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The elastic rod
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The form of an elastic rod in equilibrium subject to a buckling by the action of two opposite forces at its ends is explicitly calculated and
drawn. The full expression for the radius of curvature in the equation of the beam is considered. It is known that the differential equation
describing the form of the rod, written in terms of the arc length and the angle that forms the tangent line to the curve with the horizontal axis
of coordinates, is exactly the same one finds in describing the dynamics of great amplitude oscillations of a simple pendulum. This equation
is solved exactly in terms of Jacobi’s elliptic functions. The solutions are drawn by using in iterated form the addition formulas of those
functions. Useful relations among the physical constants of the system and the geometric parameters of the rod are also obtained.
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Se calcula explı́citamente y se dibuja la forma que toma el pandeo de una varilla elástica sujeta a la acción de dos fuerzas opuestas en sus
extremos. Se considera la expresión completa del radio de curvatura en la ecuación de la vigueta. Se sabe que la ecuación diferencial que
describe la forma de la varilla elástica, escrita en función de la longitud de arco y delángulo que forma la lı́nea tangente a la curva con el
eje horizontal es exactamente la misma que se encuentra en la descripción de la dińamica de grandes oscilaciones del péndulo simple. Dicha
ecuacíon se resuelve en términos de funciones elı́pticas de Jacobi. Las soluciones se dibujan mediante el uso iterado de las fórmulas de
adición de esas funciones. Se encuentran también relacioneśutiles entre las constantes fı́sicas del problema y los parámetros geoḿetricos de
la varilla.

Descriptores: Varilla elástica; funciones jacobianas.

PACS: 46.25.-y 46.70.Lk 02.30.Gp 02.40.Yy

1. Introduction

The problem of determining the bending form of an elastic
rod in equilibrium, submitted to the action of two opposite
forces at the ends of the rod, has been considered by several
authors, such as Feynman [1], and Landau and Lifshitz [2].
Feynman writes the dynamic equation, without solving it, al-
though comments he knows how to find the solutions numer-
ically, he says ”The solutions can also be expressed in terms
of some functions, called theJacobian elliptic functions, that
someone else has already completed” [1]. Landau and Lif-
shitz reduce the problem to quadratures, get a first integra-
tion, and declare that the form of the rod can be obtained in
terms of elliptic functions [2].

We compute explicitly the form of the rod, assuming in
order to write the equation of the beam—the same as the pre-
vious authors—that its length is large compared with its cross
section, but we assume the complete expression for the radius
of curvature, that is only approximated in many books of en-
gineering (see for example Ref. 3).

We describe the geometric form of the rod in terms of two
coordinatesx andy. Along the rod the arc length is defined by

ds2 = dx2 + dy2 = dx2
(
1 + y′(x)2

)
, (1)

where we assume at first the form of the bending rod is de-
scribed byy(x) andy′(x) denotes the derivative ofy(x) with
respect tox. In the following we use more frequently the co-
ordinatesx andy as functions of the arc length. The deriva-
tives of these functions are related to they′(x). By using
equation (1) we have

dx

ds
=

1√
1 + y′(x)2

. (2)

Use of the chain rule produces

dy

ds
=

dy(x)
dx

dx

ds
=

y′(x)√
1 + y′(x)2

. (3)

The expressions (2) and (3) have been introduced since
it is well known that the derivativey′(x) is equal to the tan-
gent function of the angle forming the geometric tangent to
the liney(x) with the horizontal axis of coordinates. Let us
to callθ to that angle, namely

y′(x) = tan θ . (4)

Substitution of this property in the previous equations is used
to express the derivatives of the coordinates with respect to
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the arc length in terms of angleθ

dx

ds
= cos θ ,

dy

ds
= sin θ . (5)

Equation (1) tell us that these two quantities are the com-
ponents of the unit tangent vector to the curve representing
the bending rod

t=

(
dx
ds
dy
ds

)
=

1√
1+y′(x)2

(
1

y′(x)

)
=

(
cos θ
sin θ

)
. (6)

This mathematical preamble guides us to compute the ra-
dius of curvatureR of the rod that comes from the Frenet
equation on any curve

dt
ds

=
1
R

n , (7)

where the inverse of the radius of curvature is the magnitude
of this vector andn is a unit vector orthogonal to vectort,
called the normal vector to the curve.

We use this expression to compute the radius of curvature
but it is useful to keep both expressions for the vectort in (6).
Using again the chain rule to derive the middle form of the
tangent vector it results

dt
ds

=
−y′′(x)

[1 + y′(x)2]2

(
y′(x)
−1

)
=− dθ

ds

(
sin θ
− cos θ

)
. (8)

Therefore

1
R

=
−y′′(x)

[1 + y′(x)2]
3
2
=− dθ

ds
. (9)

The rod is placed in horizontal position, along thex axis,
before the forces are applied on it. Then, two equal forces
are applied on both ends of the rod in the direction of thex
axis, and the rod bends symmetrically, deflecting an ampli-
tudey(x) from the equilibrium position. This is zero at both
ends of the rod. With this conventionR is positive because
the second derivativey′′(x) is negative; and also because the
angle is maximum at the ends of the rod, decreases to zero at
the center of the rod , and decreases with negative values to
the minimum value at the right end of the rod. In any case
the derivative ofθ with respect tos is negative, that explain
the minus sign in the previous equation to deduce a positive
radius of curvature.

Note that some authors use the approximation−y′′(x)
for the inverse of the radius of curvature that is only valid for
very small deflections. This simplification is not used here.

The normal vector becomes

n =
1√

1 + y′(x)2

(
y′(x)
−1

)
=

(
sin θ
− cos θ

)
. (10)

The expression for the flexion momentM that acts on any
point of the rod and the bending it produces at the same point
is given by

M =
Y I

R
, (11)

whereY is the Young’s modulus, andI is the inertia moment
on the section area of the rod, with the origin placed at the
center of mass of the cross section

I =
∫

y2dA

The torque on the point of heighty(x) is equal to the
product of the forceF and this height, that should be in equi-
librium when it is equal to the bending moment

Fy(x) =
Y I

R
= −Y I

dθ

ds
, (12)

where we have used the equation (9) for the curvature1/R
of the rod. This equation will be used in the sequel to write
y(x) from the derivative ofθ.

Deriving both sides of equation (12)

d2θ

ds2
= − F

Y I

dy

ds
, (13)

where we substitute the second of equations (5) to get

d2θ

ds2
= − F

Y I
sin θ . (14)

We introduce the non-dimensional variable defined as

τ = s

√
F

Y I
, (15)

to write equation (14) in the form

d2θ

dτ2
= − sin θ . (16)

This is the same equation that is found in describing the
motion of a simple pendulum when it is written in non-
dimensional form.

2. Parametric equations of the elastic curve.
The Jacobi’s elliptic functions

For large deformations it is necessary to solve the previous
equation through the Jacobi functions. We develop in this
section the basic theory to use these functions.

Multiplying both members of equation (16) bydθ/dτ and
integrating with respect toτ we obtain the equivalent to the
energy conservation in the pendulum motion

1
2

(
dθ

dτ

)2

− cos θ = const. (17)

It is convenient to express this equation in terms of half
the angle as

1
2

dθ

dτ
= ±

√
k2 − sin2 θ

2
, (18)
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wherek2 > 0 is the integration constant. In order to see
clearly the relation to elliptic integrals as are generally pre-
sented in many books we introduce the variableφ which is
defined by

sin φ =
1
k

sin
θ

2
, (19)

that transform the differential equation (18) into

dφ

dτ
= ±

√
1− k2 sin2 φ

which is integrated

τ =
∫

dφ

±
√

1− k2 sin2 φ
.

This integral has the standard form of an elliptic integral of
first class. The inverse of this integral defines the Jacobi func-
tion

sn(τ, k) = sin φ

or in terms of angleθ

sin
θ

2
= −k sn(τ, k) . (20)

Minus sign was selected becauseθ has the opposite sign tos
or τ .

From this equation and the identity of the jacobian func-
tions

k2 sn2(τ, k) + dn2(τ, k) = 1

we have

cos
θ

2
= dn(τ, k) . (21)

Sustitution of (20) in (18) and using the identity of the Jacobi
functions

sn2(τ, k) + cn2(τ, k) = 1

it follows

1
2

dθ

dτ
= −k

√
1− 1

k2
sin2 θ

2
= −k cn(τ, k) . (22)

The minus sign is explained by the opposite sign betweenθ
andτ . From this follows that the coordinatey in terms of the
τ parameter as it was found in equation (12) is

y(x) = −Y I

F

dθ

ds
. (23)

Therefore

y(τ) =

√
Y I

F
2k cn(τ, k) . (24)

To find the coordinatex as a function ofτ we start from
the first of the equations (5), and using the trigonometric
identities, we found

dx

ds
= cos θ = 2 cos2

θ

2
− 1 = 2 dn2(τ, k)− 1 , (25)

where the solution (21) was used.
Integrating this equation with respect toτ we have

x(τ) =

√
Y I

F

[
2

∫
dn2(τ, k)dτ − τ

]
. (26)

This is an elliptic integral of second class defined by
∫ τ

0

dn2(w, k)dw = E(τ, k) . (27)

Therefore the horizontal coordinate (26) is expressed in the
next form

x(τ) =

√
Y I

F
[2E(τ, k)− τ ] . (28)

3. Geometric relations of the elastic curve

The maximum value of the coordinatey occurs [5] when the
function cn(τ, k) takes the value 1, corresponding to the zero
value ofτ , then according to Eq. (24) this amplitudeh is

h = 2k

√
Y I

F
, (29)

which allows us to write the constantk as a function of the
physical and geometric constants of the elastic

k =
h

2

√
F

Y I
. (30)

The coordinatey is zero at the ends of the rod, when the
arc length is equal to one half the total lengthL of the rod.
This occurs when functioncn(τ, k) becomes zero, that hap-
pens [5] whenτ is equal toK(k), the function known as the
complete elliptic integral of first class. Using (15) we obtain

K(k) =
L

2

√
F

Y I
. (31)

For this same value ofτ = K(k), coordinatex is equal to
one half of the distanceb between the two ends of the rod.
From Eq. (28) we find the property

b

2
=

√
Y I

F
[2E(k)−K(k)] , (32)

whereE(k) is the complete elliptical integral of second class
E(k) = E(K(k), k).

From Eqs. (30) and (31) we found the parameterk as a
function of the ratio of the lengthsh andL

h

L
=

k

K(k)
, (33)
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which shows parameterk depending only on the geometry of
the bending rod.

In a similar way, from Eqs. (31) and (32), we obtain also
the ratio of the lengthsb andL as a function ofk

b

L
= 2

E(k)
K(k)

− 1 , (34)

that shows the three distancesh, b andL are not independent.
Observing these equations we come to the conclusion that

the forceF , necessary to hold the equilibrium is a function
of the geometry represented by two of these lengths; the mo-
ment of inertiaI, which is purely geometric also, and of the
Young modulusY .

4. The form of the elastic curve. The iterative
method

In this section we propose a method to draw the bending rod
in equilibrium. The drawing will be written in terms of a
length unit such that

2

√
Y I

F
= 1 . (35)

To proceed we require a discrete or stroboscopic point of
view. To attain this objective we focus on the values of the
elliptic functions computed at arc length values that are mul-
tiples of a small finite length∆s. We use an integer indexj
as a subindex to denote the functions evaluated atj∆s

xj = x(j∆s) , yj = y(j∆s) (36)

This couple of coordinates is computed by iteration from the
previousj by using the addition theorems [4] for the elliptic
functions. For thex coordinate we need

E(u + v) = E(u) + E(v)− k2sn u sn v sn (u + v)

and

sn (u + v) =
snu cn v dn v + sn v cn udn u

1− k2sn2u sn2v
.

They coordinate requires the addition formula

cn (u + v) =
cn u cn v − snu sn v dn udn v

1− k2sn2u sn2v
.

We obtain the iterations

xj+1 = xj + E(∆s, k)

−
(k2 − y2

j )SCD + S2yj

√
k2 − y2

j

√
1− k2 − y2

j

1− S2(1− y2
j )

− ∆s

2
, (37)

yj+1 =
Cyj − SD

√
k2 − y2

j

√
1− k2 + y2

j

1− S2(k2 − y2
j )

(38)

where we have introduced the following notation

S=sn(∆s, k), C=cn(∆s, k), D=dn(∆s, k). (39)

QuantitiesC andD were computed in terms ofS accord-
ing to

C =
√

1− S2 , D =
√

1− k2S2 (40)

and for small∆s we use also the first order approximations

S = sn (∆s, k) = ∆s , E(∆s, k) = ∆s (41)

Three drawings are here presented for the values ofk 0.3,
0.5, and 0.95, that were produced employing this algorithm
(Fig. 1).

FIGURE 1. Drawings for values 0.3, 0.5, 0.95 of the constantk.
The force is represented by the square of the functionK(k).
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