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A two-dimensional Laplace equation is separable in elliptic coordinates and leads to a Chebyshev-like differential equation for both angular
and radial variables. In the case of the angular variableη (−1 ≤ η ≤ 1), the solutions are the well known first class Chebyshev polynomials.
However, in the case of the radial variableξ (1 ≤ ξ < ∞) it is necessary to construct another independent solution which, to our knowledge,
has not been previously reported in the current literature nor in textbooks; this new solution can be constructed either by a Fröbenius series
representation or by using the standard methods through the knowledge of the first solution (first-class Chebyshev polynomials). In any
case, either must lead to the same result because of linear independence. Once we know these functions, the complete solution of a two-
dimensional Laplace equation in this coordinate system can be constructed accordingly, and it could be used to study a variety of boundary-
value electrostatic problems involving infinite dielectric or conducting cylinders and lines of charge of this shape, since with this information,
the corresponding Green’s function for the Laplace operator can also be readily obtained using the procedures outlined in standard textbooks
on mathematical physics. These aspects are dealt with and discussed in the present work and some useful trends regarding applications of
the results are also given in the case of an explicit example, namely, the case of a dielectric elliptic cylinder and an infinite line of charge.

Keywords: Elliptic coordinates; Green function; two-dimensional Laplace equation; Chebyshev functions.

La ecuacíon de Laplace en dos dimensiones es separable en coordenadas elı́pticas, y la separación de variables resulta en ecuaciones tipo
Chebyshev para las dos coordenadas, radial (ξ) y angular (η). En el caso de la coordenada angularη, (−1 ≤ η ≤ 1), las soluciones son
los polinomios de Chebyshev de primera clase, los cuales están muy bien estudiados. Sin embargo, en el caso de la coordenada radial
ξ (1 ≤ ξ < ∞), existe la necesidad de construir otra solución independiente, que (a nuestro conocimiento) no está reportada en libros
de texto ni en artı́culos; esta nueva solución puede ser construida, ya sea en forma de una serie de Fröbenius o usando los ḿetodos de
integracíon que involucran el conocimiento de la primera solución. Cualquiera de estos dos métodos nos llevará al mismo resultado, debido
a la independencia lineal de las soluciones. Una vez que conozcamos dichas funciones, la solución completa la ecuación de Laplace en
dos dimensiones para este sistema de coordenadas puede ser construida, y dicha solución puede ser aplicada para estudiar una variedad de
problemas de contorno que involucren cilindros dieléctricos o conductores infinitos o lı́neas de carga, pues con esta información, podemos
obtener f́acilmente la funcíon de Green para el operador de Laplace usando el procedimiento de los libros de texto de métodos mateḿaticos.
Estos aspectos se discuten en el presente trabajo, y se dan algunas indicaciones respecto a las aplicaciones de los resultados, incluyendo un
ejemplo expĺıcito: el caso de un cilindro elı́ptico dieĺectrico y una linea infinita de carga.

Descriptores: Coordenadas elı́pticas; funcíon de Green; ecuación de Laplace en dos dimensiones; funciones de Chebyshev.
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1. Introduction

Laplace equations play a fundamental role in potential theory
since many two-dimensional boundary-value problems are of
crucial importance for both physics and mathematics; this is
the case, for instance, in electrostatics, fluid flow through ob-
stacles, conformal mapping and so on [1].

The solution of this equation for a specific boundary-
value problem in electrostatics can give information that is
a priori unknown, namely, when an initially isolated conduc-
tor (charged or raised to a given potential) is perturbed by a
charge distribution, the charge on the conductors surface af-
ter the perturbation redistributes to an unknown distribution,
then the conventional solution for the potential as an integral
involving the surface charge cannot be used; in those cases,

the general solution of Laplace equation becomes an impor-
tant tool to obtain the new potential.

In most electrostatic problems, a given charge distribu-
tion(s) is (are) usually involved and one must solve the Pois-
son equation instead, but in this case the general solution of
the Laplace equation is still important since it can be used
to construct an auxiliary function, the Green function, which
allows one to find the particular solution of Poisson equation
that satisfies all the boundary conditions.

The knowledge of the general solution of a two-
dimensional Laplace equation involves its separability in a
given coordinate system; it is separable, for instance, in rect-
angular, polar, parabolic, elliptic and other common coordi-
nate systems [2]. In the specific case of elliptic coordinates,
its separation leads to a Chebyshev-type ordinary differential
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equation for both the angular (η) and the radial (ξ) coordi-
nates. The solution associated with the angular variable are
the well known first-class Chebyshev polynomials, but in the
case of the radial one, they are no longer useful because this
coordinate is defined in [1,∞) and clearly the polynomials
diverge at infinity, a matter that could not be desirable from
physical grounds, as we shall see explicitly.

The latter fact implies that we need to find a different so-
lution which must behaved properly in this interval; once
such a solution is known, the Green’s function associated
with the Laplace operator in this coordinate system can be
readily constructed. The knowledge of both the general so-
lution and the Green’s function for the Laplace operator can
used to solve a variety of electrostatic boundary-value prob-
lems that involve infinite conductors and infinite charged
lines in elliptic coordinates [3].

The aim of this work is to stress the importance inherent
in the knowledge of the general solution of the Laplace equa-
tion and the ample possibilities of applications in boundary-
value electrostatic problems. For the sake of clarity, this work
has been structured as follows: In Sec. 2, we obtain the gen-
eral solution of a two-dimensional Laplace equation in el-
liptic coordinates; a representation of the Green function in
these coordinates is constructed in Sec. 3; an explicit exam-
ple which involves the application of the later result is pre-
sented in Sec. 4; and finally, some interesting limiting situa-
tions of this example are discussed in Sec. 5.

2. General solution of a two-dimensional
Laplace equation in elliptic coordinates

Several fields in physics and mathematics involve boundary-
value problems in which elliptic coordinates arise; these are
the cases of fluid flow with obstacles, electrostatics or con-
formal mapping, to mention just a few. In all of them a so-
lution of Laplace equations, restricted to particular boundary
conditions, is needed. A previous step to getting a particu-
lar solution of any linear partial differential equation is the
knowledge of its general solution, which, after imposing the
proper boundary conditions, provides the desired solution to
the problem. This section is devoted to finding the general
solution of the two-dimensional Laplace equation in ellip-
tic coordinates, since it can be useful to study a variety of
boundary-value problems of this symmetry.

Confocal elliptic coordinates(ξ, η) are defined as4:

x = aξη, ξ ∈ [1,∞),

y = a(ξ2 − 1)1/2(1− η2)1/2, η ∈ [−1, 1], (1)

where2a is the interfocal distance. The family of curves gen-
erated by this coordinate system is as follows:

ξ = const, − 1 ≤ η ≤ 1, ellipses with foci on the x-axis

η = const, 1 ≤ ξ < ∞, confocal hyperboles.

The corresponding scale factors are given as

hξ =

[(
∂x

∂ξ

)2

+
(

∂y

∂ξ

)2
]1/2

= a

[
ξ2 − η2

ξ2 − 1

]1/2

and

hη =

[(
∂x

∂η

)2

+
(

∂y

∂η

)2
]1/2

= a

[
ξ2 − η2

1− η2

]1/2

,

from which the Laplace operator, defined as

∇2 =
1

hξhη

{
∂

∂ξ

[
hη

hξ

∂

∂ξ

]
+

∂

∂η

[
hξ

hη

∂

∂η

]}

can be readily calculated to give

∇2 =
1

a2(ξ2 − η2)

×
{

(ξ2 − 1)
∂2

∂ξ2
+ ξ

∂

∂ξ
+ (1− η2)

∂2

∂η2
− η

∂

∂η

}
(2)

With this, the Laplace equation for the electrostatic po-
tentialΨ(ξ, η), can then be written as

1
a2(ξ2−η2)

{
(ξ2−1)

∂2

∂ξ2
+ξ

∂

∂ξ
+(1−η2)

∂2

∂η2
−η

∂

∂η

}

×Ψ(ξ, η)=0,

or
{

(ξ2 − 1)
∂2

∂ξ2
+ ξ

∂

∂ξ
+ (1− η2)

∂2

∂η2
− η

∂

∂η

}

×Ψ(ξ, η) = 0. (3)

By inspection, one can see immediately that the last equa-
tion is separable since, if we assume that

ψ(ξ, η) = S(ξ)H(η),

two ordinary second order differential equations can be ob-
tained:

{
(1− η2)

d2

dη2
− η

d

dη
+ γ

}
H(η) = 0 , (4)

and {
(ξ2 − 1)

d2

dξ2
+ ξ

d

dξ
− γ

}
S(ξ) = 0 , (5)

whereγ is the separation constant. The equation for the an-
gular coordinateη has two regular singular points atη = ±1,
so if seek a well behaved solution,γ is restricted to the val-
uesγ = m2 with m = 0, 1, 2 . . . With this restriction on the
separation constant, Eqs. (4,5) can be identified as being of
Chebyshev type[4].

Interestingly enough, although the solutions to both equa-
tions are the first-class Chebyshev polynomials, the corre-
sponding solution to this type of equation in the range[1,∞)
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is not, to our knowledge, previously reported in the litera-
ture[5], but this is a matter that can be important when a
second linearly independent solution is needed. This second
solution can be constructed either by a Fröbenius series rep-
resentation or, equivalently, as an integral representation in-
volving the first solution,i.e., the first class Chebyshev poly-
nomials[4].

With all this, the most general solution to the Laplace
equation in elliptic coordinates can then be written as

Ψ(ξ, η)=
∞∑

m=0

{AmTm(ξ)+BmSm(ξ)}

×{CmTm(η)+DmSm(η)} , (6)

whereAm, Bm, Cm, Dm are constants to be determined once
specific boundary conditions are imposed onΨ(ξ, η).

3. Two-dimensional Green function in elliptic
coordinates

The knowledge of the two linearly independent solutions
Tm, Sm provide the necessary tools for the construction of
the Green function associated with the Laplace’s operator.
The two-dimensional Green function satisfies the inhomoge-
neous equation

∇2G(ρ,ρ′) = −δ(ρ− ρ′) , (7)

which, in elliptic coordinates, is transformed to [4]

∇2G(ρ, ρ′) = − 1
hξhη

δ(ξ − ξ′)δ(η − η′). (8)

Let us recall that the polynomials{Tm(η)} are orthogo-
nal in [-1,1] and indeed constitute a basis set with respect to
which any function can be represented in this interval. Then,
by the closure relation, one can say that

δ(η − η′) =
∞∑

m=0

bm
Tm(η)Tm(η′)
(1− η2)1/2

, (9)

wherebm is a constant related to the normalization ofTm,
that is4

1∫

−1

Tm(η)Tm′(η)
(1− η2)1/2

dη = amδm,m′ ,

from which

bm =
1

am
=

{ 1
π , m = 0

2
π , m 6= 0

. (10)

Furthermore, the basis{Tm(η)} can be also useful in
making a representation ofG(ρ, ρ′) of the form

G(ρ, ρ′) = G(ξ, η; ξ′, η′) =
∑
m

gm(ξ, ξ′, η′)Tm(η),

where the coefficientsgm can be interpreted as the coor-
dinates of vectorG(ξ, η; ξ′, η′) in the infinite dimensional
space generated by the basis vectors{Tm(η)}.

Combining Eqs. (2,8,9) and using the linear indepen-
dence property of{Tm(η)}, the coefficientsgm must satisfy
the following differential equation:

{
(ξ2 − 1)

d2

dξ2
+ ξ

d

dξ
−m2

}
gm(ξ, ξ

′
, η
′
)

= −(ξ2 − 1)1/2δ(ξ − ξ′)bmTm(η′) (11)

As the reader must be aware, whenξ 6= ξ
′
, this equa-

tion is similar to Eq. (5), that is, a Chebyshev-type equation
whose linearly independent solutions areTm(ξ), Sm(ξ), as
mentioned in the previous section.

In order to complete the construction of the Green func-
tion, we shall follow the method described, for instance, in
Refs. 4 and 5; that is, since the pointξ = ξ

′
represents an in-

homogeneity, the functiongm must have the following prop-
erties:

g−m = g+
m at ξ = ξ

′
(continuity)

dg+
m

dξ

∣∣∣∣
ξ′
− dg−m

dξ

∣∣∣∣
ξ′

= − bmTm(η
′
)

(ξ′2 − 1)1/2
(discontinuous derivative)

gm(ξ, ξ
′
, η
′
) = gm(ξ

′
, ξ, η

′
) (symmetry), (12)

where g−m, g+
m are the linearly independent solutions to

Eq. (12) for1 < ξ < ξ
′

and ξ
′

< ξ < ∞, respectively.
Hence, if we choose

g−m = CTm(ξ), 1 < ξ < ξ
′

g+
m = DSm(ξ), ξ

′
< ξ < ∞ ,

whereC, D are constant to be determined through the first
two properties ofgm. After performing the required algebra
to find C andD, the complete Green function can be then
written as

G(ρ,ρ′) = G(ξ, η; ξ′, η′)

=
∞∑

m=0

Tm(η)Tm(η′)
am

fm(ξ, ξ
′
), (13)

where

fm(ξ, ξ′) =
{

Sm(ξ′)Tm(ξ), 1 < ξ < ξ′

Sm(ξ)Tm(ξ′), ξ′ < ξ < ∞ (14)

Finally, to close this section, it is worth mentioning that
for a more detailed description of both the general proce-
dure andthe behavior of the Fröbenius series representation
of Sm, the reader is encouraged to review the work of Pérez-
Enŕıquezet al.[5].
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4. Infinite dielectric elliptic cylinder and
charged line

In this section we shall apply some of the previous results
to a specific boundary-value electrostatic problem, namely,
the case of an infinite dielectric elliptic cylinder in the pres-
ence of an infinite line of charge. Because of the symmetry
in any planez = const, normal to both the cylinder and the
line, this three-dimensional problem can be reduced to a two-
dimensional one, namely, to that related to the coordinates
(x, y) or their counterpart, the elliptic coordinates (ξ, η). Let
us assume that the line of charge is located at the point(ξ

′
, η′)

and that the surface of the dielectric cylinder is represented
by ξ = ξo = const; the electrostatic potential can be then
written as:

Ψi(ρ) =
∞∑

m=0

{AmTm(ξ) + BmSm(ξ)}Tm(η)

ξ < ξo < ξ
′
, (15)

which again, appealing to the properties of the set{Tm(η)},
can be envisioned as a representation of the electrostatic
potential in terms of these basis vectors and the quantities
in parentheses would mean its coordinates in the infinite-
dimensional space spanned by them, and

Ψo(ρ) =Ψλ(ρ) +
∞∑

m=0

{CmTm(ξ) + DmSm(ξ)}Tm(η)

ξo < ξ < ξ
′
, (16)

whereTm(ξ), Sm(ξ) are the two independent solutions to
the Chebyshev equation defined in the previous sections;
Am, Bm, Cm, Dm are constants to be determined through the
boundary conditions that the potential must satisfy atξ = ξo;
andΨλ(ρ) is the potential due to the charged line, which is
of the form

Ψλ(ρ) = − λ

2πεo
ln |ρ−ρ′| = λ

εo
G(ρ,ρ′). (17)

The potential for ξ > ξ
′
, Ψ>(ρ), can be readily

found, once Ψo(ρ) has been uniquely specified, since
Ψo(ρ) =Ψ>(ρ) at ξ = ξ′, to ensure the continuity of the
electrostatic potential in all space.

As we mentioned before, the constants appearing in Eqs.
(15) and (16) can be found by imposing the proper boundary
conditions, that is, the continuity of the tangential component
of the electric field and the normal component of the electric
displacement atξ = ξo,respectively, a matter that can be ex-
pressed as

− 1
hη

∂Ψi

∂η

∣∣∣∣
ξo

= − 1
hη

∂Ψo

∂η

∣∣∣∣
ξo

,

and

− ε

hξ

∂Ψi

∂ξ

∣∣∣∣
ξo

= − εo

hξ

∂Ψo

∂ξ

∣∣∣∣
ξo

,

whereε, εo are the permittivities of cylinder and vacuum, re-
spectively.

In doing so, the following set of equations can be ob-
tained:

(Cm −Am)Tm(ξo) + (Dm −Bm)Sm(ξo)

+
λ

εoam
Tm(η′)fm(ξo, ξ

′) = 0, (18)

and

(εoCm − εAm)T ′m(ξo) + (εoDm − εBm)S′m(ξo)

+
λ

am
Tm(η′)f

′
m(ξo, ξ

′) = 0, (19)

where we have used the fact that both sets of functions,
{Tm(η)}and{T ′m(η)}, are linearly independent. The primes
in the functions mean the derivative of them with respect to
their arguments.

As the reader must be aware, we have two equations and
four unknowns, that is, this system is underdetermined so
that, in order to get a unique solution of this problem, some
physical considerations must be included. The first of them
involves the behavior of the response of the material media
(cylinder) as the line moves farther away,i.e., asξ′ →∞. In
this a case, the response of the dielectric must vanish for all
values ofξ. A closer inspection of Eq. (16) leads to the con-
clusion thatCm = 0 for a proper behavior of the electric field
in this limit, otherwise, whenξ À 1 , the field will diverge, a
matter that represents an unphysical situation. Moreover, re-
garding the field inside the cylinder (1 ≤ ξ < ξo), it must also
be well-behaved asξ → 1; in this case one can note that this
happens for both inner solutions so thatBm = 0 or Am = 0.
If the latter is true, a closer inspection of Eqs. (18) and (19)
leads to the conclusion that the thus solution obtained is the
trivial one since, asK → 1 (K = ε/ε0 is the dielectric
constant), the potential diverges (the determinant of the cor-
responding system of equations becomes zero in this limit), a
matter that is not of physical interest, and thenBm = 0.

With these considerations, Eqs. (18) and (19) can provide
a unique solution since we now have two equations with two
unknowns. The resulting equations can be written as

AmTm(ξo)−DmSm(ξo) =
λ

εoam
Tm(η′)fm(ξo, ξ

′) , (20)

and

εAmT ′m(ξo)−εoDmS′m(ξo) =
λ

am
Tm(η′)f

′
m(ξo, ξ

′) , (21)

whose solution is given by

Am=
λ

εoam

Tm(η′)Sm(ξ′)
[1+(ξ2

o−1)
1
2 (K−1)Sm(ξo)T ′m(ξo)]

, (22)
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and

Dm =
λ(1−K)(ξ2

o − 1)
1
2

εoam

× Tm(η′)Sm(ξ′)Tm(ξo)T ′m(ξo)
[1 + (ξ2

o − 1)
1
2 (K − 1)Sm(ξo)T ′m(ξo)]

, (23)

where we used the fact that the Wronskian ofTm andSm is
given byW (Tm(ξo), Sm(ξo)) = −1/(ξ2

o − 1)
1
2 . With these

constants the electrostatic potential is uniquely defined and
can be used to calculate the electric field, the polarization in
the cylinder, among other physical magnitudes of interest. To
check out the consistency of the solution we shall examine,
in the next section, some limiting situations.

5. Some interesting limiting situations

The proper behaviour of the solution obtained in the last sec-
tion can be verified by the analysis of some limiting situa-
tions. In all four cases considered, we corroborate the fact
that our approach is consistent enough.

i) K → 1, the material medium becomes the vacuum; in
this case, it can be seen that

Am → λ

εoam
Tm(η′)Sm(ξ′) andDm → 0 , (24)

which means that

Ψi → Ψo (25)

as it must be, since no material medium is already
present in this limit.

ii) ξ′ → ∞, the charged line is placed far away from the
elliptic cylinder; in this case

Am, Dm → 0, (26)

which means that

Ψi → 0 andΨo → Ψλ, (27)

a matter that is consistent with the fact that the electric
field becomes zero at the position of the cylinder,i.e.,
no response of this material can arise, as expected.

iii) K → ∞, the material becomes a conductor; in this
case we have

Am → 0 and

Dm → − λ

εoam

Tm(η′)Sm(ξ′)Tm(ξo)
Sm(ξo)

; (28)

that is, the potential inside the ellipse is zero and the
external one is given by

Ψo(ρ) =
λ

εo

∞∑
m=0

1
am

[
Tm(ξ)− Sm(ξ)Tm(ξo)

Sm(ξo)

]

× Tm(η′)Sm(ξ′)Tm(η) (29)

as it can be noted,Ψo = 0 at ξ = ξo, consistent with
the problem of a grounded conducting elliptic cylinder
and a charged line.

iv) a → 0 (ξo → ∞),K → ∞, a circular conduct-
ing cylinder and a charged line. In this case, since
ξo < ξ < ξ

′
, the behavior of the potential given by

Eq. (29) is dictated by the asymptotic behavior ofTm

andSm whenξo, ξ, ξ
′ →∞ which is of the form

Tm(x) ∼ xm andSm(x) ∼ x−m , x À 1. (30)

Now, let us recall that, in this coordinate system, ifr1

andr2 are the distances of one point of the ellipse to
the foci, then

r1 =
√

r2 + a2 − 2ar cos θ

and

r2 =
√

r2 + a2 + 2ar cos θ,

where (r, θ) are the usual polar coordinates. Then,
whenξo →∞, a → 0 since, by definition

ξo =
r1 + r2

2a
' Ro

a

(andξ
′ ' R

′
/a) whereRo (R

′
) is a typical size of the

ellipse whena ¿ 1. The above expressions forr1, r2

also allow us to say that

η =
r1 − r2

2a
' cos θ

whena ¿ 1 and thus, the potential given by Eq. (29),
can be rewritten as

Ψo(ρ) ' λ

εo

∞∑
m=0

1
am

[
ξm − ξ−mξm

o

ξ−m
o

]

× Tm(cos θ′)(ξ
′
)−mTm(cos θ); (31)

with the aid of the behavior ofξ, ξo, or ξ′ mentioned
before, we have that

Ψo(ρ)

' λ

εo

∞∑
m=0

1
am

[(
R

a

)m

−
(

R

a

)−m (
Ro

a

)2m
]

× cos mθ′
(

R′

a

)−m

cosmθ (32)

or

Ψo(ρ) ' λ

εo

∞∑
m=0

1
am

[(
R

R′

)m

−
(

R′′

R

)m]

× cosmθ′ cos mθ, (33)
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whereR′′ = R2
o/R′. Note thatΨo = 0 whenR = Ro,

so that this expression can be recognized as the po-
tential of a charged line placed atR′ with chargeλ
per unit length and its image placed atR′′ with charge
per unit length−λ, which is equivalent to the solution
of the problem of a grounded circular cylinder of ra-
dius Ro and a charged line placed atR′ rendered by
the method of electrostatic images. As a reference, the
reader is aware to confirm this fact by reviewing the
expansion of the logarithmic term as is done in Grad-
shteyn& Ryzhik[6].

6. Conclusions

The general solution of the Laplace equation and its corre-
sponding Green’s function in elliptic coordinates were ob-
tained in this work. The reported expressions for these
functions can be used to study an interesting class of two-
dimensional boundary-value electrostatic problems. In this
context, we can mention, for instance, the boundary-value
problem of an elliptic conducting cylinder, with a given po-
tential or surface charge, and a charged line or in general, as
presented here the case of a dielectric elliptic cylinder and
an infinite charged lines and all of its limiting situations that
constitutes the previous cases and more.

As a collateral result, a second, linearly independent, so-
lution the Chebyshev differential equation in[1,∞) needed
to be constructed using the Fröbenius method, or another
standard procedure for such a cases, a matter which al-
lowed us to construct the Green’s function associated with
the Laplace operator in this coordinate system. The formal-
ism followed here to obtain these results can be extended to
any two-dimensional coordinate system in which the Laplace
equation is separable, or at least partially separable. In par-
ticular, calculations of the electric field for charge distribu-
tions with elliptic geometry such as those worked on by Fur-
man[3] can be treated in a natural way using the formalism
introduced here.

Moreover, the knowledge of Green’s function would be
useful for obtaininga representation of the Coulomb poten-
tial in two dimensions in this coordinate system[7], a matter
that opens the possibility of some practical applications to
problems of physical interest which involve this potential[8].
Work is in progress to apply some of the results to specific
systems and will be published elsewhere.
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Appendix

The Chebyshev’s differential equation outside the[−1, 1] in-
terval can be expressed as follows:

(ξ2 − 1)
d2H

dξ2
+ ξ

dH

dξ
− n2H(ξ) = 0. (A.1)

In order to find a solution, we will use the Frobenius method;
in doing so, we suggest the following form for the function:

H(ξ) =
∞∑

l=0

a−lξ
k−l. (A.2)

Making the substitution of this expression and its derivatives
in Eq. (A.1), we will have

∞∑

l=0

[
(k − l)2 − n2

]
a−lξ

k−l

−
∞∑

l=2

(k + l + 2)(k + l + 1)a−l+2ξ
k−l = 0, (A.3)

and from it, the recurrence relations for the coefficients will
appear:

a0(k2 − n2)=0 (A.4)

a−1

[
(k − 1)2 − n2

]
=0 (A.5)

a−l

[
(k − l)2 − n2

]
=(k+l+2)(k+l+1)a−l+2 (A.6)

for l ≥ 2.

From the secular equation (A.4), we shall find the values of
k if we assume that

a0 6= 0, a1 = 0 thenk2 − n2 = 0 or k = ±n. (A.7)

FIGURE 1. Graph for the Chebyshev functions of the second kind
for n = 0, 1.
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FIGURE 2. Graph for the Chebyshev functions of the second kind
for n = 1, 2, 3, 4.

But we require the functionH(ξ) to vanish asξ → ∞; thus
we must consider the value ofk to be strictly negative,i.e.

k = −n, with n > 0 (A.8)

Using Eqs. (A.4-A.6), we can derive a compact expression
for the coefficients:

a−2l =

n ·
2l−1∏

s=l+1

(n + s)

22ll!
a0, with l = 1, 2, 3, · · · (A.9)

Functions of well-defined parity will then be built with
the aid of these coefficients:

H±
n (ξ)=a0ξ

−n





1 + n ·
∞∑

l=1

2l−1∏

s=l+1

(n + s)

22ll!
ξ−2l





, (A.10)

where+ stands forn even and− for n odd. In the special
case wheren = 0, the functionH0(ξ) is the solution to the
differential equation

(ξ2 − 1)1/2 d

dξ

[
(ξ2 − 1)1/2 dH0(ξ)

dξ

]
= 0, (A.11)

where we have put it in self-adjoint form; this can be solved
by direct integration and yields the function

H0(ξ) = C ln
(
ξ +

√
ξ2 − 1

)
(A.12)

We then call this set of functions the Chebyshev functions
of the second class that are a solution to Eq. (A.1), and are
defined by

Sn(ξ) =





a0 ln
(
ξ +

√
ξ2 − 1

)
, for n = 0

a0ξ
−n

[
1 + n ·

∞∑

l=1

Γ(n+2l)(2ξ)−2l

Γ(n+l+1)Γ(l+1)

]
, for n ≥ 1

(A.13)

In Figs. A.1 and A.2 we show graphs of those functions for
values of the indexn = 0, 1, 2, 3, 4.

By using Gauss’ test (see Arfken p. 245) and Eq. (A.6)
we can easily show that the series (A.10) converges atξ = 1.

Finally, we consider it necessary to point out that this
method for obtain Chebyshev functions of the second kind
is not unique; an alternative way to built those functions

would involve the direct evaluation of the Wronskian and the
Chebyshev polynomials of the first kind, as discussed by Ar-
fken for the Legendre polynomials[4]. Both representations
are compatible when calculated forξ > 1 + ε, but the se-
ries form of the functionsSn(ξ) is easier to implement in a
numerical calculation as that of Green’s function on elliptic
coordinates.
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