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A two-dimensional Laplace equation is separable in elliptic coordinates and leads to a Chebyshev-like differential equation for both ang
and radial variables. In the case of the angular varialflel < n < 1), the solutions are the well known first class Chebyshev polynomials.
However, in the case of the radial varialfl€l < ¢ < oo) itis necessary to construct another independent solution which, to our knowledge,
has not been previously reported in the current literature nor in textbooks; this new solution can be constructed eittigvenjius Beries
representation or by using the standard methods through the knowledge of the first solution (first-class Chebyshev polynomials). In
case, either must lead to the same result because of linear independence. Once we know these functions, the complete solution of «
dimensional Laplace equation in this coordinate system can be constructed accordingly, and it could be used to study a variety of bount
value electrostatic problems involving infinite dielectric or conducting cylinders and lines of charge of this shape, since with this informatic
the corresponding Green'’s function for the Laplace operator can also be readily obtained using the procedures outlined in standard textt
on mathematical physics. These aspects are dealt with and discussed in the present work and some useful trends regarding applicati
the results are also given in the case of an explicit example, namely, the case of a dielectric elliptic cylinder and an infinite line of charge

Keywords: Elliptic coordinates; Green function; two-dimensional Laplace equation; Chebyshev functions.

La ecuaddn de Laplace en dos dimensiones es separable en coorderiptiaasly la separagh de variables resulta en ecuaciones tipo
Chebyshev para las dos coordenadas, rad)af @ngular ¢). En el caso de la coordenada angujaf—1 < n < 1), las soluciones son

los polinomios de Chebyshev de primera clase, los cualés @stly bien estudiados. Sin embargo, en el caso de la coordenada radia
£ (1 <€ € < o0), existe la necesidad de construir otra saacindependiente, que (a nuestro conocimiento) na esgtortada en libros

de texto ni en artulos; esta nueva sol@ri puede ser construida, ya sea en forma de una seriedtberitus o usando los &todos de
integracon que involucran el conocimiento de la primera sduciCualquiera de estos doftados nos llevaral mismo resultado, debido

a la independencia lineal de las soluciones. Una vez que conozcamos dichas funciones,da sotupieta la ecuamn de Laplace en

dos dimensiones para este sistema de coordenadas puede ser construida, y dicimapsadei ser aplicada para estudiar una variedad de
problemas de contorno que involucren cilindros &liglicos o conductores infinitos meas de carga, pues con esta infordacpodemos
obtener &cilmente la fundin de Green para el operador de Laplace usando el procedimiento de los libros de te&todfEsmateiticos.

Estos aspectos se discuten en el presente trabajo, y se dan algunas indicaciones respecto a las aplicaciones de los resultados, incluy
ejemplo expicito: el caso de un cilindro gitico dieEctrico y una linea infinita de carga.

Descriptores: Coordenadas giticas; funobn de Green; ecuami de Laplace en dos dimensiones; funciones de Chebyshev.

PACS: 02.30.Gp; 41.20.Cv

1. Introduction the general solution of Laplace equation becomes an impor-
tant tool to obtain the new potential.

Laplace equations play a fundamental role in potential theory In most electrostatic problems, a given charge distribu-
since many two-dimensional boundary-value problems are afon(s) is (are) usually involved and one must solve the Pois-
crucial importance for both physics and mathematics; this ison equation instead, but in this case the general solution of
the case, for instance, in electrostatics, fluid flow through obthe Laplace equation is still important since it can be used
stacles, conformal mapping and so on [1]. to construct an auxiliary function, the Green function, which
The solution of this equation for a specific boundary-allows one to find the particular solution of Poisson equation
value problem in electrostatics can give information that isthat satisfies all the boundary conditions.
a priori unknown, namely, when an initially isolated conduc-  The knowledge of the general solution of a two-
tor (charged or raised to a given potential) is perturbed by @imensional Laplace equation involves its separability in a
charge distribution, the charge on the conductors surface ajiven coordinate system; it is separable, for instance, in rect-
ter the perturbation redistributes to an unknown distributionangular, polar, parabolic, elliptic and other common coordi-
then the conventional solution for the potential as an integrahate systems [2]. In the specific case of elliptic coordinates,
involving the surface charge cannot be used; in those caseits separation leads to a Chebyshev-type ordinary differential
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equation for both the angulan) and the radial§) coordi- The corresponding scale factors are given as
nates. The solution associated with the angular variable are 12
the well known first-class Chebyshev polynomials, but in the ox\*  [oy\? €2 212
case of the radial one, they are no longer useful because this "¢ — (85) (5§> - [ €21 ]
coordinate is defined in [&) and clearly the polynomials
diverge at infinity, a matter that could not be desirable fromand
physical grounds, as we shall see explicitly. 12

The latter fact implies that we need to find a different so- | [0 2 oy \ > o [e-n? 1/2
lution which must behaved properly in this interval; once nT (377> (377> - [ 1— 72 ] ’

such a solution is known, the Green’s function associated
with the Laplace operator in this coordinate system can b&om which the Laplace operator, defined as
readily constructed. The knowledge of both the general so-
lution and the Green’s function for the Laplace operator can V2 = 1 {8 [h’? 6} + 9 {hé 8} }
used to solve a variety of electrostatic boundary-value prob- hehy L O€ [ he O6] O [ hy O
Igms.that.in.volve infinite conductors and infinite charged.,p, pe readily calculated to give
lines in elliptic coordinates [3].
The aim of this work is to stress the importance inherent o2 _ 1
in the knowledge of the general solution of the Laplace equa- a?(&2 —n?)
tion and the ample possibilities of applications in boundary- 52 9 52 o
value electrostatic problems. For the sake of clarity, this work X {(52 — DW + 58— +(1- 772)? — na} 2)
has been structured as follows: In Sec. 2, we obtain the gen- 3 ¢ K K
eral solution of a two-dimensional Laplace equation in el-  With this, the Laplace equation for the electrostatic po-
liptic coordinates; a representation of the Green function inential (¢, ), can then be written as
these coordinates is constructed in Sec. 3; an explicit exam-
ple which involves the application of the later result is pre- 1 {(52—1)82+§8+(1—772)82—778}
sented in Sec. 4; and finally, some interesting limiting situa-  a?(£2—n?) 0&2 o€ o2 on
tions of this example are discussed in Sec. 5. KW (€, 1)=0,

2. General solution of a two-dimensional °f

Laplace equation in elliptic coordinates o 9 > 9
blace &d P (€ = Vgg +Epe + (L=1) 55—
73 23 on on
Several fields in physics and mathematics involve boundary-
value problems in which elliptic coordinates arise; these are xW(&mn) =0. (3)
]tche ca:ses of_flmdt flow Wt'.th O.bSEalee S ellectho Sﬁﬂcs OF'CON- By inspection, one can see immediately that the last equa-
ormal mapping, to mention Just a Tew. In af ol Ihem a 30- 4, ;o separable since, if we assume that
lution of Laplace equations, restricted to particular boundary
condmor_ls, is needgd. A previous step t.o gettlng. a partlcu— w(E,n) = S(€)H (),
lar solution of any linear partial differential equation is the
knowledge of its general solution, which, after imposing thetwo ordinary second order differential equations can be ob-
proper boundary conditions, provides the desired solution tgained:
the problem. This section is devoted to finding the general

2

solution of the two-dimensional Laplace equation in ellip- {(1 - 772)% - ﬁi + 7} H(n) =0, (4)

tic coordinates, since it can be useful to study a variety of dn dr
boundary-value problems of this symmetry. and

Confocal elliptic coordinate&t, n) are defined ds 2 d? d

9 . 1 - _ = = 5

z = ag), £ € [1,00), where~ is the separation constant. The equation for the an-
y=a(—1)Y2(1 -2 pe[-1,1, () 9ularcoordinate has two regularsingular pointsgt= +1,

so if seek a well behaved solutiof,is restricted to the val-
where2a is the interfocal distance. The family of curves gen-uesy = m? with m = 0,1,2... With this restriction on the

erated by this coordinate system is as follows: separation constant, Egs. (4,5) can be identified as being of
Chebyshev type[4].
& =const —1 <75 <1, ellipses with foci on the x-axis Interestingly enough, although the solutions to both equa-

tions are the first-class Chebyshev polynomials, the corre-

1= const 1 < ¢ < oo, confocal hyperboles. sponding solution to this type of equation in the rafigec)
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is not, to our knowledge, previously reported in the litera-where the coefficientg,, can be interpreted as the coor-
ture[5], but this is a matter that can be important when ainates of vectoiG(&,n; &', n') in the infinite dimensional
second linearly independent solution is needed. This secorgpace generated by the basis vec{drs ()}

solution can be constructed either by @IBe€nius series rep- Combining Egs. (2,8,9) and using the linear indepen-
resentation or, equivalently, as an integral representation irdence property of7;,, (1)}, the coefficientsy,, must satisfy
volving the first solutioni.e, the first class Chebyshev poly- the following differential equation:

nomials[4].

With all this, the most general solution to the Laplace 9 d? 2 r
equation in elliptic coordinates can then be written as (€& - l)dgz + 5*5 - gm (&€,
- = _(52 - 1)1/25(5 - 5')mem(77’) (11)
= Z {Ame(g)'i'BmSm(f)}

As the reader must be aware, when# ¢, this equa-
tion is similar to Eq. (5), that is, a Chebyshev-type equation
whose linearly independent solutions &g (¢), S,.(£), as
mentioned in the previous section.

In order to complete the construction of the Green func-
tion, we shall follow the method described, for instance, in
3. Two-dimensional Green function in eIIiptic Refs. 4 and 5; that is, since the pofnt gl represents an in-

X {CpnTin(n)+DmSm(n)}, (6)

whereA,,,, B, Cy., D,, are constants to be determined once
specific boundary conditions are imposed®f(t, ).

coordinates homogeneity, the functiog,, must have the following prop-
erties:
The knowledge of the two linearly independent solutions
T,., S provide the necessary tools for the construction of g =gl até = 5’ (continuity)

the Green function associated with the Laplace’s operator.

The two-dimensional Green function satisfies the inhomoge- dg;, g, b T () _ o
. - — —— 5 (discontinuous derivative)
neous equation d§ 3 (&2 —1)1/2
V’G(p.p') = —3(p— '), (7) gm(&:€n) = gm(€.E,n) (symmetry)  (12)
Eg. (12) forl < £ < £ and{ < £ < oo, respectively.
V2G(p,p') = — o€~ §o(n—n'). (8)  Hence, if we choose
m
Let us recall that the polynomialgl’,, (1)} are orthogo- Gm = CTn(§), 1 <€ < ¢
nal in [-1,1] and indeed constitute a basis set with respect to g = DSm(€), & <& < o0’
which any function can be represented in this interval. Then,
by the closure relation, one can say that whereC, D are constant to be determined through the first
two properties of;,,,. After performing the required algebra
Ton(MTm(n) to find C' and D, the complete Green function can be then
Z bm 2)1/2 7 ©) written as
whereb,, is a constant related to the normalizationZof, G(p,p) =G n; € n')
that is* ) T )T )
Tm Ui Tm Ui !
T =) — —ful&&), (13)
/ ( 1/2 7) a7r1,57r1,,'m/7 mZ::O A
—1
from which where
1 / !
1 ) m =0 N o Sm(g )Tm(f)v 1<£<€
by, = — = { . (10) frrb(£a§ ) - { Sm(ﬁ)Tm(ﬁ'), 6, <&<o0 (14)
Gm w m #0

Finally, to close this section, it is worth mentioning that
) for a more detailed description of both the general proce-
dure andthe behavior of the dtrenius series representation
Glp,p : (6, € 1) T (), of S,,, the reader is encouraged to review the work efg2-
(p.p) = G(&m &) = ;g (&€ 1) T () Endauezot al[s],

Furthermore, the basi§T,,(n)} can be also useful in
making a representation 6f(p, p’) of the form
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4. Infinite dielectric elliptic cylinder and  wheres, ¢, are the permittivities of cylinder and vacuum, re-

charged line spectively.

_ _ . In doing so, the following set of equations can be ob-
In this section we shall apply some of the previous result§gined:

to a specific boundary-value electrostatic problem, namely,

the case of an infinite dielectric elliptic cylinder in the pres- C AT D. —B.\S

ence of an infinite line of charge. Because of the symmetry (Cm = Am)Tin(80) + (Dm = Bm)Sm (&)

in any planez = const, normal to both the cylinder and the A T () N =0 18
line, this three-dimensional problem can be reduced to a two- +€Oam m (1) (&, ) =0, (18)

dimensional one, namely, to that related to the coordinates

(z,y) or their counterpart, the elliptic coordinatgs). Let ~ and

us assume that the line of charge is located at the pginy’)

and that the surface of the dielectric cylinder is represented (£,C, — €4:) 10, (€o) + (0D — €Bp) S, (Eo)
by ¢ = £, = const; the electrostatic potential can be then

written as: +%Tm(n’)f;ﬂ(§o,§’) =0, (19)
Vi(p) = Y {AmTn(€) + BmSm(€)} Tm(n) where we have used the fact that both sets of functions,
m=0 {T»(n)}and{T! (n)}, are linearly independent. The primes
E<¢, <&, (15) inthe functions mean the derivative of them with respect to
their arguments.
which again, appealing to the properties of the{sgf,(n)}, As the reader must be aware, we have two equations and

can be envisioned as a representation of the electrostatigur unknowns, that is, this system is underdetermined so
potential in terms of these basis vectors and the quantitieghat, in order to get a unique solution of this problem, some
in parentheses would mean its coordinates in the infinitephysical considerations must be included. The first of them

dimensional space spanned by them, and involves the behavior of the response of the material media
00 (cylinder) as the line moves farther awag,, as¢’ — co. In
U, (p) =VUx(p) + Z {C T (€) + DS ()} Trn(n) this a case, the response of the dielectric must vanish for all
m=0 values of¢. A closer inspection of Eq. (16) leads to the con-

, clusion thatC,,, = 0 for a proper behavior of the electric field
€ <€<&, (18)  inthis limit, otherwise, whel > 1, the field will diverge, a

whereT,,,(€), S, (¢) are the two independent solutions to matter that represents an unphysical situation. Moreover, re-

the Chebyshev equation defined in the previous sectiong,arding the field insidethq cyli_nderg € < &), itmust also.
Ay, By, Con, Dy, are constants to be determined through thebe well-behaved as — 1;in t_hls case one can note that this
boundary conditions that the potential must satisfy at¢,; ~ NaPpens for both inner solutions so ti), = 0 or A, = 0.

and W, (p) is the potential due to the charged line, which islf the latter is true, a closer inspection of Eqs. (18)_ and_(19)
of the form leads to the conclusion that the thus solution obtained is the

trivial one since, asX — 1 (K = ¢/gg is the dielectric
Uy(p) = — A In|p—p| = Agmp/)_ (17) ~ constant), the potential diverges (the determinant of the cor-
2me, €o responding system of equations becomes zero in this limit), a
matter that is not of physical interest, and thigp = 0.
With these considerations, Egs. (18) and (19) can provide
a unique solution since we now have two equations with two
unknowns. The resulting equations can be written as

The potential for¢ > ¢, U, (p), can be readily
found, once¥,(p) has been uniquely specified, since
U,(p) =P (p) at& = ¢, to ensure the continuity of the
electrostatic potential in all space.

As we mentioned before, the constants appearing in Egs. \

(15) and (16) can be found by imposing the proper boundary A,,,T;,,(£,) — DS (&) = T () (&6, €7) 5 (20)
conditions, that is, the continuity of the tangential component €olm

of the electric field and the normal component of the electricémd
displacement a¢ = &, respectively, a matter that can be ex-

pressed as A /
€AmT»,/n(€o)*5oDmS;n(§o) = ?T7rz(n/)fm,(€()a€/) s (21)

_Low| __19v, "
hy O & hy O €o whose solution is given by
and , ,
_i 8\1@- _ _i a‘l’o A — A Tm(n )Sm('f) (22)
hg 85 o hf 85 o " €olm [1+(€g_1)%(K_l)sm(go)Téw(éo)]’
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and

b = A=K -1}

gl)aﬂn
o Tn()Sm(€) T (€0) T (o)
(14 (€2 —1)2 (K — 1)Sm (&) T (&)

where we used the fact that the Wronskiarfpf and.S,,, is
glven byW( m(go) m(go)) = _1/(53 - 1)% With these
constants the electrostatic potential is uniquely defined and
can be used to calculate the electric field, the polarization in
the cylinder, among other physical magnitudes of interest. To
check out the consistency of the solution we shall examine,
in the next section, some limiting situations.

(23)

5. Some interesting limiting situations

The proper behaviour of the solution obtained in the last sec-
tion can be verified by the analysis of some limiting situa-
tions. In all four cases considered, we corroborate the fact
that our approach is consistent enough.

i) K — 1, the material medium becomes the vacuum; in
this case, it can be seen that

A

€olm

T (n)Sm(¢)andD,, — 0, (24)

A, —
which means that

as it must be, since no material medium is already
present in this limit.

i) & — oo, the charged line is placed far away from the
elliptic cylinder; in this case

Ama D,, — 0, (26)
which means that
¥, — 0and¥, — U,, 27)

a matter that is consistent with the fact that the electric

field becomes zero at the position of the cylindes,

no response of this material can arise, as expected.
i) K — oo, the material becomes a conductor; in this

case we have

A, — 0and
A Tn(n)Sm(€)Tm (o) .
Dm — — ol Sm (50) ) (28)

that is, the potential inside the ellipse is zero and the
external one is given by

Top)= 23 - [Tm(g) _ ST (&)

€o m—0 Qm Sm(go)

X Tm(n/)sm(gl)Tm (7]) (29)

iv)

as it can be notedV, = 0 at¢ = &, consistent with
the problem of a grounded conducting elliptic cylinder
and a charged line.

a — 0(, — o),K — oo, a circular conduct-
ing cylinder and a charged line. In this case, since
& < & < &, the behavior of the potential given by
Eqg. (29) is dictated by the asymptotic behaviofIQf
ands,, when¢,, &,& — oo which is of the form

Tin(x) ~ 2™ andSy,(z) ~ 2~ ™,z > 1.  (30)

Now, let us recall that, in this coordinate systeny;if
andr, are the distances of one point of the ellipse to
the foci, then

= /2 + a2 — 2arcosf

and

= \/r2 + a2 + 2ar cos 0,

where (r,0) are the usual polar coordinates. Then,
whené, — oo, a — 0 since, by definition

T+ 1o R
fo: —70

2a a

(and¢’ ~ R'/a) whereR, (R') is a typical size of the
ellipse when: < 1. The above expressions for, o
also allow us to say that

n= % ~ cosf
whena < 1 and thus, the potential given by Eq. (29),
can be rewritten as

R S e

€o am &

X Ty (cos ) (€)™ Ty (cos 6); (31)

m=0

with the aid of the behavior of, £,, or £’ mentioned
before, we have that

U,(p)
LS I ()
x cos mb’ (Rl> cos mb (32)
a
or
w=23 H(E) - (F)]

x cosmb)’ cosmf, (33)
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whereR” = R?/R’. Note thatV,, = 0 whenR = R,,  Appendix

so that this expression can be recognized as the po-

tential of a charged line placed & with chargeX  The Chebyshev’s differential equation outside fthé, 1] in-
per unit length and its image placedR with charge terval can be expressed as follows:

per unit length—\, which is equivalent to the solution

of the problem of a grounded circular cylinder of ra- d*H dH

dius R, and a charged line placed &t rendered by -1 e + 675 n’H(¢) = 0. (A1)
the method of electrostatic images. As a reference, the

reader is aware to confirm this fact by reviewing the In order to find a solution, we will use the Frobenius method;
expansion of the logarithmic term as is done in Grad-in doing so, we suggest the following form for the function:
shteyné& Ryzhik[6].

§=> a g (A.2)
6. Conclusions 1=0

Making the substitution of this expression and its derivatives
The general solution of the Laplace equation and its correy, gq. (A.1), we will have

sponding Green’s function in elliptic coordinates were ob-

tained in this work. The reported expressions for these

functions can be used to study an interesting class of two- Z k—0)?—n ] a_ert

dimensional boundary-value electrostatic problems. In this =0

context, we can mention, for instance, the boundary-value )

problem of an elliptic conducting cylinder, with a given po- - Z(k +1+2)(k+1+1a_ 026" =0, (A3)
tential or surface charge, and a charged line or in general, as 1=2

presented here the case of a dielectric elliptic cylinder and

an infinite charged lines and all of its limiting situations that @nd from it, the recurrence relations for the coefficients will
constitutes the previous cases and more. appear:

As a collateral result, a second, linearly independent, so- ) )
lution the Chebyshev differential equation|[in o) needed ao(k —n")=0 (A-4)
to be constructed using the dfrenius method, or another

. a—q [ ] =0 (A5)
standard procedure for such a cases, a matter which al-
lowed us to construct the Green’s function associated with  a—; [(k ] (
the Laplace operator in this coordinate system. The formal- >
ism followed here to obtain these results can be extended to
any two-dimensional coordinate system in which the Laplace . i
equation is separable, or at least partially separable. In paFrom the secular equation (A.4), we shall find the values of
ticular, calculations of the electric field for charge distribu- k if we assume that
tions with elliptic geometry such as those worked on by Fur-
man[3] can be treated in a natural way using the formalism @0 # 0,a1 = 0thenk® —n® =0ork=+n. (A7)
introduced here.

Moreover, the knowledge of Green’s function would be
useful for obtaininga representation of the Coulomb poten-
tial in two dimensions in this coordinate system([7], a matter
that opens the possibility of some practical applications to
problems of physical interest which involve this potential[8].
Work is in progress to apply some of the results to specific
systems and will be published elsewhere. g 107

+i+2)(k+l+1)a_;12  (A.6)

for

2.0

0.5

m0
1
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Functions of well-defined parity will then be built with
the aid of these coefficients:
Function S 911
21 — m=1
o . S:llll(n—ks)
e 1 \v [ m=3 Hi(§)=ao™" 1+n-ZT§_2l , (A.10)
w |\ m=4 =1 ’
14
where+ stands fom even and- for n odd. In the special
o y T y U 7 1 case wherer = 0, the functionH,(€) is the solution to the
0.5 10 15 2.0 25 3.0 35 4.0 . . .
£ differential equation
FIGURE 2. Graph for the Chebyshev functions of the second kind d dHo (€)
forn =1,2,3,4. 2o (@) 2P~ A1l
@ @O o e
But we require the functiol (¢) to vanish ag — oo; thus
we must consider the value bfto be strictly negative,e. where we have put it in self-adjoint form; this can be solved
k= —n, withn >0 (A.8) by directintegration and yields the function
Using Eqgs. (A.4-A.6), we can derive a compact expression
for the coefficients: Ho(€) = Cln (5 +/e - 1) (A.12)
20—-1
n- H (n+s)
s=l+1 . We then call this set of functions the Chebyshev functions
o = thi=1,2,3,--- A.9 .
a2 22! %, Wi T (A-9) of the second class that are a solution to Eq. (A.1), and are

|  defined by

aoln(§+¢m),f0rn20

oo

_‘ A.13)
T (n+21)(26) % (
”"'ZWW] ,forn>1

=1

Sn(§) =

ap™"

In Figs. A.1 and A.2 we show graphs of those functions for,
values of the index = 0,1, 2, 3, 4. k/vould involve the direct evaluation of the Wronskian and the
Chebyshev polynomials of the first kind, as discussed by Ar-
fken for the Legendre polynomials[4]. Both representations
are compatible when calculated for> 1 + ¢, but the se-
Finally, we consider it necessary to point out that thisries form of the functionss,, (£) is easier to implement in a

method for obtain Chebyshev functions of the second kindhumerical calculation as that of Green’s function on elliptic
is not unique; an alternative way to built those functionscoordinates.

By using Gauss' test (see Arfken p. 245) and Eq. (A.6)
we can easily show that the series (A.10) convergés-atl.
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