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Propagation of the information in a one-way quantum computer
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Both linear momentum and Poynting vector associated with the propagation of information in a one-way quantum computer are studied. It
is found that, within the so-called Mean Field Theory (MFT) approximation the total energy, the linear momentum and the Poynting vector
associated with the propagation of information are invariant under arbitrary rotations of logical qubits. This means that propagation of the
quantum information stored in the entangled state does not depend on the choice of the quantum gates. Due that the involved cluster of
neighboring particles is large enough, last property satisfies the scalability test. As a consequence, quantum information in the one-way
computer is read, written and processed independently of this choice, which suggests a simple hardware for it. When an external magnetic
field is switched on, the invariance under arbitrary rotations of the logic qubits of these quantities is lost, that is, the field induces a preferential
direction of propagation of the information which at the same time is optimized while more intense be the field.
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Se estudia tanto el momento lineal como el vector de Poynting asociados a la propagación de la informacíon en una computadora cuántica
de un solo camino. Se encuentra que dentro de la aproximación de la Teoŕıa del campo medio la energı́a total, el momento lineal y el vector
de Poynting asociados a la propagación de la informacíon son invariantes bajo rotaciones arbitrarias de qubits lógicos. Esto significa que
la propagacíon de la informacíon almacenada en el estado enredado no depende de la elección para las compuertas cuánticas. Debido a
que el ćumulo involucrado de partı́culas vecinas is suficientemente grande, la anterior propiedad satisface la prueba de escalabilidad. Como
consecuencia de lo anterior, la información cúantica en la computadora de un solo camino es leı́da, escrita y procesada independientemente
de tal eleccíon lo cual sugiere un hardware simple para ella. Cuando se enciende un campo electromágnetico externo, la invariancia del
momento lineal y del vector de Poynting bajo rotaciones arbitrarias de los qubits lógicos se pierde, esto es, el campo induce una dirección
preferente de propagación de la informacíon la cual a la vez estáultima es optimizada mientras más intenso sea el campo.

Descriptores:Informacíon; propagacíon; vector de Poynting; invariancia.
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1. Introduction

Altough basic principles of a quantum computer have been
demonstrated in the laboratory [1], scalability of these sys-
tems to a large number of qubits [2] in order to reach an op-
erative quantum computer is still a challenge. The point is
that the experimental devices tested so far employ sequences
of highly controlled interactions between selected qubits ac-
cording to the rules of quantum mechanics. In order to
process information through the controlled manipulation of
qubits, these experiments follow models of quantum comput-
ers as a network of quantum logic gates [3,4].

The one-way quantum computer was proposed by Briegel
and Raussendorf (BR) in Ref. 5 as an alternative model of
universal, scalable quantum computationi. The BR model
starts from the assumption that physical registers are con-
tained in the spinσa

x while it acts on the multi-qubit entan-
gled state (clusterC)⊗a∈C |+〉a (whereσ(a)

x |±〉a = ±|±〉a).
This observable property means that, in the process of com-
putation (i.e. during the rounds of qubit measurement), all
entanglement in the cluster states is destroyed, so that the
cluster can be used only once. This is the origin of the name
“one-way” quantum computer.

The BR model proposed in Ref. 5 is a serious attempt
to account for the process of information in a quantum com-
puter, seen it as a sequential network of quantum logic gates.
However, it is worth pointing out that in this work it was not
considered the concerning to the properties of the physical
propagation of the information in the one-way computerii.
Furthermore, in Ref. 5 they did not consider any suggestion
concerning the question of how complicated the respective
hardware might be.

To shed light on the last two points, in this work we study,
within the BR one-way computer model, both the linear mo-
mentum and the Poynting vector associated with the propaga-
tion of information at very low temperatures. By employing
the MFT approximation [7] for the nearest-neighbors Ising
hamiltonian, it is shown that both of the above quantities re-
main invariant under arbitrary rotation of the logic qubits.
This last can be interpreted as an independence of the propa-
gation of the information on the choice of the quantum gates.
Consequently information in the one-way computer is read,
written and processed in a simple one-way hardware. In ad-
dition it is shown that, when an external magnetic field is
turned on, the invariance of both the linear momentum and
the Poynting vector under arbitrary rotations of logic qubits
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FIGURE 1. Diagram of processing of the information. Before mea-
surements, the qubits are in a cluster state. Circles¯ symbolize
measurements ofσx. Tilted arrows refer to measurements in the
x− y plane.

is lost. This means that the external magnetic field induces
a preferent type of register for the transmission of the infor-
mation. This behaviour can be used to arrange the device in
order to optimize the propagation of the information.

The paper is organized as follows. In Sec. 2 are described
the main features of the BR quantum computer model. Sec-
tion 3 contains the central part of the present work since there,
an effective expression is derived for both the linear momen-
tum and the magnitude of the Poynting vector associated with
the propagation of the information. In this same section, a
proof is given of both the invariance of these quantities under
arbitrary rotation of the logic qubits as well as the lost of their
invariance in the presence of an external magnetic field. The
work concludes with a discussion of the results.

2. The BR model

According to this scheme, the entire resource for quantum
computation is provided by an entangled state called cluster
state|φ >C of a large number of qubits. Information is then
written onto the cluster, processed and read out from the clus-
ter by one-particle measurements only. The way the cluster
states are prepared is through a lattice configuration with an
Ising interaction between two-state particles at very low tem-
peratures. Thus, by switching on the Ising interaction for an
appropriate chosen finite time intervalT , and switched off
afterwards, the entangled state is activated.

Figure 1 illustrates the processing of the quantum infor-
mation in the clusterC in a certain order and in a certain ba-
sis. The cluster qubits are displayed as dots¯ or as arrows↗,
↑, depending on the respective measured observables. These
measurements will induce a quantum processing of logical
qubits. The horizontal spatial axis on the cluster can be asso-
ciated with the time axis with the direction of the ‘informa-
tion flow’. Measurement of the observable

σx =
(

0 1
1 0

)

will effectively remove the respective lattice qubit from the
cluster htus breaking the entanglement of the quantum state.
This property allows one to structure the cluster state on the
lattice and imprint a network-like structure on it (the gray un-
derlay in Fig. 1). For further details on the model we refer
the reader to Ref. 5.

In the present work the MFT approximation, is employed
and we consider considered two and three-dimensional arrays
of qubits that interact through an Ising-type next-neighbors
interaction described by the hamiltonian [7]

H = −α(t)J
∑

a,a′
σ(a)

x σ(a′)
x , (1)

whose dimensionless strengthα(t) can be controlled exter-
nally. [J ] is in ergs. EnergyH is switched on for an appro-
priate chosen finite time intervalT , where

∫ T

0
dtα(t) = πT .

To create a cluster state|φ >C on clusterC from a prod-
uct state⊗a∈C |+ >a, (whereσ

(a)
x |± >a= ±|± >a), the

Ising-interaction is switched on for an appropriately chosen
finite time interval T, and is switched off afterwards. Since
the Ising Hamiltonian acts uniformly on the lattice, an entire
cluster of neighboring particles becomes entangled in a single
step.

The horizontal spatial axis on the cluster can be associ-
ated with the time axis of the implemented quantum circuit,
i.e. with the direction of the “information flow”. As will
be explained, measurements of observablesσz effectively re-
move the respective lattice qubit from the cluster. This prop-
erty allows one to structure the cluster state on the lattice and
imprint a network-like structure on it (displayed in Fig. 1 in
gray underlay).

3. Propagation of the information

Before studying in detail the characteristics of the propaga-
tion of the information a proof is given first of the invariance
of the Ising hamiltonian of Eq. (1) under the following arbi-
trary rotations of the logic qubits of the clusterC:

R = ⊗b∈C(cos ϕbσ
(b)
x ± sin ϕbσ

(b)
y ), (2)

where

σ(b)
x =

(
0 1
1 0

)

and

σ(b)
y =

(
0 −i
i 0

)

are Pauli matricesiii.
It is obvious thatR is a self-adjoint operator:RH = R.

In addition, it also has the property of unitarity, that is,
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RHR = ⊗b∈C(cos ϕbσ
(b)
x ± sin ϕbσ

(b)
y )⊗b′∈C (cos ϕb′σ

(b′)
x ± sin ϕb′σ

(b′)
y )

= ⊗b∈C(cos ϕbσ
(b)
x ± sin ϕbσ

(b)
y )(cos ϕbσ

(b)
x ± sin ϕbσ

(b)
y ) = ⊗b∈C(cos2 ϕb + sin2 ϕb)I(b) = I (3)

3.1. Invariance of the hamiltonian

From the properties of Pauli matrices, it is easy to see that the hamiltonian of Eq. (1) is invariant under the arbitrary rotations
of logic qubits (2); indeed,

RHHR = ⊗b∈C(cos ϕbσ
(b)
x ± sin ϕbσ

(b)
y )

[
−α(t)J

∑

a,a′
σ(a)

x σ(a′)
x

]
· ⊗b′∈C(cos ϕb′σ

(b′)
x ± sin ϕb′σ

(b′)
y )

= ⊗b∈CI(b)
[
−α(t)J

∑

a,a′
σ(a)

x σ(a′)
x

]
= H. (4)

The meaning of the above result is that the energy associ-
ated with the propagation of the information does not depend
on the choice of the logic qubits (quantum gates).

From the relationP = H/c, whereP is the linear mo-
mentum associated to the propagation, it is inferred from
Eq. (4) that the information is processed independently of the
choice above mentioned.

At this stage, it needs to be emphasized that the Ising
hamiltonian (1) acts uniformly on the lattice; thus the en-
tangled state composite by the neighboring particles is large
enough, and consequently the invariance of the above quan-
tities passes the test of scalability.

3.2. Invariance of the Poynting vector

Within the so-called Mean Field Theory (MFT) approxima-
tion [7], the resultant force acting on a given particle is
teplaced by an effective external field. Here, it will be as-
sumed that the role of the neighboring particles is to create an
average molecular field that acts on the particle under study.
This situation is illustrated in Fig. 2.

According with the MFT approximation, the force ex-
erted on the qubitσ(a)

x due to the nearest neighbors is

− ∂H

∂σ
(a)
x

= α(t)J
∑

a′
σ(a′)

x ; (5)

consequently, the instantaneous magnetic field acting onσ(a)

is

B(a) = α(t)J
∑

a′
σ(a′)

x ; (6)

The Poynting vector associated with the propagation of
the information is then

S =
c

µo

(
B(a)

)2

ê1 =
c

µo
α(t)2J2

∑

a′,a′′
σ(a′)

x σ(a′′)
x ê1. (7)

FIGURE 2. Sketch of Mean Field Theory Effective Interaction. (2a)
Nearest neighbor interaction. (2b) Resultant Effective Field.

By using Eq. (4), it is straightforward to conclude that the
Poynting vector associated with the propagation of the infor-
mation is also invariant with respect to an arbitrary rotations
of the logic qubits given by (1); indeed,

RHSR = S. (8)

Because the clusterC is large enough, the property of
invariance ofS is scalable.

From the above equation, it follows that, in the MFT ver-
sion of the one-way quantum computer, the information is

Rev. Mex. F́ıs. E53 (1) (2007) 115–119



118 M.A. AVILA

read, written, and processed independently of the logic qubits
of both propagation and CNOT gate, which suggest a simple
hardware for it.

3.3. An external magnetic field is switched on

When an external magnetic field is applied to the one-way
computer along the direction of the propagation of the infor-
mation, the respective hamiltonian will be

HB = −α(t)J
∑

a,a′
σ(a)

x σ(a′)
x − β(t)B

∑
a

σ(a)
x , (9)

whereβ(t) is the dimensionless strength which is both con-
trolled externally and activated within an interval of timeT
such that

T∫

0

dtβ(t) = πT.

In the present case, it is straightforward to show that the
invariance of the respective hamiltonian with respect to the
arbitrary rotation of the logic qubits is lost; in fact apply-
ing (3) to (9), we obtain

RHHBR=−⊗b∈C (cos ϕbσ
(b)
x ± sin ϕbσ

(b)
y )

[
α(t)J

∑

a,a′
σ(a)

x σ(a′)
x +β(t)B

∑
a

σ(a)
x

]
· ⊗b′∈C(cosϕb′σ

(b′)
x ± sin ϕb′σ

(b′)
y )I(b′)

= −α(t)J
∑

a,a′
σ(a)

x σ(a′)
x − β(t)B ⊗b∈C (cos2 ϕb − sin2 ϕb)I(b)

∑
a

σ(a)
x . (10)

This equation says that the invariance of the energy is satis-
fied only if ϕb = 0, π.

From Eq. (10), it is possible to conclude that an exter-
nal magnetic field applied to the one-way computer induces a
preferential direction of propagation of the information along
the direction of the field.

The MFT magnetic field acting on the qubitσ
(a)
x should,

be in this case

− ∂HB

∂σ
(a)
x

= α(t)J
∑

a′
σ(a′)

x + β(t)B, (11)

where use has been made of Eq. (9).
From the above equation the Poynting vector associated

with the one-way computer in the presence of an external
magnetic field will be

SB =
c

µo

[
α(t)2J2

∑

a,a′
σ(a)

x σ(a′)
x

+ 2α(t)β(t)JB
∑

a

σ(a)
x + β2(t)B2

]
ê1. (12)

By exactly the same arguments that led to Eq. (10), it
follows that

RHSBR =
c

µo

[
α(t)2J2

∑

a,a′
σ(a)σ(a′)

+ 2⊗b′∈C (cos ϕb′σ
(b′)
x

± sin ϕb′σ
(b′)
y )I(b′)α(t)β(t)JB

∑
a

σ(a)

+ β2(t)B2

]
ê1, (13)

which means that, in this case, the invariance of the Poynt-
ing vector associated with the propagation of the information
under arbitrary rotations of logic qubits is also lost.

4. Conclusions

From the above statements, it is clear that the processing of
the information in the one-way quantum computer is possi-
ble even though the result of every individual measurement in
any direction of the Bloch sphere is completely random. This
is made explicit to check here that the respective hamiltonian,
the linear momentum and the Poynting vector associated with
the one-way quantum computer are invariant under rotation
of the logical qubits. This result means that quantum infor-
mation is propagated through the cluster and processed with-
out the choice of the CNOT-gate between two logical qubits.
Due that the involved number of qubits is large enough, this
property is scalable.

At this point it is stressed that, independently of the rota-
tion of the observablesσx andσy, the observablesσz will ef-
fectively remove the respective lattice qubits from the cluster.
As it was shown above, the invariance of the hamiltonian and
Poynting vector is lost whenever an external magnetic field
is turned on. This result is that the magnetic field induces a
preferent direction of propagation of the information, along
the direction of the field itself. In other words, the exter-
nal field induces a preferent register of information. Within
the present scheme, one must distinguish between physical
qubits in the cluster and the logical qubits. The physical
qubits or cluster qubits form an entangled resource where
their one-qubit measurement state operates the computation.
On the other hand, the logical qubits constitute the quan-
tum information being processed. At this stage, one ques-
tion arises and it is related to the behaviour of the respective
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hamiltonian and Poynting vector under rotations of the phys-
ical qubits. The answer to this question is that Ising-type
quantities present are written and formulated in terms of log-
ical qubits, and not in terms of logical qubits; consequently,
they do not suffer changes under rotations of physical qubits.
To conclude, it is pointed out that, if the external magnetic
field B is considered as a parameter in the expression for the
Poynting vector as it is given in Eq. (12) thenS is always an
increasing function ofB reaching, its minimal value at

B =
α(t)
β(t)

J
∑

a

σ(a).

Thus, in order to optimize the propagation of the informa-
tion in the one-way quantum computer it is recommendable
subject to this to an intense external magnetic field.
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i. The basic features of this model will be described in the next
section.

ii. In another paper published later [6], BR considered an arbitrary
one-qubit rotation applied to a chain of 5 qubits with the inten-
tion of stating a universal set of gates. In such a work there was
no discussion about the consequences on the propagation of the
information due to the rotations of the logic qubits.

iii. The Pauli matrices satisfy the ordinary algebra:

σ(b)
x

2
= σ(b)

y

2
= σ(b)

z

2
= I =

(
1 0
0 1

)
;

[σ(b)
n , σ(b)

m ] = 2iεnmlσ
(b)
l

and

{σ(b)
n , σ(b)

m } = 2δnmI.
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