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We derive the expressionV (x) u(x) = c δ(x− a) + v(x) u(x) (whereV (x) is the potential,u(x) the wave function,c a constant andv(x)

a finite potential function forx ≤ a), which is present in the one-dimensional Schrödinger equation on the whole real line when we have
an impenetrable barrier atx ≥ a, that is, an infinite step potential there. By studying the solution of this equation, we identify, connect
and discuss three different Hamiltonian operators that describe the barrier. We extend these results by constructing an infinite square-well
potential from two impenetrable barriers.
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Derivamos la expresiónV (x) u(x) = c δ(x− a) + v(x) u(x) (dondeV (x) es el potencial,u(x) la función de onda,c una constante yv(x)
una funcíon potencial finita parax ≤ a), la cual se presenta en la ecuación de Schr̈odinger unidimensional sobre toda la lı́nea real cuando
se tiene una barrera impenetrable enx ≥ a, es decir, un potencial salto infinito allı́. Estudiando la solución de esta ecuación, identificamos,
conectamos y discutimos tres diferentes operadores hamiltonianos que describen la barrera. Extendemos estos resultados al construir un
potencial de pozo cuadrado infinito a partir de dos barreras impenetrables.

Descriptores: Mecánica cúantica; ecuación de Schr̈odinger; barreras impenetrables.

PACS: 03.65.-w

1. Introduction

The topic of this paper is the concept of impenetrable barri-
ers and non-equivalent Hamiltonian operators that attemp to
describe these walls. Physically, an impenetrable barrier is a
place where an infinite potential barrier exists; thus, we have
a singular perturbation there. Mathematically, one usually
(and naturally) considers and studies the problem only in the
allowed region, and tries to find a (self-adjoint) Hamiltonian.
For this operator, one must find adequate boundary condi-
tions for which the probability current on the impenetrable
wall vanishes. The Dirichlet boundary condition can be one
of these, at least, in non-relativistic quantum mechanics.

In this paper, we are particularly interested in describing
a barrier in other ways. First, we need to know the following
result, which is used to introduce the subject: Some time ago,
Seki examined the elementary problem of a particle in the
spherical infinite square-well (or shell) potential:V (r) = ∞,
r ≥ a, andV (r) = 0, 0 ≤ r < a (see Ref. 1). It was noted
therein that when the radial Schrödinger equation for the S
wave

− ~
2

2m

d2

dr2
u(r) + V (r) u(r) = E u(r) (1)

was integrated fromr = a − ε to r = a + ε, while ε → 0,
the following expression could be written:

lim
ε→0

~2

2m
u′(a− ε) + lim

ε→0

a+ε∫

a−ε

dr V (r) u(r) = 0 (2)

(sinceu′(a + ε) = 0, becauseu(r ≥ a) = 0 and the integral

a+ε∫

a−ε

dr u(r)

vanishes at the limit). In order to satisfy Eq. (2), it was shown
by Seki that the productV (r)u(r) should be expressed as

V (r) u(r) = − ~
2

2m
u′(a−) δ(r − a). (3)

As a result,V (r)u(r) must be zero everywhere except at
the barrier (r = a), where it becomes infinite. This result
appears to be consistent with the fact that the solutionu(r)
must go to zero only in the regionr ≥ a, but V (r) is zero
everywhere up to the wall and infinite at the extensive im-
penetrable barrier (r ≥ a). Earlier, a boundary potential term
such asV (r)u(r) ∝ δ(r− a) + w(r) (w(r) 6= 0 being finite
in r < a) was also indicated by Bethe and Goldstone in as-
sociation with a treatment of hard core potentials in nuclear
matter calculations (see Ref. 2 and also Ref. 3 for a succinct
repetition of some of the original Bethe and Goldstone cal-
culations). On the other hand, the result expressed in Eq. (3)
was specifically demonstrated in Ref. 1 by considering the
big impenetrable barrier atr ≥ a to be the limit of a (finite)
step potential (as the height of the step becomes extremely
large).

The paper is planned as follows: In Sec. 2, we present
a straightforward and simple derivation of the property
V (x) u(x) ∝ δ(x − a) (the impenetrable barrier being at
the pointx = a = 0). By considering issues surrounding the
well-known problem of a particle in an infinite step potential
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(V (x < 0) = 0 andV (x ≥ 0) = ∞), we show that this re-
sult can be directly obtained, without using a limiting process
(as Seki used). We complement the result obtained in Ref. 1
but in its simplest form (by using only some ordinary proper-
ties of the Dirac delta distribution). In Sec. 3, we also present
a very simple extension of this procedure with a well poten-
tial in the allowed regionx ≤ 0 (V (x < 0) ≡ v(x) 6= 0).
In the course of this demonstration, the two most reasonable
but mathematically different Hamiltonian operators associ-
ated with the existence of an impenetrable barrier atx = 0
appear:

(i) the operatorĤ (with a singular potential,i.e., infi-
nite, in a huge region) acting on suitable functions
u(x) on the interval−∞ < x < +∞ but verifying
u(x ≥ 0) = 0 and

(ii) the operator̂h acting on functionsf(x) on the inter-
val−∞ < x ≤ 0 and obeying the Dirichlet boundary
condition f(0) = 0. In Sec. 4, we present another
operator:

(iii) the operatorĤδ (with a distributional potential satis-
fying V (x) u(x) ∝ u′(0−) δ(x)) acting on functions
u(x) on the interval−∞ < x < +∞ and obeying
u(0) = 0.

We connect these Hamiltonian operators and discuss their
differences. In what follows (Sec. 5), we also consider the
representative problem of a particle in an infinite square-well
potential (V (0<x<L)=0 andV (x≤0) = V (x≥L)=∞) and
merely use some of the results presented at the beginning
to study this system. Finally in Sec. 6, we summarize and
discuss the results obtained. We believe that the discussion
followed here may complement the standard textbook dis-
cussion about one-dimensional potentials and impenetrable
barriers as well as some results recently examined about “re-
lated confined and global observables” (see Ref. 4 and other
references therein).

2. A usual infinite step potential giving a
boundary potential term

We start our discussion with the examination of a very com-
mon system: a particle of massm in the one-dimensional
step potential,V (x) = V0 Θ(x), wherex ∈ (−∞,+∞) and
Θ(x) is the Heaviside function. We look for positive energy
solutions to the Schrödinger equation:

− ~
2

2m

d2

dx2
u(x) + V (x)u(x) = E u(x). (4)

If we write k ≡ √
2mE/~ andα ≡

√
2m(V0 − E)/~,

the most general solution to this equation is

u(x) = aΘ(−x)
(

exp(ikx) +
ik + α

ik − α
exp(−ikx)

)

+a Θ(x)
2ik

ik − α
exp(−αx), (5)

which satisfiesu(0−) = u(0+) andu′(0−) = u′(0+) for
energies0 < E < V0, with a a complex constant. Taking the
limit of V0 →∞, we easily obtain

u(x) = a 2i Θ(−x) sin(kx), (6)

this expression being a solution to Eq. (4) with the new po-
tentialV (x) = lim

V0→∞
V0 Θ(x). With this procedure, we have

obtained an impenetrable barrier atx = 0 becausēu(x)u′(x)
is real and, as a result, the probability current vanishes at
that wall. The solution in (6) is continuous over the real line
(u(0−) = u(0+) = u(0) = 0), but its derivative is discon-
tinuous atx = 0 (u′(0−) 6= u′(0+) = 0). As is well known,
for a discontinuous function, a term proportional to the Dirac
delta function is added to the ordinary derivative. We now
write explicitly the two first derivatives of the solution (6):

u′(x) = a 2ik Θ(−x) cos(kx), (7)

u′′(x) = −a 2ik2 Θ(−x) sin(kx)− a 2ik δ(x)

= −k2u(x)− a 2ik δ(x). (8)

Note thatu′′(x) does have aδ-term owing to the discon-
tinuity in u′(x). We made use of the relationΘ′(x) = δ(x)
and also of one common property of the Dirac delta function
sin(kx)δ(x) = sin(0)δ(x) = 0 and

cos(kx)δ(x) = cos(0)δ(x) = δ(x).

We used Eq. (6) to finally write (8) as well.
If we substituteu′′(x) into the Schr̈odinger equation:

u′′(x) + k2u(x) = (2m/~2)V (x) u(x), we obtain the re-
lation

V (x)u(x) = − ~
2

2m
a 2ik δ(x), (9)

being preciselyu′(0−) = a 2ik (Note that for a station-
ary state with energyE, the delta strength is energy depen-
dent,i.e., u′(0−) ∝ √

E). With this simple procedure, the
same type of “boundary potential” obtained for Seki’s sys-
tem (V (r)u(r) at r = a) is also obtained in our system
(V (x)u(x) atx = 0).

3. Two Hamiltonian operators describing an
impenetrable barrier

First, let us generalize the result given by Eq. (9) by consid-
ering the potential

V (x) = v(x)Θ(−x) + lim
V0→∞

V0 Θ(x), (10)

wherev(x < 0) < 0, v(x → −∞) → 0 andv(0) = 0, that
is, v(x) is a well potential. In this new situation, the solution
u(x) to the Schr̈odinger equation (on the real line)

(Ĥu)(x) ≡ − ~
2

2m

d2

dx2
u(x) + V (x) u(x) = E u(x) (11)
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once again vanishes at the origin (x = 0) and forx > 0 as
well. Thus,u(x) has the form

u(x) = F (x)Θ(−x). (12)

We suppose at this point that the functionF (x) and the
potentialv(x) also have values in the regionx > 0. However,
in the regionx ≤ 0, the functionF (x) is: F (x) ≡ f(x),
which satisfies the equation

(ĥ f)(x) ≡ − ~
2

2m

d2

dx2
f(x) + v(x) f(x) = E f(x) (13)

and must fulfillf(0−) = f(0) = 0 , whereasu(x) satisfies
u(0+) = u(0−) = u(0) = 0. The energy values satisfy
Emin < E < +∞, sincev(x) is bounded from below and
the allowed energies must exceed avmin value.

As usual, one must assume that the operatorĤ intro-
duced in (11) (and describing a particle on the whole real
line −∞ < x < +∞ but permanently living in the region
x ≤ 0) acts on functionsu(x) belonging to the Hilbert space
of square-integrable functionsL2(<), that is,‖u ‖ < ∞
(with the usual definition of the norm‖u ‖ =

√
〈u, u 〉,

where the scalar product of two functions is

〈 f, g 〉 =
∫

<

dx f̄g
)
.

The function (Ĥu)(x) is also normalizable, that is,∥∥∥Ĥu
∥∥∥ <∞. Moreover,u(x) has a continuous derivative and

u′(x) is not only continuous but also is absolutely continuous
(roughly speaking, a function is absolutely continuous if it is
the integral of its derivative),i.e., we say thatu(x) belongs to
AC2(<) and, moreover,u(x ≥ 0) = 0. The space of func-
tionsu(x) satisfying all these requirements is a “natural” do-
main forĤ: D(Ĥ). With the potential given by Eq. (10), we
automatically haveu(x ≥ 0) = 0; but supposing that there is
no an infinite potential at the regionx ≥ 0, the boundary con-
dition u(x) = 0 for all x ≥ 0 mathematically characterizes
an impenetrable barrier there. In Appendix A we gathered
some (technical) results about this non self-adjoint Hamil-
tonian operator (specifically, with the domain that we have
written above).

On the other hand, the operator̂h in Eq. (13) de-
scribes a particle living on the half linex≤0 and acts on
functionsf(x) belonging to the Hilbert spaceL2(Ω) with
Ω = (−∞, 0] ⊂ <, thus,‖ f ‖ < ∞, in the same way, we

must add toD(ĥ) the conditions
∥∥∥ĥf

∥∥∥ < ∞, with f(x) be-

longing toAC2(Ω) and obeying the Dirichlet boundary con-
dition f(0) = 0 (in this last case, the scalar product in the
definition of the norm is obtained by integrating on the new
intervalΩ).

From expression (12), we can easily writeu′′(x) (but
first u′(x) = F ′(x)Θ(−x), sinceΘ′(−x) = −δ(x) and
F (x) δ(x) = F (0) δ(x) = 0):

u′′(x) = F ′′(x) Θ(−x) + F ′(x)Θ′(−x)

= −2m

~2
(E − v(x))F (x)Θ(−x)− F ′(x) δ(x), (14)

where we have used Eq. (13) andΘ′(−x) = −δ(x)
again. We can go further withu′′(x) by using Eq. (12),
F ′(x) δ(x) = F ′(0) δ(x). At this point, F ′(x) must
be considered as a continuous function atx = 0, and
u′(0−) = F ′(0−) = F ′(0). Note that,F ′(x) is in fact only
relevant in the regionx ≤ 0, that is,u′(0+) = 0; on the other
hand,u′(0) = F ′(0)Θ(0) cannot be defined sinceΘ(−x) is
not defined atx = 0. Eq. (14) becomes

u′′(x)− 2m

~2
v(x)u(x)+u′(0−) δ(x) = −2m

~2
E u(x). (15)

By comparing this expression with the Schrödinger equa-
tion (11) (in the potential given by Eq. (10)), we finally obtain

V (x)u(x) = v(x) u(x)− ~2

2m
u′(0−) δ(x), (16)

which is a generalization of the result obtained in Eq. (9).

4. Another Hamiltonian operator for an im-
penetrable barrier

Let us consider the Schrödinger equation on the whole real
line:

(Ĥδ u)(x) ≡ − ~
2

2m

d2

dx2
u(x) + V (x)u(x) = E u(x) (17)

with the potential term given by Eq. (16). Clearly, Eq. (17)
is precisely the differential equation (15), however, with its
solution u(x) satisfying the Dirichlet boundary condition
u(0+) = u(0−) = u(0) = 0. Since the wall is placed
atx = 0, we impose preliminarily only this condition on the
solutions to Eq. (17). As is well known, due to the delta inter-
action in Eq. (17), this equation can be turned into boundary
conditions. In fact, integrating it from−ε to +ε yields

− ~
2

2m
(u′(+ε)− u′(−ε)) +

+ε∫

−ε

dx v(x)u(x)− ~2

2m
u′(0−)

= E

+ε∫

−ε

dxu(x), (18)

where we also used the delta function property

+ε∫

−ε

dx δ(x) = 1.

Taking the limitε → 0, we get the following boundary con-
dition:

u′(0+) = 0. (19)
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Likewise, integrating Eq. (17) first fromx = −L (with
L > 0) to x and then once more from−ε to +ε gives

− ~2

2m
(u(+ε)− u(−ε)) +

~2

2m
u′(−L)

+ε∫

−ε

dx

+

+ε∫

−ε

dx

x∫

−L

dy v(y)u(y)− ~2

2m
u′(0−)

+ε∫

−ε

dxΘ(x)

= E

+ε∫

−ε

dx

x∫

−L

dy u(y). (20)

In the limit ε → 0, we obtain

u(0+) = u(0−), (21)

which is not an unexpected boundary condition. What can
be obtained from all this? If we impose on a general solu-
tion u(x) (but with x ≥ 0) the starting Dirichlet boundary
condition (u(0+) = 0) together with Eq. (19) (u′(0+)=0),
we necessarily getu(x ≥ 0) = 0. In fact, the solu-
tion in the regionx > 0 could be written in the form
u(x) = a u1(x) + b u2(x), wherea andb are complex con-
stants. The solutionsu1(x) andu2(x) are linearly indepen-
dent and satisfy the following Wronskian relation in that re-
gion: u1(x)u′2(x)− u2(x)u′1(x) 6= 0. By imposing the two
boundary conditions we have mentioned in this regard, one
obtains a homogeneous system:a u1(0+) + b u2(0+) = 0,
a u′1(0+) + b u′2(0+) = 0, the determinant of which cannot
be zero due to the Wronskian relation, so the only solution is
the trivial one; for the region in question, of course. On the
other hand, the solution to Eq. (17) in the regionx ≤ 0 van-
ishes atx = 0 but its derivative does not,i.e., u′(0−) 6= 0;
for this reason, we have a non trivial solution on the negative
real semi-axis.

In conclusion, the solutions to the Schrödinger equa-
tion (17) (on the whole real axis), with the “boundary poten-
tial” term given by Eq. (16) (and a regular well potential at
x ≤ 0) and satisfying only the Dirichlet boundary condition
at x = 0, i.e., u(0) = 0 (this boundary condition is consid-
ered a critical part of the domain of̂Hδ) must be written as
u(x) = F (x)Θ(−x), whereF (x) satisfies the Schrödinger
equation (13) on the half linex ≤ 0. We identified this func-
tion in that region asF (x) ≡ f(x) with potentialv(x) and
satisfiesF (0) = 0. In this manner, the delta term or point
interaction in Eq. (16), withu(0) = 0 situates the exten-
sive infinite wall on the right-hand side of the real axis. If
we change the term:−u′(0−) δ(x) → +u′(0+) δ(x) (see
Eq. (18) and subsequent comments), the impenetrable bar-
rier could be placed on the left-hand side of the real axis; this
simple result will be useful in constructing an infinite square-
well potential in Sec. 5 of this paper.

Finally, it is worth while (and important) to insist that
we obtain the same solution (12) from the Schrödinger
eigenvalue equation (11) (with operatorĤ) as well as from

Eq. (17) (with operatorĤδ). These two different Hamilto-
nian operators (with their corresponding singular potentials)
are essentially equivalent because, in this situation, they lead
to equal results. On the other hand, the formal operatorĤδ

with its heuristic perturbation at the origin is certainly not a
proper operator inL2(<), that is,

∥∥∥Ĥδu
∥∥∥ = ∞. In fact, with

v(x) = 0,

∥∥∥ V̂ u
∥∥∥

2

= ‖V u ‖2 = lim
g→∞

g (~2/2m)2|u′(0−) |2 = ∞;

thus, it is not strictly correct to writêHδ with the distribu-
tional potential given by Eq. (16). Nevertheless, ourĤδ

yields a solution [Eq. (12)] that makes sense quantum me-
chanically. The operator̂Hδ (with the boundary potential
term V (x)u(x) ∝ u′(0−) δ(x)) acting on (suitable) func-
tionsu(x) satisfyingu(x = 0) = 0, is not self-adjoint. We
provide some mathematical details in Appendix B.

The operator̂h (defined to act on an appropriate set of
functions belonging toL2(Ω)) does not have this kind of
problem. Notably, however, when we useĥ, there is not a
consistent canonical quantization procedure (that can be car-
ried out in the intervalΩ, see Ref. 4). Indeed, for a particle on
a half-line, there is no (self-adjoint) momentum operator of
the formp̂ ≡ −i~(d/dx) (see, for example, Refs. 4 and 5);
nevertheless, the operatorĥ 6= (p̂)2/2m (with the domain
given byD(ĥ)) is self-adjoint (see, for example, Refs. 5, 6
and 7). This last requirement appears to be the most impor-
tant reason for using the operatorĥ, since the particle can
only be in the regionx ≤ 0 in the end.

5. Construction of an infinite square-well po-
tential

In this same framework, what can we say about the infinite
square-well potential,i.e. two infinite walls which are sepa-
rated by a distanceL? By supposing that the walls are placed
atx = 0 andx = L, which implies

V (x) = lim
V0→∞

V0 (Θ(−x) + Θ(x− L)),

we can throw away the Schrödinger equation on the whole
real axis with this infinite square-well potential. That is, we
can discard a non-self-adjoint Hamiltonian operatorĤ (see
Ref. 8) with the “strong” boundary conditionu(x ≤ 0) =
u(x ≥ L) = 0 inside its domainD(Ĥ) and replace it with
the following:

(Ĥδ u)(x) ≡ − ~
2

2m

d2

dx2
u(x) + V (x)u(x) = E u(x) (22)

(also on the real line), where the boundary potential term is
given by

V (x)u(x) =
~2

2m
(u′(0+) δ(x)− u′(L−) δ(x− L)) (23)
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(we took the potential zero inside the interval(0, L), i.e.,
v(x) = 0) and the solutionu(x) satisfies the Dirichlet bound-
ary conditionu(0) = u(L) = 0. Consequently, this solu-
tion has the formu(x) = F (x) (Θ(x) − Θ(x − L)), where
F (x) ≡ f(x) specifically satisfies the free Schrödinger equa-
tion on the one-dimensional box (0 ≤ x ≤ L)

(ĥ f)(x) ≡ − ~
2

2m

d2

dx2
f(x) = E f(x), (24)

and also satisfies the Dirichlet boundary condition
f(0) = f(L) = 0. We know without a doubt which the
eigenfunctions of the Hamiltonian̂h are in this traditional
case.

6. Discussion and summary

We have seen that an impenetrable barrier is a singular poten-
tial, i.e., infinite, on some extremely large region contained in
<. Mathematically, we can characterize this large, solid, im-
penetrable barrier by the wave function vanishing in that ex-
tremely large region. Since the particle is actually confined to
the rest of the whole real line, one can study the problem only
in that region (the allowed region) and the wave function is
zero only on the solid wall. Certainly, this is a usual and nat-
ural procedure and we do not need a singular potential in this
case. Besides, the representative Hamiltonian operator for the
confined particle in this region is self-adjoint with the Dirich-
let boundary condition and also with other several types of
boundary conditions (see, for example, Ref. 6). As we have
demonstrated, an impenetrable barrier is also a distributional
(singular potential) at the wall with a very precise strength
(see Eq. (16)). With the wave function vanishing there, the
corresponding Hamiltonian operator is not self-adjoint (it is
not also a proper operator, as was explained early). Thus, we
have identified three Hamiltonian operators which describe
an impenetrable barrier at a point in< (ĥ), or in a big region
contained in< (Ĥ andĤδ). As we have seen, these ideas
also work when we have several impenetrable barriers on the
real line, specifically, when we have two impenetrable barri-
ers for building an infinite square well (a box). We believe
that the subject may be of interest to teachers and students of
quantum mechanics; to our knowledge, it has not been suffi-
ciently discussed in quantum mechanics textbooks.
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Appendix A

The (Hamiltonian) operator̂H has a natural domain (for sim-
plicity’s sake, we shall consider only the “free” Hamiltonian,

i.e., v(x) = 0, and naturally we take the impenetrable barrier
as a boundary condition in the regionx ≥ 0):

D(Ĥ) = {u|u ∈ L2(<), u ∈ AC2(<),

(Ĥu) ∈ L2(<), u(x ≥ 0) = 0},

however, this operator is not self-adjoint; to check this, we
use some results obtained in Ref. 9. In fact, we can write any
u ∈ L2(<) (andu ∈ AC2(<)) as:

u(x) = u1(x)Θ(−x) + u2(x)Θ(x),

where u1(x) and u2(x) belong to L2(<) and AC2(<).
Hence, a boundary condition likeu(x ≥ 0) = 0 can be ob-
tained fromu1(x = 0) = 0 andu2(x=0)=u′2(x=0)=0. It
could be useful to read the discussion that follows Eq. (21).
However, this boundary condition is not included in any of
the boundary conditions that are self-adjoint to the globally
defined Hamiltonian. All these (confining and transversal)
boundary conditions can be written as the following (see
Eq. (80) in Ref. 9):

(
u′1(0)−

√
2

2 (1− i)u1(0)
u′2(0) +

√
2

2 (1− i)u2(0)

)

= U

(
u′1(0)−

√
2

2 (1 + i)u1(0)
u′2(0) +

√
2

2 (1 + i)u2(0)

)
,

whereU is a2 × 2 unitary matrix and as a result, there is a
four parameter family of boundary conditions.

Appendix B

The operator Ĥδ with the boundary potential term
V (x) u(x) ∝ u′(0−) δ(x) acting on (suitable) functionsu(x)
satisfyingu(x = 0) = 0, is not self-adjoint. Essentially,
this is because the boundary conditions (19) and (21), sup-
plemented withu(0) = 0 (⇒ u(x ≥ 0) = 0), do not coin-
cide with any included in the families of (confining) suitable
boundary conditions at the origin and belonging to the do-
main of the (globally) extended self-adjoint operatorĤ in
L2(<). See these specific extensions in Eq. (93) of Ref. 9.
Certainly, these confining extensions (without the condition
u(x ≥ 0) = 0) could be written in terms of boundary poten-
tials; nevertheless, neither of these should lead to the bound-
ary conditionu(x ≥ 0) = 0 if the two formulations are
equivalent.

The problem of infinite walls and confined systems in the
context of deformation quantization, as well as in standard
quantum mechanics, was initially studied in Ref. 10. The
results given by Eq. (16) withv(x) = 0 (and also Seki’s
results) bear a certain resemblance to Dias and Prata’s, al-
though ours were obtained in a much simpler manner. They
prefer to write the productV (x)u(x) in terms of the deriva-
tive of a particular Dirac delta function. For instance, Dias
and Prata’s expression can be obtained from our Eq. (16) if
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one introduces, as they did in Ref. 11, a new distribution
u′(0−) δ(x) ≡ u′(x−) δ̃(x) which also obeys the Dirac delta
propertyu′(x−) δ̃(x) = −u(x−) δ̃′(x); in fact,

V (x)u(x) = − ~
2

2m
u′(0−) δ(x)

= − ~
2

2m
u′(x−) δ̃(x) = +

~2

2m
u(x−) δ̃′(x).

Note that the presence of this kind of distribution is re-
quired because we do not define, in general, the product of
the usual Dirac deltaδ(x) with a function which is discon-
tinuous, as is the functionu′(x) at x = 0 (See Ref. 12). In
any case, the productV (x)u(x) in our approach, as well as
in Dias and Prata’s initial formulation, leads to the bound-
ary conditionu(x ≥ 0) = 0 (in the problem of a particle
on the whole real line but permanently living on the half-line
x ≤ 0) [10], and (the two formulations) could be considered
to be equivalent for this reason alone.
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