
ENSEÑANZA REVISTA MEXICANA DE FÍSICA E 53 (1) 82–85 JUNIO 2007

The exactly solvable self-gravitating fermion cluster in two dimensions
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The mathematical model of a two-dimensional self-gravitating cluster formed by degenerate fermions, is solved analytically. The fermions
interact with each other through a logarithmic potential. The radius of this system is shown to be constant, not depending on the total number
of fermions that constitute the cluster.
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En este artı́culo resolvemos analı́ticamente el modelo matemático de un ćumulo autogravitante de fermiones degenerados, en dos dimen-
siones. Los fermiones interactúan entre ellos mediante un potencial logarı́tmico. El radio resultante para el cúmulo no depende del número
total de fermiones que lo integran.

Descriptores:Modelo de Thomas Fermi; enana blanca.

PACS: 31.5.Bs; 97.20.Rp

1. Introduction

White dwarfs are stars that support themselves against gravity
by the pressure of degenerate electrons [1]. Their density pro-
file is modelled by a 3/2 polytrope,i.e. by a self-gravitating
spherical cluster formed by degenerate fermions. This poly-
tropic model leads to a second-order non-linear differential
equation that is easily solved numerically[2].

It is amusing and instructive to see that in two dimen-
sions, where the Poisson equation is obeyed by a logarithmic
potential, the corresponding equation for the fermion cluster
is analytically solvable. It is the purpose of this paper to de-
scribe this mathematical model that is simple enough to be
given as a graduate exercise.

In Sec. 2, after writing the three equations of the model
and the boundary conditions, we obtain the solution for the
fermion density. In Sec. 3, the gravitational potential is cal-
culated. The two energy terms of the cluster are computed
in Sec. 4. Finally, in Sec. 5 we present a brief discussion
comparing this system with the system in three dimensions.

It is worth stressing the great similarity existing between
this problem –in three dimensions- and the description of
heavy atoms by means of the Thomas-Fermi model. The rea-
son is that, in both systems, one is dealing with forces of the
type r−2 between degenerate fermions. In two dimensions,
the Thomas-Fermi has also received attention due to its exact
solubility and academic potential [3,4]. In three dimensions,
the equilibrium gravitational structure of polytropic cylinders
has also been studied [5].

2. The equations and the density profile

This model is expressed by three equations, and circular sym-
metry is assumed. First we have the Poisson equation for the
Newtonian gravity in two dimensions, namely[3,4]

~∇2
rφ(r) = 2πGmn(r), (1)

whereφ is the gravitational potential,n is the particle density,
G is the gravitational constant andm is the particle mass. The
distance to the centre isr and the mass density is the product
mn(r).

Second, we have the equation of hydrostatic equilibrium
in the cluster,

p2
F (r)
2m

+ mφ(r) = C, (2)

where pF (r) is the Fermi momentum at a distancer from
the centre andC is a constant. Thus, Eq. (2) says that the
maximum energy that a particle can have in the cluster is in-
dependent ofr. This equation is ordinarily expressed as a
balance between the gravity force acting towards the centre
and the Fermi pressure gradient acting outwards [1].

Finally, we have the equation of state of the system [3]

pF (r) =
[
2π~2n(r)

]1/2
(3)

that relates the Fermi momentum of the electrons to the par-
ticle density. This is for two dimensions and for a spin 1/2
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particle (in three dimensions the equation of state for the de-
generate Fermi gas can be found, for example in Refs. 1
and 2). Alternatively, the equation of state could be written
as a relation between pressure and density. Recall that we are
dealing with a zero temperature system. The presence of the
Planck constant in the equation of state indicates the quantum
nature of this cluster.

Thus, we have three equations for three unknown vari-
ablesφ, n andpF , which depend onr. EliminatingpF be-
tween the second and third, and inserting the result into the
first, we obtain a differential equation forn(r):

1
r

d

dr

[
r
dn(r)

dr

]
= −2Gm3

~2
n(r). (4)

At this point, it is convenient to work with a dimension-
less distance,x,

r = bx, (5)

whereb is a characteristic length scale. Choosing

b =
~√

2Gm3
, (6)

and adopting the convention that a dot on a variable indicates
derivation with respect tox, Eq. (4) becomes

n̈(x) +
ṅ(x)

x
+ n(x) = 0. (7)

With respect to the two conditions to be fulfilled byn(x),
the first one is obvious:

ṅ(x = 0) = 0. (8)

This is necessary to avoid a singularity at the origin as
required by Eq. (7). The second condition comes from the
condition that, if the total number of fermions in the cluster
is N , then

N =
∫

n(r)d~r = 2πb2

X∫

0

n(x)xdx, (9)

whereR (or X = R/b) is the distance wheren vanishes, or
the radius of our cluster.

It is convenient to work with a non-dimensional density;
n̂(x)defined as

n(x) = n0n̂(x), n0 ≡ n(0). (10)

In the new notation, the two boundary conditions are ex-
pressed by:

n̂(0) = 1, ˙̂n(0) = 0, (11)

and coming back to Eq. (7), it now reads as

¨̂n(x) +
˙̂n(x)
x

+ n̂(x) = 0. (12)

This equation is Bessel’s equation of order zero[6]. With
respect to the second condition in Eq. (9), we have:

N

2πb2n0
=

X∫

0

n̂(x)xdx = −
X∫

0

(
d

dx

[
x

dn̂(x)
dx

])
dx

= −
[
x

dn̂(x)
dx

]X

0

= −X ˙̂n(X). (13)

Now, the general solution of Eq. (12) is

n̂(x) = AJ0(x) + BY0(x), (14)

J0 andY0 are Bessel functions of the first and second species
respectively [6], andA andB arbitrary constants. Due to the
fact that

J0(x = 0) = 1, Y0(x → 0) →∞, (15)

and bearing in mind Eq. (11), the solution of the problem is

n̂(x) = J0(x). (16)

This function has its first node at 2.40483; therefore

X = 2.40483 · · · , (17)

is the dimensionless radius of the cluster. Another property
of these functions is

J̇0(x) = −J1(x),

J1(X = 2.40483 · · · ) = 0.5191 · · · . (18)

Thus from Eq. (13), we calculate

n0 =
N

2πb2XJ1(X)
. (19)

This completes the computation of the density.

3. The gravitational potential

In this section, we shall identify the form of the gravitational
potentialφ for distancesx ≥ X, and0 ≤ x ≤ X. At x = X,
we shall requireφ and its first derivative to be continuous. As
usual,φ will be fixed except for an arbitrary additive constant.
This constant is recognized in theC of Eq. (2). Therefore, we
shall henceforth assume that

C = 0. (20)

This is equivalent to saying thatφ = 0 at x = X, that is,
where the density vanishes.

Forx ≥ X, the Poisson equation (1) indicates that

1
x

d

dx

[
x

dφ(x)
dx

]
= 0. (21)
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FIGURE 1. Profiles of density (continuous line) and potential
(dashed line) vs. distance to the origin. The length unit,b, is given
in Eq. (6). The dimensionless radius of the cluster,X, is given in
Eq. (17) and the unit of density,n0, is given in Eq. (19).

The solution of Eq. (21) that verifiesφ (X) = 0 is

φ(x) = Kln
( x

X

)
, (22)

and the gravity field is

~E(x) = −K

x
~ex, (23)

whereK is a constant that will be fixed later, and the unitary
vector~ex points outward.

For 0 ≤ x ≤ X, using Eqs. (2) and (3), we obtainφ (x) .
The field is given by

~E(x) = − d

dx

[
C

m
− π~2

m2
n(x)

]
~ex

= −GNm

X

[
J1(x)
J1(X)

]
~ex. (24)

Thus, imposing the continuity of the field atx = X, we
identify the value ofK

K = GNm. (25)

Thus,φ(x) can be expressed in a compact form as follows:

φ(x) = GNmφ̂(x),

φ̂(x) = − J0(x)
XJ1(X)

, 0 ≤ x ≤ X,

φ̂(x) = ln
( x

X

)
, x ≥ X. (26)

The universal solutions obtained forn(x)/n0 ≡ n̂(x) and
φ(x)/GNm ≡ φ̂(x) have been plotted in Fig. 1.

4. The energies

In this system, there are two global energy terms. One is the
kinetic energy,Ek, of the degenerate fermions, and the other,
the potential energy,V , that derives from the particle-particle
gravitational attraction. Using the properties of Bessel func-
tions[6], we find

X∫

0

xJ2
0 (x)dx =

[
x2

2
J̇2

0 (x) +
x2

2
J2

0 (x)
]X

0

=
X2

2
J̇2

0 (X) =
X2

2
J2

1 (X). (27)

Therefore the kinetic energy of the cluster is

Ek =

R∫

0

1
2

[
p2

F (r)
2m

]
n(r)d~r =

π2~2

m

R∫

0

n2(r)rdr

=
GN2m2

2X2J2
1 (X)

X∫

0

J2
0 (x)xdx =

GN2m2

4
. (28)

The factor 1/2 in the kinetic energy is specific to the de-
generate fermions in two dimensions [3,4,7]. And with re-
spect to the potential energy, we find

V =
1
2

R∫

0

φ(r)mn(r)d~r = −π2~
m

2 R∫

0

n2(r)rdr

= −EK = −GN2m2

4
. (29)

Thus, in two dimensions, the total energy of the degenerate
cluster is zero.

5. Conclusions

We have studied the properties of a self-gravitating cluster
formed by massive degenerate fermion, in two dimensions.
We have solved this system using the terminology of the
Thomas-Fermi model [1,8] for heavy atoms. The density pro-
file and the dependence of the gravitational potential with re-
spect to the distance are explicitly obtained. These functions
are expressed in terms of Bessel functions. The kinetic and
potential energies of the cluster have been calculated.

To conclude, it may be worthwhile making a compari-
son of this two-dimensional, self-gravitating fermion cluster

Rev. Mex. F́ıs. E53 (1) (2007) 82–85



THE EXACTLY SOLVABLE SELF-GRAVITATING FERMION CLUSTER IN TWO DIMENSIONS 85

with its equivalent in three dimensions. The most glaring
difference lies in the scale length parameterb which varies
as N−1/3 in three dimensions, whereas in the two dimen-
sional model isN -independent. In three dimensions the en-
ergy terms of the cluster (kinetic and potential) scale asN7/3,
while in two dimensions they scale asN2. With respect to the

density at the centre, in two dimensions it scales linearly with
N , while in three dimensions it scales withN2.
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