ii), the incoherent
pumping of population from level|1〉 to level|3〉 is modelled
by the termR (ρ11 − ρ33) appearing in Eqs. (46) and (48)
with R proportional to the pump intensity,i.e., we have de-
scribed the interaction of the pump field with the pumped
transition by means of rate equations similar to Eqs. (44)
and (45) but takingλi = 0 as all incoherent processes have
been consistently taken into account.

FIGURE 3. Diagram of a three–level atom.R represents the in-
coherent pumping and the laser field interacts with the|2〉 → |1〉
transition. The arrows indicate decay processes.

Let us further assume thatγ32 À γ21, γ31, γ⊥, R, as oc-
curs in usual three-level lasers. Then we adiabatically elim-
inate the population of level|3〉. By making∂tρ33 = 0, we
get

ρ33 ≈ Rρ11

γ32
. (50)

This equation shows thatγ32ρ33 is a finite quantity; that is,
ρ33 is vanishingly small in the limit we are considering. Then
we can neglectρ33 in Eq. (48) and putγ32ρ33 = Rρ11

in Eq. (47), further noticing that after the approximation
∂t (ρ11 + ρ22) = 0, we can write the simplified model

∂dt=R− γ21 − (R+γ21) dt + 2i (ασ12−α∗σ21) , (51)

∂tσ12 = − (γ⊥ + iδ) σ12 + iα∗d, (52)

whered = (ρ22 − ρ11). These are appropriate Bloch equa-
tions for most three-level systems.

We can now compare these equations that describe three-
level atoms with Eqs. (41) and (42) that describe two-level
atoms in a simple and usual limit. It is clear that they are iso-
morphic. Then we can conclude that incoherently pumped
three-level atoms can be described with the standard two-
level atom Bloch equations by making the following iden-
tifications:

γ|| → R + γ21, (53)

d0 → R− γ21

R + γ21
. (54)

Notice that (i) the decay rateγ|| is pump dependent for three-
level atoms, and (ii) that the pumping rated0 depends in a
nonlinear way on the actual pump parameterR. In Fig. 4
we representd0 as a function of the actual pumping parame-
ter R; notice that increasingR by a factor ten, say, does not
mean doing so ind0. Apart from this, we have shown that an
incoherently pumped three-level medium can be described as
a two-level one when the adiabatic eliminations we have as-
sumed are justified, which is the usual situation.

Rev. Mex. F́ıs. E52 (2) (2006) 198–214
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FIGURE 4. Dependence of the effective pump parameterd0 on
the normalized actual pump strengthR/γ for three- (full line) and
four-level (dashed line) lasers.γ = γ21 for the three-level laser and
γ = γ20 + γ21 for the four-level laser.

FIGURE 5. Diagram of a four-level atom.R represents the inco-
herent pumping and the laser field interacts with the|2〉 → |1〉
transition. The arrows indicate decay processes.

3.2.2. Bloch equations for four–level atoms

Consider now the four-level atom scheme shown in Fig. 5.
It can be regarded as an approximate description of, for ex-
ample, the relevant atomic levels of theNd3+ ion that is the
active ion in Nd-YAG or Nd-glass lasers. Assuming, as for
three-level atoms, that the pumping field acting on the transi-
tion |0〉 − |3〉 can be described by rate equations, we are left
with the following optical Bloch equations:

∂tρ33 = − (γ30 + γ31 + γ32) ρ33 + R (ρ00 − ρ33) , (55)

∂tρ22 = − (γ20 + γ21) ρ22 + γ32ρ33

+ i (ασ12 − α∗σ21) , (56)

∂tρ11 = −γ10ρ11 + γ21ρ22 + γ31ρ33

+ i (ασ12 − α∗σ21) , (57)

∂tρ00 = γ10ρ11 + γ20ρ22 + γ30ρ33 −R (ρ00 − ρ33) (58)

∂tσ12 = − (γ⊥ + iδ) σ21 + iα∗ (ρ22 − ρ11) . (59)

We can now proceed in a similar way to what we did with
three–level atoms: Let us assume thatγ32 is much larger than
any other decay rate and adiabatically eliminateρ33. Now we
get

ρ33 ≈ Rρ00

γ32
, (60)

and, neglecting the termsγ31ρ33, γ30ρ33 andRρ33, we are
left with

∂tρ22 = − (γ20 + γ21) ρ22 + Rρ00

+ i (ασ12 − α∗σ21) , (61)

∂tρ11 = −γ10ρ11 + γ21ρ22 + i (ασ12 − α∗σ21) , (62)

∂tρ00 = γ10ρ11 + γ20ρ22 −Rρ00 (63)

∂tσ12 = − (γ⊥ + iδ)σ21 + iα∗ (ρ22 − ρ11) . (64)

Now we must take into account that the lower lasing level
|1〉 usually relaxes very fast towards level|0〉. This means
that ρ11 ≈ 0 and consequently thatd = ρ22 − ρ11 ≈ ρ22.
Taking this into account and also thatρ00 + ρ22 ≈ 1 in this
approximation, we are left with

∂tρ22 = − (γ20 + γ21 + R) d + R

+ i (ασ12 − α∗σ21) , (65)

∂tσ12 = − (γ⊥ + iδ) σ21 + iα∗d. (66)

We see that, after the adiabatic elimination ofρ33 andρ11,
the four-level Bloch equations are isomorphic to Eqs. (41)
and (42), which describe two-level atoms. Then we can ap-
ply the two-level description to a four-level atom by making
the following identifications:

γ|| → γ20 + γ21 + R, (67)

d0 → R

γ20 + γ21 + R
. (68)

Again, as was the case for three-level lasers, the population
decay rateγ|| and the pumping rated0 of the two-level theory
must be reinterpreted when applied to four-level lasers.

Once we have shown that the two-level theory of
Eqs. (41) and (42) can be applied to three- and four-level
lasers by suitably interpreting the parametersγ|| and d0.
From now we shall always refer to the two-level model but
the reader must keep in mind that the transformations we have
derived must be taken into account when applying this theory
to three- and four-level lasers.
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4. The Maxwell–Bloch equations

Once the field equation (7) and the optical Bloch equations
for matter dynamics Eqs. (41) and (42) have been derived,
we only need to connect them in order to obtain a closed set
of equations for the analysis of amplification and laser dy-
namics.

Under the action of the light field, each atom develops
an electric dipole. As the number of atoms contained in a
small volume (small as compared with the light wavelength)
is always large, one can assume that at each spatial positionr
there exists a polarization given by the quantum-mechanical
expectation value of the electric dipole moment operatorµ̂.
When using the density (population) matrix formalism, this
expectation value is computed as the trace

P (r, t) = NTr (ρ (r, t) µ̂) , (69)

whereN denotes the number of atoms per unit volume. Mak-
ing use of Eq. (20) and of the matrix form for the dipole
moment operator

µ̂ =
[

0 µ21

µ12 0

]
,

one has

P (r, t) = N [µ12ρ21 (r, t) + c.c.] , (70)

which, making use of definitions (22), reads

P (r, t) = N
[
µ12σ21 (r, t) ei(kz−ωt) + c.c.

]
, (71)

which, compared with Eq. (4) yields

P (z, t) = 2N (µ12 · e∗)σ21 (r, t) . (72)

We finally come back to wave eq. (7), multiply it by
(µ21 · e) /2~, and make use of Eqs. (18) and (72) to ob-
tain the final field equation, which we write together with the
Bloch Eqs. (41)–(42) for the sake of convenience

∂α

∂t
+ c

∂α

∂z
= igσ21, (73)

∂tσ12 = − (γ⊥ + iδ) σ12 + iα∗d, (74)

∂td = γ|| (d0 − d) + 2i (ασ12 − α∗σ21) , (75)

where we have introduced the radiation-matter coupling con-
stant

g =
Nω |µ21 · e|2

2ε0~
. (76)

Note that Eqs. (73) to (75) form a closed set of equations
that completely determines, self-consistently, the interaction
between a light field (of amplitude proportional toα [see
Eq. (18)]) and a collection of two-level atoms. This set of
equations is known as the Maxwell-Bloch equations for a
two-level system, which can be applied to three- and four-
level systems by introducing the parameter changes (53), (54)
and (67), (68), respectively.

5. Amplification

The simplest issue that can be studied within the de-
veloped formalism is the amplification of a monochro-
matic light beam after traveling some distance along a
medium. If we identify ω with the actual light fre-
quency, thenE (z, t) = E (z) [see Eq. (2)], which implies that
α (z, t) = α (z). On the other hand, after a short transient (of
the order of the inverse of the decay constants), the atomic
system will have reached a steady configuration, which is
ensured by the presence of damping. Thus, after that tran-
sient, one can ignore the time derivatives in the Maxwell-
Bloch equations. Solving for the material variables (41)–(42)
in steady state, one has

ds = d0
γ2
⊥ + δ2

δ2 + γ2
⊥ + 4γ⊥ |α|2 /γ||

, (77)

σ21,s = d0α
δ − iγ⊥

δ2 + γ2
⊥ + 4γ⊥ |α|2 /γ||

, (78)

where the subscript “s” refers to the steady state. Substituting
the result into the field equation (73) one has

dα

dz
=

d0g

c

γ⊥ + iδ

δ2 + γ2
⊥ + 4γ⊥ |α|2 /γ||

α. (79)

This equation governs the spatial variation of the field ampli-
tudeα along the atomic medium.

5.1. Weak field limit

Before considering the general solution, let us concentrate
first on the weak field limit, defined as|α|2 ¿ γ⊥γ||/4. In
this case the last term of the denominator in Eq. (79) can be
ignored and the solution reads

α (z) = α (0) exp

[
a/2

1 + (δ/γ⊥)2

(
1 + i

δ

γ⊥

)
z

]
, (80)

where

a =
2d0g

cγ⊥
, (81)

andg given by Eq. (76). Parametera is responsible for the
attenuation (whena < 0, i.e., whend0 < 0) or amplifica-
tion (a > 0, i.e., d0 > 0) of the light along its propagation
through the material. In case of attenuation, the inversea−1

is known as penetration depth. In case of amplification,a re-
ceives the name of small-signal gain per unit length. (Note
that forδ = 0, |α (z)|2 = |α (0)|2 exp (az).)

On the other hand, the imaginary exponent corresponds to
a correction to the light wavenumber. In fact, noticing thatα
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is proportional to the field amplitudeE and recalling Eq. (2),
one has that the actual wavenumber is

keff = k + δk, (82)

and consequently the refractive indexn = ckeff/ω reads

n =
ck

ω
+

d0g

γ⊥ω

(δ/γ⊥)
1 + (δ/γ⊥)2

= 1 +
d0N |µ21 · e|2

2ε0~γ⊥
(δ/γ⊥)

1 + (δ/γ⊥)2
, (83)

which has the same qualitative behavior as the classical ex-
pression obtained from the (harmonic oscillator) Lorentz
model [5].

5.2. Strong field limit

In the opposite limit, namely|α|2 À γ⊥γ||/4, δ2, Eq. (79)
becomes

dα

dz
=

γ||d0g

4c

(
1 + i

δ

γ⊥

)
α

|α|2 . (84)

Multiplying this equation byα∗ and taking the real part of
the resulting equation, one has

d |α|2
dz

=
γ||d0g

2c
=

γ||γ⊥a

4
, (85)

whose solution reads

|α (z)|2 = |α (0)|2 +
γ||γ⊥a

4
z. (86)

Again, amplification requiresa > 0, e.g., d0 > 0. This result
means that, for strong fields, there exists saturation: the am-
plification (wheneverd0 > 0) persists but it islinear in the
propagation distance, as opposed to the weak field limit, in
which amplification occurs exponentially, see Eq. (80).

5.3. General solution

In order to consider the general case, it is convenient to use a
polar decomposition forα such as

α (z) = |α (z)| eiφ(z). (87)

Substituting this expression into Eq. (79) and separating it
into its real and imaginary parts, one obtains

d |α|
dz

=
γ⊥d0g

c

|α|
δ2 + γ2

⊥ + 4γ⊥ |α|2 /γ||
, (88)

dφ

dz
=

δd0g

c

1
δ2 + γ2

⊥ + 4γ⊥ |α|2 /γ||
. (89)

Equation (88) can be integrated to yield

(
γ2
⊥ + δ2

)
ln
|α (z)|
|α (0)| + 2

γ⊥
γ||

[
|α (z)|2 − |α (0)|2

]

=
γ⊥d0g

c
z, (90)

FIGURE 6. Field intensity during amplification as a function of the
normalized distancez/zpd, with zpd = a−1 the penetration depth.
The dashed lines correspond to the weak and strong field approxi-
mations, Eqs. (80) and (86), respectively.

FIGURE 7. Diagram of the ring cavity. The active medium is
placed in the region0 < z < Lm. The black cavity mirrors are
perfectly reflecting whilst the grey mirror has a finite reflectivityR.
The arrows indicate the propagation of the intracavity and output
fields.

which does not permit an explicit expression for|α (z)|. In
any case, Eq. (88) shows that|α (z)|−1

d |α (z)| /dz has the
same sign asd0, so thatd0 > 0 implies amplification. In
Fig. 6 the solution of Eq. (90) is represented as a function
of z together with the weak and strong field approximations
derived above.

As for Eq. (89), the phase can be determined by noticing
that

dφ

d |α| =
dφ/dz

d |α| /dz
=

δ

γ⊥

1
|α| , (91)

from which

φ = φ0 +
δ

γ⊥
ln
|α (z)|
|α (0)| . (92)

Note that, on resonance (δ = ω − ω21 = 0) there is no phase
variation along the propagation direction (apart from the orig-
inal phasekz).
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6. Lasing

Unlike from the previous analysis, in which we assumed
that a given field (whose frequency and initial amplitude are
known data) is injected into the entrance face of a material,
the light field in a laser is not fixed externally but is self-
consistently generated by the medium, through amplification,
and must satisfy the boundary conditions imposed by the cav-
ity. As the model we have developed considers a traveling
wave (moving in one direction), the following analysis ap-
plies only to ring lasers in which unidirectional operation can
take place (in linear,e.g. Fabry–Perot, resonators there are
two counterpropagating waves that form a standing wave, a
more complicated case that we shall not treat here).

6.1. Boundary condition

We assume that the medium is of lengthLm and that the cav-
ity has a lengthLc (see Fig. 7). We takez = 0 as the entrance
face of the amplifying medium. The boundary condition im-
posed by the resonator reads

E (0, t) = RE (Lm, t−∆t) , (93)

whereR represents the (amplitude) reflectivity of the mirrors
(0 ≤ R2 ≤ 1 gives the fraction of light power that survives
after a complete cavity round trip) and

∆t =
Lc − Lm

c
(94)

is the time delay taken by the light to travel from the exit face
of the medium back to its entrance face after being reflected
by the cavity mirrors.

Making use of Eq. (2), and after little algebra, the bound-
ary condition (93) reads

E (0, t) = R exp [i (kLm + ω∆t)] E (Lm, t−∆t) , (95)

which, upon using Eq. (94) and recalling thatk = ω/c (this
was our choice in writing Eq. (2)), reads

E (0, t) = ReikLcE (Lm, t−∆t) . (96)

Finally, multiplying this equation by(µ21 · e) /2~ and recall-
ing Eq. (18), one has

α (0, t) = ReikLcα (Lm, t−∆t) . (97)

We analyze next the monochromatic lasing solution.

6.2. Monochromatic (singlemode) emission

We note that the frequencyω appearing in the field expres-
sion (2) is by now unknown. Under monochromatic opera-
tion the laser light has, by definition, a single frequency.If we
takeω to be the actual lasing mode frequency, the field am-
plitude must then be a constant in timee.g., α (z, t) = α (z),
as in the previous analysis. Thus Eq. (97) becomes

α (0) = ReikLcα (Lm) . (98)

Now using the polar decomposition (87) one has

|α (0)|2 = R2 |α (Lm)|2 , (99)

φ (0) = φ (Lm) + kLc + 2mπ, (100)

m being an integer.

6.2.1. Determination of the laser intensity

Let us first analyze the laser intensity|α|2. (In fact the laser
intensity is proportional to|E|2, but remember thatE ∝ α,
and so|E|2 ∝ |α|2.) We note that, as we are dealing with a
field whose amplitude is time-independent, the analysis of
amplification performed in the previous section is directly
applicable. Making use of Eq. (99), Eq. (90) becomes, for
z = Lm,

γ⊥d0g

c
Lm =

1
2

(
γ2
⊥ + δ2

)
lnR−2

+2
γ⊥
γ||

(
1−R2

) |α (Lm)|2 , (101)

which, after trivial manipulation yields

|α (Lm)|2 =
γ||γ⊥

4

∣∣lnR2
∣∣

1−R2

(
r − 1−∆2

)
, (102)

where we madelnR−2 =
∣∣lnR2

∣∣ (remember thatR2 ≤ 1),
and we have defined two important parameters, the adimen-
sional pumpr and the normalized detuning∆ through

r =
2d0gLm

γ⊥c |lnR2| =
aLm

|lnR2| , (103)

∆ =
δ

γ⊥
=

ω − ω21

γ⊥
. (104)

We note that the adimensional parameterr is proportional
to the gain properties of the medium and inversely propor-
tional to the damping properties of the system. In fact,aLm

gives the small-signal single-pass gain along the amplifying
medium (remember thata, Eq. (81), is the small-signal gain
per unit length). Thusr acts as an effective pumping parame-
ter, as will become clear next. Equation (102) determines the
value of the field intensity at the exit face of the amplifying
medium. Clearly, in order to be meaningful,|α (Lm)|2 ≥ 0,
which implies

r ≥ ron ≡ 1 + ∆2. (105)

Thus parameterr must exceed a given threshold (the lasing
thresholdron) in order for the laser to emit light. This is why
r is called the “pump parameter” (there is a minimum pump
required for the system to start lasing).

What we have obtained is the field intensity at the faces
of the active medium, Eqs. (99) and (102). But it is also in-
teresting to analyze how this intensity varies along the active
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medium. Thus, after using Eqs. (99), (103) and (104), we
write down Eq. (90) in the form

r
∣∣lnR2

∣∣ z

Lm
=

(
1 + ∆2

)
ln

|α (z)|2
R2 |α (Lm)|2

+
4

γ||γ⊥

[
|α (z)|2 −R2 |α (Lm)|2

]
, (106)

with |α (Lm)|2 given by Eq. (102). This equation can be
solved numerically, and in Fig. 8 we represent its solutions
for fixed parameters and several values of the reflectivityR2,
showing that asR2 approaches unity the solution becomes
progressively uniform. This fact suggests that forR2 → 1,
it must be possible to rewrite the laser equations in a simpler
way, as in this limit the steady state is independent ofz. We
shall come back to this point in the next section. But first we
shall continue analyzing the laser steady state.

6.2.2. Determination of the laser frequency

Even if it can seem that we know the lasing intensity value,
the fact is that we still do not know the value of the lasing
frequencyω and thus the value of∆. This problem is solved
by considering the phase boundary condition (100). First we
recall Eq. (92), which we write in the form

φ (Lm)− φ (0)= 1
2∆ ln

|α (Lm)|2
|α (0)|2 =− 1

2∆
∣∣lnR2

∣∣ , (107)

where Eq. (99) has been used in the last equality. Compari-
son between Eqs. (100) and (107) yields

1
2∆

∣∣lnR2
∣∣ = 2πm− kLc. (108)

We now introduce the wavenumberkc and frequencyωc of
the cavity longitudinal mode closest to the atomic resonance.
As we are dealing with a cavity longitudinal mode, it must be
true, by definition, that

kc = 2πmc/Lc, ωc = ckc, (109)

mc being an integer. Substituting these quantities into
Eq. (108), one gets

1
2∆

∣∣lnR2
∣∣ = (ωc − ω)

Lc

c
+ 2πn, (110)

wheren = m − mc is a new integer. We finally recall
Eq. (104) so that Eq. (110) yields the following value for the
laser frequency:

ωn =
κω21 + γ⊥ωc

κ + γ⊥
+ n

γ⊥
κ + γ⊥

2πc

Lc
, (111)

where we have defined

κ =
c
∣∣lnR2

∣∣
2Lc

, (112)

which is known as thecavity damping ratefor reasons that
will be analyzed in the next section. We note that Eq. (111)

indicates that there exists a family of solutions (labeled by the
integern). As we show next all these solutions have, in gen-
eral, different lasing thresholds. From Eq. (111), the lasing
threshold (105) can be finally determined as

ron = 1 +

(
ωc − ω21 + n 2πc

Lc

κ + γ⊥

)2

. (113)

Now, the difference between the cavity and atomic transition
frequencies is obviously smaller than the free spectral range,
e.g., |ωc − ω21| < 2πc/Lc. This means thatron is minimum
for n = 0 and also that the frequency of the amplified mode,
ω0, is given by

ω0 =
κω21 + γ⊥ωc

κ + γ⊥
, (114)

which is thepulling formula. The result is that the laser fre-
quency is a compromise between the cavity and atomic tran-
sition frequency. Notice that for a ”good cavity”,κ ¿ γ⊥,
the laser frequency approaches the cavity frequency, whilst
for a ”bad cavity”,γ⊥ ¿ κ, the laser frequency approaches
that of the atomic transition. This is quite an intuitive result
indeed.

6.2.3. The resonant case

Let us analyze the relevant caseωc = ω21, corresponding to
a cavity exactly tuned to the atomic resonance. In this case
the pump must satisfy

r ≥ ron = 1 +
[

2πc

(κ + γ⊥) Lc

]2

n2, (115)

and the lasing mode with lowest threshold is that withn = 0,
as discussed above. Hence,at resonance, the basic lasing so-
lution has a threshold given byron = 1, and its frequency is
ω = ωc = ω21 (see Eq. (111) forn = 0).

The amplitude of this lasing solution verifies Eq. (79)
with δ = ω − ω21 = 0:

dαs

dz
=

d0g

γ⊥c

1
1 + 4

γ⊥γ||
|αs|2

αs. (116)

We note that we have introduced the subscript “s” to empha-
size that this amplitudeα corresponds to the steady lasing
solution.

Finally, the “intensity” of the laser light at the exit of the
active medium is given by Eq. (102) with∆ = δ/γ⊥ = 0:

|αs (Lm)|2 =
γ||γ⊥

4

∣∣lnR2
∣∣

1−R2
(r − 1) . (117)

We note that there is no phase variation of the laser complex
amplitudeαs along the medium (see Eq. (89) withδ = 0).
We shall make use of these expressions in the following sec-
tion.
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FIGURE 8. Intracavity field intensity as a function of distance for
γ|| = γ⊥, ∆ = 0, r = 1.5 and the values ofR marked in the
figure.

7. The laser equations in the uniform field
limit

In this section, we wish to find a simpler model that will
allow us to study laser dynamics and instabilities in an
easy way. The desired model is known as the Lorenz-Haken
model, and can be rigorously derived from the Maxwell-
Bloch Eqs. (41)–(42) and (73) in the so-called uniform field
limit, which we now consider. This limit assumes that the
cavity reflectivity is closest to unity (R2 → 1 in all previous
expressions). For the sake of simplicity [16], the derivation
will be done in the resonant case, where the cavity is tuned in
such a way that one of its longitudinal modes has a frequency
ωc that exactly matches the atomic resonance frequencyω21.
In this case the analysis done in Sec. 6.2.3 suggests we choose
the value of the arbitrary frequencyω asω = ωc = ω21. (We
recall that we can freely choose this value. If this election is
“wrong”, the laser equations will yield an electric field ampli-
tudeα which contains a phase factor of the formexp (−iω′t)
that will define the actual laser frequency.)

First we recall the Maxwell-Bloch Eqs. (73)–(75) for
δ = 0:

∂α

∂t
+ c

∂α

∂z
= igσ21, (118)

∂σ21

∂t
= −γ⊥σ21 − iαd, (119)

∂d

∂t
= γ|| (d0 − d) + 2i (ασ12 − α∗σ21) , (120)

which are to be supplemented by the boundary condition (97)
with k = kc = ωc/c (see Eq. (3)) so thatk = 2πmc/Lc

[see Eq. (109)]. With these assumptions the boundary condi-
tion (97) becomes

α (0, t) = Rα (Lm, t−∆t) . (121)

We note that this boundary condition is not isochronous (it
relates values of the field amplitude at different times) and
this makes the analysis difficult. We note for later use that
this boundary condition applies, in particular, to the steady

lasing solution (independent of time) so that

αs (0) = Rαs (Lm) . (122)

These equations form the basis of our study.

7.1. A first change of variables

In order to make the boundary condition isochronous, we in-
troduce the following change of variables [7]:

α′ (z, t) = α (z, t− τ) , (123)

σ′21 (z, t) = σ21 (z, t− τ) , (124)

d′ (z, t) = d (z, t− τ) , (125)

with τ = z∆t/Lm and∆t = (Lc − Lm) /c, Eq. (94). The
new variables satisfy

∂α

∂t
=

∂α′

∂t
, (126)

∂α

∂z
=

∂α′

∂z
+

∆t

Lm

∂α′

∂t
, (127)

and similar expressions for the material variables. Substitu-
tion of the previous relations into Eqs. (118)–(120) yields

Lc

Lm

∂α′

∂t
+ c

∂α′

∂z
= igσ′21, (128)

∂σ′21
∂t

= −γ⊥σ′21 − iα′d′, (129)

∂d′

∂t
= −γ|| (d′ − d0)+2iα′σ′12+c.c., (130)

where we used Eq. (94). According to Eq. (121), the new
variables satisfy the following boundary condition

α′ (0, t) = Rα′ (Lm, t) , (131)

which is nowisochronous. We note that the definition of the
new variables is mathematically equivalent to “bend” the ac-
tive medium on itself so that its entrance (z = 0) and exit
faces (z = Lm) coincide.

7.2. A second change of variables

Now we define another set of variables by referring the previ-
ous ones to their monochromatic lasing values analyzed in the
previous sections. The steady values of the material variables
have been calculated in Sec. 5, Eqs. (77) and (78), which,
particularized to the caseδ = 0 we are considering, read

ds (z) = d0
1

1 + 4
γ⊥γ||

|αs|2
, (132)

σ21,s (z) =
−id0αs

γ⊥

1
1 + 4

γ⊥γ||
|αs|2

. (133)
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We note that these quantities arez-dependent as isαs,
Eq. (116). In particular we define the new variables through

F (z, t) =
√

r − 1
α′ (z, t)
αs (z)

, (134)

P (z, t) =
√

r − 1
σ′21 (z, t)
σ21,s (z)

, (135)

D (z, t) =
d′ (z, t)
ds (z)

, (136)

whereαs verifies Eq. (116). The equations forF, P, D are
obtained from Eqs. (128)–(130). First the equation forF is
computed. From its definition we have

∂F

∂t
=
√

r − 1
1
αs

∂α′

∂t
, (137)

∂F

∂z
=
√

r − 1
(

1
αs

∂α′

∂z
− α′

αs

1
αs

dαs

dz

)
. (138)

Making use of these and of Eq. (116), we build the following
equation forF :

Lc

Lm

∂F

∂t
+ c

∂F

∂z
= ig

√
r − 1
αs

σ′21

−d0g

γ⊥

1
1 + 4

γ⊥γ||
|αs|2

F. (139)

which by using the definition ofP and of Eq. (133) trans-
forms into

∂F

∂t
+ v

∂F

∂z
= CF (z) (P − F ) , (140)

where

v =
cLm

Lc
, (141)

CF (z) =
d0g

γ⊥

Lm

Lc

1
1 + 4

γ⊥γ||
|αs|2

. (142)

(Note thatv < c has the dimensions of a velocity.) The equa-
tions for the material variables are easier to obtain. Mak-
ing use of the definitions ofF , P andD, and making use of
Eqs. (129) and (130) we obtain

∂P

∂t
= −γ⊥P + CP FD, (143)

∂D

∂t
= −γ|| (D −D0)− (CDFP ∗ + C∗DF ∗P ) , (144)

where

CP (z) = −i
αsds

σ21,s
, (145)

D0 (z) =
d0

ds
, (146)

CD (z) =
−2iαsσ

∗
21,s

ds (r − 1)
. (147)

After using the steady state equations (132) and (133), these
expressions can be written as

CP = γ⊥, (148)

D0 (z) = 1 +
4

γ⊥γ||
|αs|2 , CD (z) =

2 |αs|2
γ⊥ (r − 1)

. (149)

Up to this point, the equations forF , P , andD are equivalent
to the original Maxwell–Bloch equations, as no approxima-
tion has been made.

7.3. The Uniform field limit

We now study the behavior ofCF , CD andD0 in the case
when the cavity mirrors have a very good quality,e.g., when
the reflectivityR is very close to unity. In this limit, the
boundary condition (122) says thatαs (0) ≈ αs (Lm). On the
other hand, the steady state equation (116) tells us that|αs|2
is a monotonic increasing function ofz. Under these circum-
stances, one can assume, to a very good approximation, that
|αs (z)|2 is a constant along the amplifying medium. (These
facts can in fact be seen in Fig. 8.) In this case its value co-
incides, for instance, with its value at the medium exit face,
|αs (Lm)|2, which is given by Eq. (117):

|αs (z)|2 ≈ γ||γ⊥
4

∣∣lnR2
∣∣

1−R2
(r − 1) , ∀z.

But, as we are considering the limitR → 1, the quo-
tient

∣∣lnR2
∣∣ /

(
1−R2

)
also tends to unity, as can be easily

checked, and we finally have

|αs (z)|2 ≈ γ||γ⊥
4

(r − 1) , ∀z. (150)

This space uniformity of the laser intensity along the ampli-
fying medium whenR → 1 is the reason for the name ”Uni-
form Field Limit”. (We note that in the literature the uniform
field limit has been customarily associated not only with the
high reflectivity condition but also with the small gain condi-
tion aLm → 0. We see here that the latter condition is com-
pletely superfluous.) Substitution of (150) into Eqs. (142)
and (149) yields:

CF (z) =
d0gLm

γ⊥rLc
,

D0 (z) = r, CD (z) =
γ||
2

, ∀z. (151)

Finally, making use of definitions (103) and (112),CF sim-
ply reads:

CF (z) = κ, ∀z. (152)
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7.4. The laser equations in the uniform field limit

Substitution of expressions (148), (151) and (152) into
Eqs. (140), (143) and (144) yields

∂F

∂t
+ v

∂F

∂z
= κ (P − F ) , (153)

∂P

∂t
= γ⊥ (FD − P ) , (154)

∂D

∂t
= γ||

[
r −D − 1

2 (FP ∗ + F ∗P )
]
. (155)

We finally need to consider the boundary condition that ap-
plies to these equations by considering the definition (134)
for F

F (0, t) =
α′ (0, t)
αs (0)

, F (Lm, t) =
α′ (Lm, t)
αs (Lm)

.

Making the quotient of these quantities we have

F (0, t)
F (Lm, t)

=
αs (Lm)
αs (0)

α′ (0, t)
α′ (Lm, t)

,

which, by making use of Eqs. (122) and (131), yields

F (0, t) = F (Lm, t) . (156)

We thus see that the boundary condition for the field ampli-
tude isperiodic (we note that this is not due to the uniform
field limit but to the very definition ofF ). This is of great
importance as it will allow us, owing to the Fourier theorem,
to decomposeF in terms of periodic functions.

Before studying the Maxwell–Bloch equa-
tions (153)-(155), let us demonstrate thatF , P , andD, are
equivalent to the original variables, apart from constant scale
factors. From definitions (134), and using the uniform field
limit results developed in the previous section, we have

F (z, t) =
2√

γ||γ⊥
α′ (z, t) ,

P (z, t) = 2i
r

d0

√
γ⊥
γ||

σ′21 (z, t) ,

D (z, t) =
r

d0
d′ (z, t) .

ThusF has the meaning of a laser field amplitude,P has the
meaning of material polarization andD has the meaning of
population difference.

Equations (153)–(155) allow us to study two types of
laser operation: singlemode and multimode. The method for
deriving the laser equations in the uniform field limit we have
followed here was presented in [14] (see also [16]), where an
application to multimode emission was addressed. From now
on we shall concentrate on the singlemode laser.

8. The single–mode laser equations

In the previous section we have derived the laser equations
in the uniform field limit for a resonant laser. For arbitrary

detuning, it can be demonstrated that the laser equations in
the uniform–field limit read [16]

∂F

∂t
+ v

∂F

∂z
= κ (P − F ) , (157)

∂P

∂t
= γ⊥ [FD − (1 + i∆c) P ] , (158)

∂D

∂t
= γ||

[
r −D − 1

2 (FP ∗ + F ∗P )
]
, (159)

where∆c = (ωc − ω21) /γ⊥ is the atom–cavity detuning pa-
rameter. These equations are complemented with the periodic
boundary condition

F (0, t) = F (Lm, t) . (160)

The fact that the boundary condition is periodic means
that the field can be written in the form

F (z, t) =
+∞∑

m=−∞
Fm (t) eiqmz, (161)

whereqm = m2π/Lm with m an integer. This means that
the intracavity field is, in general, a superposition of longitu-
dinal modes of the empty (e.g., without amplifying medium)
cavity. In order to see this clearly, let us solve Eq. (157) for
the empty cavity and ignoring cavity losses,e.g., Eq. (157)
with its right–hand side equal to zero. Its solutions have the
form

F (z, t) =
+∞∑

m=−∞
Fmei(qmz−ωmt), (162)

with ωm=vqm. Now we must notice that the actual field
is not F (z, t) but F (z, t− τ), with τ=z∆t/Lm and
∆t=(Lc − Lm) /c, as we introduced new fields in Eqs. (126)
and (127) (remember that the fieldF is proportional to the
field α′ which is different from the actual fieldα). Thus, the
actual field (we will not introduce a new symbol for it) is

F (z, t) =
+∞∑

m=−∞
Fm

× exp
[
i

(
qmz − ωmz

Lc − Lm

cLm
− ωmt

)]
(163)

=
+∞∑

m=−∞
Fm exp [i (kmz − ωmt)] , (164)

with

km = qm − ωm

c

Lc − Lm

Lm
= m

2πc

Lc
, (165)

whereωm = vqm has been used. Eq. (165) shows clearly
that the actual field appears decomposed into empty–cavity
modes.
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Thus Eqs. (157)–(159) can describe multilongitudi-
nal mode emission when∂F/∂z is non-null and, when
∂F/∂z = 0, this model can describe only singlemode emis-
sion. The question now is: Should we keep the spatial deriva-
tive always? Or, in other words, when will the laser emit in
a single mode and when in several longitudinal modes? In
1968 Risken and Nummedal [17] and, independently, Gra-
ham and Haken [18], demonstrated that Eqs. (157)–(159)
predict the existence of multilongitudinal mode emission if
certain conditions are verified. We are not going to treat the
Risken–Nummedal–Graham–Haken instability here (see, for
example [7, 9,10,12] or [16] for a recent review), it will suf-
fice to say that for multilongitudinal mode emission to occur
the two necessary conditions are: (i) a large enough pump
value (in resonance,∆ = 0, r must be larger than nine and
remember that the laser threshold in these conditions, given
Eq. (105), equals unity; out of resonance even more pump is
required), and most importantly; (ii) the cavity length must
be large, unrealistically large for common lasers. Then for
short enough cavities (and this is not a restrictive condition at
all for most lasers) the laser will emit in a single longitudinal
mode. In this case, the spatial derivative in Eq. (157) can be
removed and we are left with the Maxwell–Bloch equations
for a singlemode laser. We must insist that all this is true
for homogeneously broadened lasers and cannot be applied
to inhomogeneously broadened ones, see [16].

So for singlemode lasers we can take∂F/∂z = 0. It
is particularly interesting to write down the singlemode laser
equations in resonance (∆c = 0). Let us write the field and
atomic polarization in the following way:

F = Eeiφ, P = (Pre + iPim) eiφ, (166)

with E a real quantity. Now Eqs. (157,158), with∆c = 0,
read

Ė = κ (Pre − E) , (167)

φ̇ = κ
Pim

E
, (168)

Ṗre = γ⊥ (ED − Pre) + φ̇Pim, (169)

Ṗim = −γ⊥Pim − φ̇Pre, (170)

where the dot means total derivative with respect to time. By
suitably combining the first, second and last equations, one
obtains

Ṗim

Pim
+

Ė

E
= − (κ + γ⊥) , (171)

from which

Pim (t) =
Pim (0)
E (0)

E (t) e−(κ+γ⊥)t → 0, (172)

and soφ̇ → 0 also. Thus, in resonance, the singlemode laser

equations reduce to only three real equations,

Ė = κ (P − E) , (173)

Ṗ = γ⊥ (ED − P ) , (174)

Ḋ = γ|| (r −D − EP ) , (175)

whereP = Pre.
The above set of equations is usually known as Haken–

Lorenz equations. The reason for this name is the following:
Let us define the adimensional timeτ = γ⊥t, and the new
variables and normalized relaxation rates

X = E, Y = P, Z = r −D, (176)

σ =
κ

γ⊥
, b =

γ||
γ⊥

. (177)

These new variables satisfy

d
dτ

X = σ (Y −X) , (178)

d
dτ

Y = rX − Y + XZ, (179)

d
dτ

Z = b (Z −XY ) . (180)

These are the Lorenz equations [19], which are a very sim-
plified model proposed by Edward N. Lorenz in 1961 for
the baroclinic instability, a very schematic model for the at-
mosphere. They constitute a paradigm for the study of de-
terministic chaos as they constitute the first model that was
found, by Lorenz himself, to exhibit deterministic chaos. It
was Herman Haken who, in 1975 [20], demonstrated the as-
tonishing isomorphism existing between the Lorenz model
and the resonant laser model that we have just demonstrated.
After this recognition, the study of deterministic chaos in
lasers became a very active area of research (see, for exam-
ple, [2,7,9,10,12]).

The Haken–Lorenz model exhibits periodic and chaotic
solutions, and several routes to chaos can be found in its dy-
namics. The equations can easily be numerically integrated,
e.g. with Mathematica, and we refer the interested reader
to [2, 7, 9, 10, 12] for suitable introductions into these fas-
cinating subjects. Here we shall only briefly comment on a
particular point.

Equations (173), (175) have two sets of stationary solu-
tions: the laser off solution (E = P = 0 andD = r), and
the lasing solution (E = P = ±√r − 1 andD = 1) that
exists forr ≥ 1. A linear stability analysis of this last solu-
tion shows that it becomes unstable whenκ ≥ γ⊥ + γ|| (this
condition is know as ”bad cavity” condition) andr ≥ rHB

with

rHB =
κ

(
κ + 3γ⊥ + γ||

)

κ− (
γ⊥ + γ||

) , (181)

whose minimum value is9 for γ|| = 0 andκ = 3γ⊥. Notice
that, as we are considering the resonant case for which the

Rev. Mex. F́ıs. E52 (2) (2006) 198–214



SEMICLASSICAL THEORY OF AMPLIFICATION AND LASING 213

lasing threshold isron = 1, rHB = 9 means that the adimen-
sional effective pumpr must be, at least, nine time above the
instability threshold.

From Eq. (181) we can say that the singlemode solution
is always stable for good cavities (κ < γ⊥ + γ||) and also for
bad cavities if the pump is small (r < rHB), but for bad cav-
ities and a large pump, the stationary solution becomes un-
stable (through a Hopf bifurcation) and a self–pulsing occurs
(e.g., chaotic oscillations). The conditionr ≥ rHB (remem-
ber thatrHB ≥ 9) is usually considered a very restrictive
condition (we insist, the laser should be pumped nine times
above threshold, and this is quite a large pump value!) but we
have seen that we must be careful when interpreting the pump
parameterr. In fact, if one considers a three-level laser and
uses Eqs. (103), (112), (53) and (54), one can write Eq. (181)
in terms of the actual pump strength and decay rate and gets
that the instability threshold to lasing threshold pumps ratio
can be very close to unity.

We can show this easily. Let us recall Eq. (103), which
relates the adimensional effective pump parameterr with the
inversion in the absence of fieldsd0:

r = Gd0 (182)

G ≡ 2gLm

γ⊥c |lnR2| , (183)

as well as Eq. (54), which relatesd0 to the actual physical
pump parameterR in three-level lasers. By taking into ac-
count thatron = 1 andrHB = 9, it is easy to see that

R3L
HB

R3L
on

=
(G + 9) (G− 1)
(G + 1) (G− 9)

, (184)

which for a largeG simplifies to

R3L
HB

R3L
on

≈ 1 +
16
G

+O (
G−2

)
, (185)

e.g., for three–level lasers the “very restrictive” condition
rHB = 9 turns out to be an easy condition in terms of
pumping (R3L

HB/R3L
on = 1 + ε) when the gain parameterG,

Eq. (183), is large enough.

9. Conclusion

In this article we have presented a self-contained derivation
of the semiclassical laser equations. We have paid particular
attention to: (i) the adequacy of the standard two-level model
to more realistic three- and four-level systems; and (ii) the
derivation of the laser equations in the uniform field limit.
We think that our presentation could be useful for a relatively
rapid, as well as reasonably rigorous, introduction to standard
laser theory. This should be complemented with a detailed

analysis of the stability of the stationary laser solution (see,
for example, [2, 7, 9, 10, 12]) which we do not deal with here
for the sake of brevity.
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A Appendix

In this Appendix we demonstrate that the adiabatic elimina-
tion of the atomic coherence in Eqs. (41,42) consists in mak-
ing ∂tσ12 = 0.

Consider the evolution equation

d
dt

f (t) = −γf (t) + g (t) , (A.1)

which must be complemented with the evolution equation for
g (t). Notice that Eq. (A.1) coincides with Eq. (42) for
f (t) = σ12 exp (iδt), g (t) = idα∗ exp (iδt), andγ = γ⊥.
Now we define the new variablēf = f exp (γt) that satisfies

d
dt

f̄ = eγtg (t) , (A.2)

from which

f̄ (t) = f̄ (0) +

t∫

0

dt′eγt′g (t′) , (A.3)

and so

f (t) = f (0) e−γt +

t∫

0

dt′e−γ(t−t′)g (t′) . (A.4)

Integrating by parts and ignoring the first (decaying) term,
one obtains

f (t) =
1
γ


g (t)−

t∫

0

dt′e−γ(t−t′) d
dt′

g (t′)


 . (A.5)

Then, after repeatedly integrating by parts, one finally obtains

f (t) =
1
γ

[
1− 1

γ

d
dt

+
1
γ2

d2

dt2
− . . .

]
g (t) , (A.6)

and thus for large enoughγ, one can approximate
f (t)≈γ

′−1g (t), which is the result one obtains by making
(d/dt)f (t) = 0 in Eq. (A.1), as we wanted to demonstrate.
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i. The traveling wave will propagate with a given sense of rota-
tion, say, clockwise. However, one could in principle expect
a second field propagating counter-clockwise,e.g., one could
expect bidirectional emission in a ring laser. Nevertheless, this
is usually (although not always) avoided by using some intra-
cavity elements such as, for example, Faraday isolators. In any
case, we shall not deal here with bidirectional emission.

ii. Here we are considering a plane wave laser beam propagat-
ing alongz; hence atoms are grouped according to that coor-
dinate. In the general three–dimensional case, a population ma-
trix ρ̄ (r, t) must be defined at every differential volume, anal-
ogously to (30).

iii. There is a very important exception. In coherent optically
pumped lasers, the pumping mechanism is a laser field tuned
to the pumping transition. If the atomic coherences cannot be
adiabatically eliminated, Raman processes are important and
cannot be neglected. We shall not consider these lasers here.

iv. For example, in the case of Ruby lasers, pumping comes from
an incoherent light source, namely a flashlamp. Then the inter-
action of this incoherent light field with the pumping transition
|1〉 ←→ |3〉 can be described with the help of rate equations.
The case of Erbium lasers is different: In this case the pump-
ing is made with the help of a laser field tuned to the pump-
ing transition. In spite of the coherent nature of the pumping
field, a rate-equation description for the pumping transition is
also well-suited in this case, because the adiabatic elimination
of the atomic coherence of transition|1〉 ←→ |3〉 is fully jus-
tified as its coherence decay rate is very large compared with
the rest of the decay rates. Other systems have other pumping
mechanisms (e.g., the passing of an electrical current through
the active medium) for which the rate-equation description is
also appropriate.
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