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The nonlinear pendulum: formulas for the large amplitude period
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A simple and precise formula for the period of a nonlinear pendulum is obtained using the Linear Delta Expansion, a powerful non–
perturbative technique which has been applied in the past to problems in different areas of physics. Our result is based on a systematic
approach which allows us to obtain a new series for the elliptic integrals, in terms of which the exact solution of our problem is cast. A further
improvement of the LDE result is then obtained by using Padé approximants. Finally we make a comparison with other approximations in
the literature for the period of the pendulum, valid either at small or at large angles.
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Hemos obtenido una fórmula simple y precisa para el perı́odo de oscilacíon de un ṕendulo no-lineal utilizando la Expansión Delta Lineal, una
técnica no-perturbativa que ha sido utilizada en el pasado en areas distintas de la fı́sica. Nuestro resultado se ha obtenido utilizando un método
sisteḿatico que permite obtener una serie para las integrales elı́pticas, por medio de la cual se expresa la solución exacta. Los resultados
son mejorados también utilizando los aproximantes de Padé. Finalmente, hacemos también una comparación con otras aproximaciones en la
literatura para el periodo del péndulo, tanto paráangulos pequẽnos como para grandes.

Descriptores:Téoria de perturbaciones; expansión delta lineal; ṕendulo.
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1. Introduction

This paper is focussed on the study of the period of oscilla-
tion of a simple pendulum; this problem has been considered
in depth in the past by many authors, and a variety of ap-
proximations have been found for calculating its period with
precision [1–8]. The simple pendulum is also a standard topic
in many textbooks at different levels, both undergraduate and
graduate, and the natural ground for the discussion of non-
linear effects; as a matter of fact, it is the first example of
nonlinear problem that many students discuss in their classes.
A good understanding of this example, both of the physical
and of the mathematical aspects of the problem, is therefore
very valuable in helping the student to later understand more
complicated physical problems and to dominate the different
methods used to deal with nonlinear problems.

Our purpose in the present paper is to illustrate a simple
and effective procedure to calculate the period of oscillation
of a pendulum. The method that we propose here can also
be used to familiarize the student with the ideas of perturba-
tion theory and of “non–perturbative” techniques; it is based
on the ideas of the Linear Delta Expansion (LDE), which
has been very effective in dealing with a very large class of
problems, ranging from classical and quantum mechanics to
quantum field theory (a very partial list is given by [9–11]
and references therein).

The first encounter of a student with these topics is prob-
ably in the classes of quantum mechanics, where the appli-
cation of the techniques to higher orders is normally compli-
cated by the presence of operators. Classical mechanics pro-
vides a useful ground for introducing the idea of perturbation

theory and non–perturbative methods, retaining the general
features of the methods but without many of the complica-
tions arising from quantum mechanics.

The paper is organized as follows: in Sec. 2 we set up
the problem and derive the fundamental equations; in Sec. 3
we describe a method to evaluate the formulas obtained in
Sec. 2 and we compare our formulas with the formulas in the
literature; finally in Sec. 4 we draw our conclusions.

2. The simple pendulum

A pendulum of massm and lengthl oscillating in the (con-
stant) gravitational field of the Earth obeys the nonlinear dif-
ferential equation

θ̈ +
g

l
sin θ = 0, (1)

whereθ is the angle that the pendulum forms with the verti-
cal direction, andg ≈ 9.81 m/s2 is the acceleration due to
gravity. A pendulum initially at rest with a certain angleθ0

will perform oscillations of fixed amplitudeθ0 (provided that
friction is not present) and of given periodT once it is re-
leased. Although in the laboratory it is not possible to elimi-
nate friction completely, thus observing damped oscillations
of the pendulum, in our discussion we assume that it can be
neglected and consider the idealized problem of a conserva-
tive pendulum.

Under this restriction we write the energy of the pendu-
lum as

E =
1
2
m l2 θ̇2 + m g l (1− cos θ) . (2)
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FIGURE 1. Phase space portrait for the nonlinear pendulum.

It is customary to discuss Eqs. (1) and (2) in the limit of
small oscillations, where the trigonometric functions can be
replaced be the leading order contributions stemming from
their Taylor series; in this a case, one recovers the equation
for the simple harmonic oscillator,

θ̈ +
g

l
θ = 0 , (3)

with a period independent of the amplitude,T0 = 2π
√

l
g .

When larger amplitudes are considered, the period turns
out to depend upon the amplitude, a typical outcome when
nonlinearities are present; the precise form of such depen-
dence can be calculated using the equation for the conserva-
tion of energy, Eq. (2), and writing

T =

+θ0∫

−θ0

√
2m l√

E −m g l (1− cos θ)
dθ . (4)

Given that the potential energy calculated at the inversion
points equals the total energy, we can also write

T =
T0

π

+π/2∫

−π/2

dx√
1− sin2 θ0

2 sin2 x
, (5)

which can be cast directly in terms of the elliptic integral of
first kind as

T =
2T0

π
K

(
sin2 θ0

2

)
. (6)

Equation (6) is the exact expression of the period of os-
cillation of the simple pendulum, which is found in standard
textbooks of classical mechanics. In Fig. 1 we display the
phase space for the pendulum.

3. The method

Although nowadays the numerical evaluation of expressions
such as that of Eq. (6) poses no problem, and a value can

be obtained with the desired accuracy for given values ofθ0,
analytical approximations to Eq. (6) can be very valuable in
practice.

We will proceed to derive such approximations follow-
ing two different strategies: first we will describe a perturba-
tive method, which corresponds essentially to individuating
a small parameter in the problem and then perform a Tay-
lor expansion in that parameter; in a second stage, we shall
develop a non-perturbative procedure which does not rely on
the presence of a small parameter and show that it can be used
to obtain a very precise formula valid also for the large angle
oscillations of a pendulum.

The starting point of our discussion is the general expres-
sion for the elliptic integral of first kind, which for conve-
nience we write as

K(m) =

1∫

0

dt√
(1− t2) (1−mt2)

, (7)

with 0 < m ≤ 1. Note thatK(m) diverges atm = 1i. The
parameterm is easily related to the amplitude of the oscilla-
tions by looking back at Eq. (6).

For |m| < 1, one can Taylor expand the integrand of
Eq. (7) and obtain the series

K(m) =
π

2

{
1 +

∞∑
n=1

[
(2n− 1)!!

(2n)!!

]2

mn

}
. (8)

Since the purpose of converting the integral into a series
is to obtain an easily applicable expression, we do not want
in practice to evaluate many terms of the series, but only the
first few terms, depending on the precision that we wish to
achieve. Besides, although in the present example it is a
straightforward task to find the structure of a term of a given
order in the perturbative series, this is usually not the case; for
example, standard perturbation theory in quantum mechanics
requires, for each order, the evaluation of matrix elements
of the potential with respect to a given basis, and perturba-
tion theory in quantum field theory requires the evaluation
of Feynman diagrams for each perturbative order (typically
the calculation of these diagrams becomes more and more
involved as the perturbative order grows).

If we truncate the series of Eq. (8) and consider the terms
up to orderO

[
m3

]
, we obtain

K(m) ≈ π

2

[
1 +

1
4

m +
9
64

m2 + . . .

]
, (9)

a formula that can be used to obtain accurate estimates of the
period of the simple pendulum for small angles. Notice that
only the term of order zero in Eq. (9) is independent ofm,
i.e. of the amplitude of the oscillations; this is the reason of
the isochronism of the small amplitude oscillations of a pen-
dulum.

We will now describe how a non–perturbative series can
be obtained: loosely speaking we refer to a method as being
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“non–perturbative” when it does not correspond to an expan-
sion in some small parameter. As anticipated, the method
that we propose is inspired by the “Linear Delta Expansion”
(LDE), which we briefly explain as follows.

We first generalize Eq. (7) to

Kδ(m) =

1∫

0

dt√
(1− t2) (1 + λ− δ(λ + mt2))

(10)

whereδ is parameter which has been introduced to permit
power counting.λ is an arbitrary parameter, which disap-
pears in the limitδ → 1. Clearly, by settingδ = 1 in Eq. (10),
one recovers the original integral. On the other hand, one can
define

∆(t) ≡ −λ + mt2

1 + λ
, (11)

and write:

Kδ(m) =

1∫

0

dt√
(1− t2) (1 + λ)

1√
1 + δ ∆(t)

. (12)

For |∆(t)| < 1, which is fulfilled forλ > −1/2, we can
expand the last term as:

1√
1 + δ ∆(t)

=
∞∑

k=0

Γ(1/2)
k! Γ(1/2− k)

δk ∆k(t) (13)

and obtain

Kδ(m) =
√

π

2

∞∑

k=0

k∑

j=0

Γ(1/2)Γ(j + 1/2)mj

j!2(k − j)!Γ(1/2− k)
δk(−1)k

× λk−j

(1 + λ)k+1/2
(14)

after performing the integrals. Note that Eq. (14) provides
a family of series which all converge to the elliptic integral
K(m) for λ > −1/2 andδ = 1ii; as before, we are not inter-
ested in evaluating the series, but rather in obtaining a precise
and simple approximation with few terms. For this reason
we consider the partial sum truncated atk = N , KN (m);
whereas the infinite series is independent ofλ, the partial se-
ries displays a dependence uponλ, as a direct consequence
of having neglected an infinite number of terms. For a fixed
order,i.e. for a given value of the “cutoff”N , we minimize
this unwanted effect by applying the Principle of Minimal
Sensitivity (PMS) [12] to the partial sum:

d

dλ
KN (m,λ) = 0 . (15)

We can understand Eq.(15) in the following way: the exact
solution,K(m), is independent ofλ and therefore it is a hor-
izontal line when plotted versusλ; Eq. (15) selects the points
where the curveKN (m,λ) is closer to be a horizontal line,
namely its extrema.

The solution to this equation selects the value ofλ for
which the approximation is less sensitive to changes inλ it-
self; remarkably, this equation permits a real root only for
oddN , and it is given by

λPMS = −m

2
, (16)

independently of the orderN . For the leading order,N = 1,
we find the simple expression

K
(pms)
1 (m) =

π/2√
1−m/2

. (17)

We observe that this expression, although calculated to
the first order, is non–polynomial in the parameterm; this
feature is a direct consequence of having imposed the PMS,
which provided us with anm-dependent value ofλ. We
also remark that our optimized expansion has a singularity
atm = 2, contrary to the exact function, which is singular at
m = 1. Of course the perturbative result to the same order
(and to any finite order) does not show any singularity at a
finite m, being a polynomial:

K
(pert)
1 =

π

2

[
1 +

m

4

]
. (18)

When a larger number of terms is considered, the series
corresponding to the optimal value ofλ = −m/2 is seen to
provide a faster convergence rate than the “perturbative” se-
ries with the same number of terms (see Fig. 2). For larger
values ofm, the rate of convergence is smaller, as can also be
appreciated by looking at Table I, where we have changedm,
keeping the number of terms in the trucated series fixed. In all
cases we see that our non-perturbative (PMS) series performs
much better than the corresponding perturbative series.

As we mentioned before, the PMS series that we have ob-
tained does not have a singularity atm = 1; this behaviour
clearly limits the accuracy of partial sum for values ofm
close to1, i.e. for large angles of oscillation. In order to re-
move this problem and obtain a solution valid even for large
angles, we resort to Padé approximants, which are based on
finding rational approximation reproducing a given expres-
sion. Pad́e approximants are very useful in treating many
problems in classical and quantum mechanics [10].

FIGURE 2. log10 |K(m) − KN (m)| assumingm = 1/2 for a
given number of terms in the series. The circles correspond to the
PMS and the pluses to the perturbative series.
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TABLE I. Comparison between the perturbative and PMS series calculated with ten terms as a function ofm. The underlined digits are
correct.

m Perturbative PMS Exact

0 1.5707963267948966 1.5707963267948966 1.5707963267948966

0.1 1.6124413487197300 1.6124413487202193 1.6124413487202193

0.2 1.6596235974954030 1.6596235986103125 1.6596235986105280

0.3 1.7138893394309329 1.7138894481207263 1.7138894481787910

0.4 1.7775164193762719 1.7775193674684559 1.7775193714912533

0.5 1.8540343814512505 1.8540745400483682 1.8540746773013719

0.6 1.9492054685236691 1.9495646343304475 1.9495677498060258

0.7 2.0728570634903909 2.0753069315791747 2.0753631352924691

0.8 2.2422064609192961 2.2562784055980924 2.2572053268208536

0.9 2.4876684240301022 2.5612167205241527 2.5780921133481731

TABLE II. Maximum angle for which the different formulas for the period provide an error below1%.

K1(pert) K1(PMS) KParwani KPade KPade+Landen KCromer

θmax 60◦ 75◦ 135◦ 166◦ 179◦ 152◦ < θ < 180◦

FIGURE 3. Error overK(m) using the Pad́e formula, the Landen
formula and the Formula of Cromer.

FIGURE 4. Amplification of Fig. 2 in the proximity ofm = 1.

We proceed as follows: we consider the function

Φ(m) ≡
[

K(m)
Kpms

1 (m)

]a

=

[
2
√

1−m/2K(m)
π

]a

(19)

and calculate its Padé approximant[2, 1]. For the moment
being,a is an arbitrary parameter which will have to be fixed
later.

In the present case, the Padé approximant [2,1] turns out
to be

[Φ(m)][2,1] =
1−m + 3am2

64

1−m
. (20)

This expression has the remarkable property of having the
singularity at the correct pointm = 1, independently of pa-
rametera. We can now invert the equation definingΦ and
write

K(m) = [Φ(m)]1/a
Kpms

1 (m)

≈
[

1−m + 3am2

64

1−m

]1/a
π/2√

1−m/2
. (21)

We can follow different strategies to fixa; for example,
the expression that we have found forK(m) reproduces cor-
rectly the coefficients of the Taylor expansion inm up to or-
derm3. By settinga = 35/6, the terms going likem4 and
m5 are also reproduced (notice that by promotinga to a func-
tion ofm one could systematically reproduce the higher order
terms, although we do not consider this improvement here).
We have found numerically that the best results are obtained
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for a ≈ 13/2, which gives us the remarkably simple formula

Kpade(m) =
[
1−m + 39

128m2

1−m

]2/13
π/2√

1−m/2
. (22)

This formula can still be drastically improved by us-
ing the Landen transformation [13], which relates the values
taken by the elliptic integral at different points:

K(m) =
1

1 +
√

m
K

(
4
√

m

(1 +
√

m)2

)
(23)

and

K(m)=
2(1−√1−m)

m
K

(
(−2+2

√
1−m+m)2

m2

)
. (24)

The first formula relates the value of the elliptic integral
K(m) with the value at a larger point

m1(m) =
4
√

m

(1 +
√

m)2
;

the second formula relates the value of the elliptic integral
K(m) with the value taken at a smaller point

m2(m) =
(−2 + 2

√
1−m + m)2

m2
.

Equation (24) can be applied to any approximate expres-
sion ofK(m) valid for smallm, changing it into an expres-
sion which becomes valid for much larger values ofm. In-
deed a repeated application of the transformation makes it
possible to obtain arbitrarily accurate values ofK(m) for any
given value ofm. We have applied the Landen transforma-
tion to our Eq. (22) and we have compared the error, defined
as

|K(m)−Kapprox(m)|
K(m)

× 100,

with the errors found using Eq. (22) and the equation of
Cromer [7], valid form → 1, which is given by

KCromer(m) =
1
2

log
16

1−m
. (25)

In Fig. 3 we have plotted the three errors observing that
even the simple formula (22) provides an excellent approxi-
mation up to quite large values ofm. Indeed, in Fig. 4 we
have made an amplification of Fig. 3 close tom = 1 and
seen that Eq. (22) provides an error smaller than 1% up to

m ≈ 0.986; the Landen improved formula, which however
is as simple as the previous one, provides an error smaller
than 1% up tom ≈ 0.99999. We also notice that Eq. (25)
performs better than our formula only form > 0.98, corre-
sponding to an angleθ ≈ 164◦.

Another approximate formula for the period of the pen-
dulum has also been derived recently by Parwani [6]:

KParwani =
π

2

( √
3

2 θ

sin
√

3
2

)1/2

, (26)

providing good approximations for the period of the pendu-
lum up to moderate values of the amplitude. In Table II, we
have calculated the value of the maximum angle for which
a maximum error of1% is obtained, using the different ap-
proximations. Using our formula (22), we are able to reach
a maximum angle of166◦, despite its simplicity, compared
with the value of135◦ reached by Parwani.

4. Conclusions

In this paper we have derived a simple formula for the large-
angle oscillations of the nonlinear pendulum, which com-
pares quite favorably with other expressions found in the lit-
erature and has the advantage of being based on a systematic
approach (and therefore of being improvable to any desired
level of accuracy) and of never involving special functions.
In its present form our formula based, on the LDE and on the
Pad́e approximants, reaches a precision which is sufficient for
all practical applications.

The main goal of the paper, however, was not to derive
another approximate formula for the period of the pendulum.
Although this formula is valuable and useful in practice, we
believe that far more valuable is the explanation to the reader
to non-perturbative techniques such as the LDE or the Padé
approximants; these techniques are normally used in attack-
ing more difficult problems in quite diverse areas of Physics,
from classical and quantum mechanics to quantum field the-
ory, and we believe that the pendulum can be used as a first
example where a student can become familiarized with no-
tions which are usually encountered much later in his studies.
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i. By looking back at Eq. (6) we see that physically this is related
to the fact thatθ = π is a point of unstable equilibrium.

ii. The reader can convince himself that the “perturbative” series,
Eq. (8), corresponds to Eq. (14) takingλ = 0.
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