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Continuous groups of transformations and time-dependent invariants
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In this paper we present a very simple derivation of the constants of motion for dynamical systems, which requires only an elementary
knowledge of the theory of continuous groups. In addition, through the infinitesimal Lorenz transformations group, we obtain a clear
interpretation of the invariant for the harmonic oscillator.
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Se presenta un @todo sencillo para la derivari de las constantes de movimiento de sistemaandiitos, la cual requiere solamente cono-
cimientos elementales de la temde grupos continuos. Adéxrs, mediante las transformaciones infinitesimales de Lorentz, se obtiene una
interpretaddn clara del invariante para un oscilador anito.
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1. Introduction presented here, in contrast to Ermakov’s method for finding
invariants, we do not need an auxiliary equation in order to

In recent years, many authors have investigated Ermakov'gbtain the invariants [5, 6].

invariants for linear dynamical systems, such as the harmonic The outline of the paper is as follows: in Sec. 2 we obtain

oscillator [3, 4, 6, 7], and some of them have generalized théhe constant of motion and in Sec. 3, via the Lorentz transfor-

applications to non-linear systems described by a more gemmation, we interpret the invariant for the case of a harmonic

eral Lagrangian [5, 8, 9]. However, a clear physical inter-oscillator. Finally, in Sec. 4 some concluding remarks are

pretation of the invariants of motion has not been given, algiven.

though a general interpretation has been mentioned [9, 11].

On the other hand, Lutzky derived constants of mption f_rom2. Continuous groups of transformations and

the eight-parameter symmetry group for the one-dimensional Noether's invariant

harmonic oscillator using Noether’s theorem [3, 4] and sug-

gested a physical interpretation. Besides the mathematicgly s suppose that we have a one-parameter group of trans-

interest in finding invariants, from the physical point of ViewW tqmations written in the form

their relevance lies in the fact that in some cases the differ- , o

ential equations that describe the evolution of the systems are = f(a%a), i,j=1,2..n, (1)

not easy to solve but they admit invariants, and the knowledge . . o
. ) . . “With a = qg for the identity,i.e.,

of certain functions of the coordinates and momenta which

remain constant during motion can be of great help in simpli- 17 (xi; ao) - (2)

fying the equations of motion, and can lead to their solution. A _ ) _

In contrast to Lutzky derivation, in this paper we present, as L€t f/ be the solution of the system of ordinary differen-

an alternative method, a very simple way to obtain invariantdial €quations .

using only elementary notions of the theory of continuous af’ = ¢ (jz) ¥ (a), (3)

groups and Noether’s theorem. We also give an interpretation = | o da - )

of the invariants using the generator of the transformationSatisfying the initial conditions (2) [1,2]. If we define param-

which is possible thanks to the fact that Noether’s symmetryftert by

is a Lie point transformation that leaves the action invariant,

up to an additive time constant that is a function of the group

parameter [12, 13]. In this paper, Eq. (13) is used to find

the physical interpretation of the invariants, and this equatiothent = 0 yields the identity, and Eq. (3) becomes

is precisely the generator of the one-parameter infinitesimal did o

transformation. It is important to note that, with the method - ¢’ (fl) . (5)

t= /azb(a) da, (4)
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Assuming the functiong’ to be regular in the domain then the system described by the Lagrandién, i,¢) has a

of 2%, the integral of (5) can be written in the form

=2l + ¢ ()t (6)

which can be considered to be an infinitesimal transformatio

of the group with a generator given by

Noether symmetry associated with the group operator (13).
The introduction of¢ in Eq. (16) is not artificial since it

denotes derivation, with respect to the parameter, of the
derivative of the transformed time with respect to the non-

Yransformed time. Whenis considered as a variablé ap-

pears explicitly.

.0 By means of the following relations

Go = éﬁ- (7)
v oL (9L OL. OL,
In fact, Eq. (1) can also be thought as a coordinate trans- 5@ - (E B %I i )5’
formation that satisfies @@_i(aj )_i(ai)
5 of di dt  dt\oi" a1/
T ot oL d¢ oL
9i " dt %( 5)** f**(a*)xg’ (17

wherez! denotes the differentialz’.

Equations (1) and (8) define the extended group of transgq. (16) can be transformed into

formations in the2n variablesz® andz? whose generator is

given by
0 0
G(l)a_gaa j +€ 1)aa ]1‘7 (9)
with oci
gl)a (xi,;vi) = 8—%‘;1’1“ (10)

For the case of two variablds®, 22), the generator (9)

reduces to
8
Glie = Ehpr + &5y
852 (“)53 aé_; 2’ 2/ 28&1 9
+[3x1+<8x2_5‘x1 * _<m ) 0z? | 0z’ (1)
where the relations
v om0 a0 0 0,
—x%, Bl x &Clax and 522 _8 70
have been used.
Substituting
fl
zl=ct, 2?=u, ?a g &=mn, (12)
Egs. (7) and (11) transform into
0
Ca 5at+”ax (13)
and
0 0 0
={— 14
G1)a fat U (77 533) (14)
respectively, wherg andé represent the total derivatives
on . 0n 0§ 0
o i Tatimn WD)

53 (5) o=

dr, .. OL
= Slei-mT —eL+s]. a9
When the Lagrange equation is satisfied, the left hand
side of Eq. (18) vanishes and it follows immediately that
. OL
¢—(§w—n)%—§fi+f (19)
is a constant of motion.

Equation (19) represents an invariant whose physical
meaning has direct dependence with the selection of the pa-
rameters of the equation of motion and that of the transfor-
mation as well. In the following section, we provide an in-
terpretation of this invariant for a special selection of the La-
grangian and the functiorgsands.

3. Lorentz infinitesimal transformations and
the interpretation of the invariant in clas-
sical mechanics

Let v,, be the four-dimensional space-time with coordinates
zJ, and f7 the Lorentz transformation&? (v(t)), so that

Eqg. (1) gives 4
= Li(o(t))z’

In this expression, the velocity is considered to be a func-
tion of the parametet, such that fort = 0, v = 0. Us-
ing Eqg. (20), one can calculate the variation with respe¢t to
of any function of the velocities and coordinatégr’ (v?)),
which can be written as

(20)

If £ andn can be chosen so that the application of theWith

symbol of the group (14) to the Lagrangiariz, i, t) gives

Gyl = f — €L, (16)

L) =emF=cgl ()
) J ) a
e- (Gl =Gl @
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wheree® are the vectors of the basis and #ieare the com- On the other hand, using (22), Eqg. (16) can also be writ-
ponents of the infinitesimal Lorentz transformation. Then,ten as

the components of the corresponding linear operator can be i
written as OL; | gi(9L 4oL
g ﬁg thi ov® t=0 oxd  dt 0z9
T\ or 0x? ;
OL] d ( ;0L\ _
* (a) | it (#505) =0 @D

whose first term vanishes, because of Hamilton’s variational

zt 0 o ;
S (e A principle, so it reduces to
A (Zat% )
so that 4 (oL iOL | _ 2
dt Kava |t:0x gar |~V (28)
r-e0

A= A1€1 =+ A2€2 + A3€3 = |: —te- ?:| (23)

2 ot
is the generator of the Lorentz transformation group, and th
commutatorgA4,, As], [A1, A3] and[Az, As] provide the 3-
dimensional rotating group

With the aid of (22), the identification @f and#, and keep-
ing in mind the fact thabL/0i’ = p;, Eq. (28) states
the invariance under Lorentz infinitesimal transformations of
(x —v't).

B=— xV. (24) 4. Concluding remarks

Ul =

In this paper, we have obtained an alternative derivation of the
Noether invariants. Besides, using the infinitesimal Lorentz
transformations (23) we have given a physical interpretation
of the Noether invariant for the special case of the harmonic

7.9 9 9 oscillator characterized by the Lagrangian (25). This result
L=3 [x W }5 (25) generalizes that obtained by Retyal.[11] for the time trans-

) ) ) lational invariance of isolated systems.

comparing Egs. (13) and (23), we can establish the identi- e physical interpretation of the invariants for different

With these concepts, it is possible to give a physical in-
terpretation of the invariant [Eq. (19)] for a special case.
Let us consider a harmonic oscillator with Lagrangian

ties§ = x/c® andn = —t, so that with the aid of Eq. (25), gentifications of the parameters, which yields conservation
expression (19) yields laws as well, is still an open problem and an extension of
v rmoi?  ka? P Eqg. (10) to three and four_dimensions is_needed, i_n order

= o] e + - + moc® + mo—- | (26) to analyze two and three dimensional motions. In this case,

Eq. (24) will play an important role, because it provides the

which means that the total energy is conserved at ever§onservation law of angular momentum.

point z. The quantity in parentheses contains all the forms

of energy of the system: kinetic, potential and rest energy, agcknowledgments
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