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The elastic rod
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The form of an elastic rod in equilibrium subject to a buckling by the action of two opposite forces at its ends is explicitly calculated and
drawn. The full expression for the radius of curvature in the equation of the beam is considered. It is known that the differential equation
describing the form of the rod, written in terms of the arc length and the angle that forms the tangent line to the curve with the horizontal axis
of coordinates, is exactly the same one finds in describing the dynamics of great amplitude oscillations of a simple pendulum. This equation
is solved exactly in terms of Jacobi’s elliptic functions. The solutions are drawn by using in iterated form the addition formulas of those
functions. Useful relations among the physical constants of the system and the geometric parameters of the rod are also obtained.

Keywords: Elastic rod; Jacobian functions; iterated drawing

Se calcula exjititamente y se dibuja la forma que toma el pandeo de una vadliied sujeta a la adm de dos fuerzas opuestas en sus
extremos. Se considera la exptescompleta del radio de curvatura en la ecoadie la vigueta. Se sabe que la ecaadiferencial que
describe la forma de la varillagdtica, escrita en funmn de la longitud de arco y déhgulo que forma laihea tangente a la curva con el
eje horizontal es exactamente la misma que se encuentra en la désctipda ditamica de grandes oscilaciones dehdulo simple. Dicha
ecuacbn se resuelve eretminos de funciones ipticas de Jacobi. Las soluciones se dibujan mediante el uso iterado denmdals de
adicion de esas funciones. Se encuentran tamtelacionesitiles entre las constantdsitas del problema y los ganetros geostricos de

la varilla.

Descriptores: Varilla elastica; funciones jacobianas.

PACS: 46.25.-y 46.70.Lk 02.30.Gp 02.40.Yy

1. Introduction where we assume at first the form of the bending rod is de-
scribed byy(z) andy’(z) denotes the derivative gfz) with

The problem of determining the bending form of an elasticrespect ta. In the following we use more frequently the co-

rod in equilibrium, submitted to the action of two opposite ordinatesr andy as functions of the arc length. The deriva-

forces at the ends of the rod, has been considered by sevetdles of these functions are related to #iér). By using

authors, such as Feynman [1], and Landau and Lifshitz [2]equation (1) we have

Feynman writes the dynamic equation, without solving it, al-

though comments he knows how to find the solutions numer- dj _ 1 _ @)
ically, he says "The solutions can also be expressed in terms ds /14 y/'(2)?

of some functions, called théacobian elliptic functionghat _
someone else has already completed” [1]. Landau and LifUse of the chain rule produces
shitz reduce the problem to quadratures, get a first integra-

/
tion, and declare that the form of the rod can be obtained in dy _dy@de  y@) 3)
terms of elliptic functions [2]. ds dr ds /14y (x)?

We compute explicitly the form of the rod, assuming in . . .
order to write the equation of the beam—the same as the pre- The expressions (2) and (3) have been introduced since

. : . L it is well known that the derivativg’(x) is equal to the tan-
vious authors—that its length is large compared with its cross . : :
ent function of the angle forming the geometric tangent to

section, but we assume the complete expression for the radi . ; . ! )
. ; ) e liney(x) with the horizontal axis of coordinates. Let us
of curvature, that is only approximated in many books of en-,
. : to call 4 to that angle, namely
gineering (see for example Ref. 3).
We describe the geometric form of the rod in terms of two

: ) , y'(z) = tanf. (4)
coordinates: andy. Along the rod the arc length is defined by

) ) ) ) . Substitution of this property in the previous equations is used
ds* = da® +dy* = da* (1 +y/(2)°) D 1o express the derivatives of the coordinates with respect to
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the arc length in terms of angle whereY is the Young's modulus, anflis the inertia moment
da on the section area of the rod, with the origin placed at the

d ]
5 = ©08 0, d—y =sinf. (5) center of mass of the cross section
S S

Equation (1) tell us that these two quantities are the com- I = /y2dA
ponents of the unit tangent vector to the curve representing

the bendi d : . .
e bending ro The torque on the point of height(x) is equal to the

( a ) 1 ( 1 ) ( cos > © product of the forcé” and this height, that should be in equi-
t=( 9 |= = .
Y

% 7@ '(z) sin @ librium when it is equal to the bending moment
. This mathematical preamble guides us to compute the ra- Fy(z) = Yr_ _Yldﬁ ’ (12)
dius of curvatureR of the rod that comes from the Frenet R ds

equation on any curve where we have used the equation (9) for the curvatyie

dt 1 of the rod. This equation will be used in the sequel to write

s R™ (T) y(x) from the derivative of.
where the inverse of the radius of curvature is the magnitude Deriving both sides of equation (12)
of this vector anch is a unit vector orthogonal to vectaer d20 F dy
called the normal vector to the curve. =——— (13)

— ’
We use this expression to compute the radius of curvature ds Yids

but it is useful to keep both expressions for the vettor(6).  where we substitute the second of equations (5) to get
Using again the chain rule to derive the middle form of the

) d*6 F
tangent vector it results =77 §ind . (14)
dt  —y"(x) y'(x) \ _  do sin ¢ 8
ds 1+ y,(x)2]2 ~1 T ds \ —cosf |- (8) We introduce the non-dimensional variable defined as
Therefore g £7 (15)
R 1+ y’(x)2]% ds’ to write equation (14) in the form
The rod is placed in horizontal position, along theaxis, d20
before the forces are applied on it. Then, two equal forces prRai sin 6. (16)

are applied on both ends of the rod in the direction of:ihe

axis, and the rod bends symmetrically, deflecting an ampliThis is the same equation that is found in describing the
tudey(z) from the equilibrium position. This is zero at both motion of a simple pendulum when it is written in non-
ends of the rod. With this conventiaR is positive because dimensional form.

the second derivativg’ () is negative; and also because the
angle is maximum at the ends of the rod, decreases to zero gt . . .

the center of the rod , and decreases with negative values 2) Paramet”‘? quat!ons Of. the elastic curve.
the minimum value at the right end of the rod. In any case 1 he Jacobi’s elliptic functions

the derivative of) with respect tos is negative, that explain

the minus sign in the previous equation to deduce a positivgor large deformations it is necessary to solve the previous

radius of curvature. equation through the Jacobi functions. We develop in this

Note that some authors use the approximatiayf'(z) section the basic theory to use these functions.
for the inverse of the radius of curvature that is only valid for  Multiplying both members of equation (16) By /dr and

very small deflections. This simplification is not used here. Ntégrating with respect to we obtain the equivalent to the
The normal vector becomes energy conservation in the pendulum motion

_ 1 y'(z) \ _ ( sind 1 (do\?
n= M+ y(x)2 ( -1 ) - ( —cosd ) - (10) 3 (d¢) — cos ¢ = const. a7)
The expression for the flexion moment that acts on any

point of the rod and the bending it produces at the same poi%e
is given by

It is convenient to express this equation in terms of half
angle as

Y1 1do / . o0
= _ =+ 2 _ g _ 1
M 7 (11) 5 7 k? —sin 5 (18)
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wherek? > 0 is the integration constant. In order to see  To find the coordinate as a function of- we start from
clearly the relation to elliptic integrals as are generally pre-the first of the equations (5), and using the trigonometric
sented in many books we introduce the variaplehich is  identities, we found

defined by

d 0
) 0 d—m:c089:2coszi—1:2dn2(7,k)—1, (25)
s
sing = —sin —, (29) )
k2 where the solution (21) was used.

that transform the differential equation (18) into Integrating this equation with respecttave have

YI
@ _ ey o) = |2 [airmar =] . e

which is integrated This is an elliptic integral of second class defined by
s /L / dn2(w, k)dw = E(r, k). 27)
++/1 — k2sin® ¢ 0

This integral has the standard form of an elliptic integral ofl—gftrf(];?rrne the horizontal coordinate (26) is expressed in the

first class. The inverse of this integral defines the Jacobi func-
tion YI
x(r) = ?[ZE(T, k)—r1]. (28)
sn(r, k) =sing

. 3. Geometric relations of the elastic curve
or in terms of anglé

9 The maximum value of the coordinageoccurs [5] when the
sin 3= —ksn(r, k). (20)  function cr(r, k) takes the value 1, corresponding to the zero
value ofr, then according to Eq. (24) this amplitutiés
Minus sign was selected becauskas the opposite sign to

YI
orr . . o N~ h=2k\| —, (29)
From this equation and the identity of the jacobian func- F
tions which allows us to write the constahtas a function of the

E2sn?(r,k) + dn®(, k) = 1 physical and geometric constants of the elastic

h | F
we have k= S\ v (30)
COS b _ dn(r, k). (21) The coordinatey is zero at the ends of the rod, when the

arc length is equal to one half the total lenditof the rod.

Sustitution of (20) in (18) and using the identity of the JacobiThis occurs when functiomn(r, k) becomes zero, that hap-
functions pens [5] wherr is equal toK (k), the function known as the

complete elliptic integral of first class. Using (15) we obtain
sn? (1, k) +cen?(m, k) =1

L | F
K(k)==y\/—. 31
it follows (k) 2VYI (31)
1.do 1 9 For this same value of = K (k), coordinater is equal to
23 = —k4/1— = sin® 5= —ken(r, k). (22)  one half of the distance between the two ends of the rod.
T From Eg. (28) we find the property
The minus sign is explained by the opposite sign betwkeen
andr. From this_follows that t_he coordina{f,ein Ferms of the b — E[QE(k) — K(k)], (32)
T parameter as it was found in equation (12) is 2 F
YIdo whereE (k) is the complete elliptical integral of second class
y(@) = -4 (23)  E(k) = E(K(k), k).
From Egs. (30) and (31) we found the paramétas a
Therefore function of the ratio of the lengthsand L
YI h k
y(1) =14/ ?2/4 en(T, k). (24) I K®&) (33)
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which shows parametérdepending only on the geometry of We obtain the iterations
the bending rod.
In a similar way, from Egs. (31) and (32), we obtain also ~ Zj+1 = Z; + E(As, k)

the ratio of the lengths and L as a function o
(k* —y3)SCD + SQyj\/k’Q - y?\/l — k2 —y7

b E(k) B 1—52(1—y?)
— =2 1, (34) Yj
L K(k) As -
that shows the three distandes and L are not independent. 2’
Observing these equations we com_e_to _the gonclusior_l that Cy, — SD\/k2 _ yf \/1 — k24 y?
the forceF', necessary to hold the equilibrium is a function Yir1 = s 5 (38)
of the geometry represented by two of these lengths; the mo- 1—5%(k* — y5)

ment of inertial, which is purely geometric also, and of the

Young modulus’. where we have introduced the following notation

S=sn(As, k), C=cn(As, k), D=dn(As,k). (39)

4. The form of the elastic curve. The iterative QuantitiesC' and D were computed in terms & accord-
method ing to

In this section we propose a method to draw the bending rod C=V1-5%, D=vy1-k25? (40)

in equilibrium. The drawing will be written in terms of a i o
length unit such that and for smallAs we use also the first order approximations

S =sn(As, k) =As, E(Ask)=As (41)
2/ —=1. (35)
F Three drawings are here presented for the valué<o3,

. . . . .5, and 0.95, that were produced employing this algorithm
To proceed we require a discrete or stroboscopic point o Fig. 1)

view. To attain this objective we focus on the values of the
elliptic functions computed at arc length values that are mul-
tiples of a small finite lengtid\s. We use an integer indei

as a subindex to denote the functions evaluatgd\at

r; =x(jAs), y; =y(jAs) (36)

This couple of coordinates is computed by iteration from the
previous; by using the addition theorems [4] for the elliptic
functions. For the: coordinate we need

E(u+v) = E(u) + E(v) — k*snusnvsn (u + v)

and

snucnvdnv +snvenudnu
sn (u+v) = .

1 — k2sn2?u sn2v

They coordinate requires the addition formula

en(u+v) = cnucnv —snusnvdnudny ' FIGURE 1. Drawings for values 0.3, 0.5, 0.95 of the constant
1 — k2sn?u sn?v The force is represented by the square of the fundiigk).
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