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We derive the expressiori(z) u(z) = c¢d(z — a) + v(z) u(z) (whereV (z) is the potentialy(z) the wave functiong a constant and(z)

a finite potential function for: < a), which is present in the one-dimensional Salinger equation on the whole real line when we have

an impenetrable barrier at > a, that is, an infinite step potential there. By studying the solution of this equation, we identify, connect
and discuss three different Hamiltonian operators that describe the barrier. We extend these results by constructing an infinite square-wel
potential from two impenetrable barriers.

Keywords: Quantum mechanics; Séidinger equation; impenetrable barriers.

Derivamos la expreén V (z) u(z) = cd(z — a) + v(z) u(z) (dondeV (x) es el potenciak:(x) la funcion de ondag una constante y(x)

una funcon potencial finita para < a), la cual se presenta en la ecuiacide Schiddinger unidimensional sobre toda lada real cuando

se tiene una barrera impenetrablezei a, es decir, un potencial salto infinito mlEstudiando la soludn de esta ecuam, identificamos,
conectamos y discutimos tres diferentes operadores hamiltonianos que describen la barrera. Extendemos estos resultados al construir
potencial de pozo cuadrado infinito a partir de dos barreras impenetrables.

Descriptores: Mecanica ciéntica; ecua€in de Schidinger; barreras impenetrables.

PACS: 03.65.-w

1. Introduction (sinceu/(a + ) = 0, because(r > a) = 0 and the integral
a+e

The topic of this paper is the concept of impenetrable barri- / dru(r)

ers and non-equivalent Hamiltonian operators that attemp to

describe these walls. Physically, an impenetrable barrier is a

place where an infinite potential barrier exists; thus, we havganishes at the limit). In order to satisfy Eq. (2), it was shown

a singular perturbation there. Mathematically, one usuallyhy Seki that the produdt () «(r) should be expressed as
(and naturally) considers and studies the problem only in the

allowed region, and tries to find a (self-adjoint) Hamiltonian. i _ 7h72 ro B

For this operator, one must find adequate boundary condi- Vir)u(r) = 2mu (a=)o(r —a). 3)
tions for which the probability current on the impenetrable
wall vanishes. The Dirichlet boundary condition can be one,

of these, at least, in non-relativistic quantum mechanics.

As a resultV (r) u(r) must be zero everywhere except at
he barrier { = a), where it becomes infinite. This result
appears to be consistent with the fact that the solutior)

In this paper, we are particularly interested in describingmyst go to zero only in the region > a, but V(r) is zero
a barrier in other ways. First, we need to know the fO”OWingeverywhere up to the wall and infinite at the extensive im-
result, which is used to introduce the SUbjeCt: Some time agcpenetrab|e barrierr(z a)_ Earlier, a boundary potentia| term
Seki examined the elementary problem of a particle in thesuch as/ () u(r) « 6(r — a) + w(r) (w(r) # 0 being finite
spherical infinite square-well (or shell) potenti&l(r) = co,  inr < a) was also indicated by Bethe and Goldstone in as-
r>a,andV(r) = 0,0 <r < a(see Ref. 1). ltwas noted sociation with a treatment of hard core potentials in nuclear
therein that when the radial Scfufinger equation for the S matter calculations (see Ref. 2 and also Ref. 3 for a succinct

wave repetition of some of the original Bethe and Goldstone cal-
B2 g2 culations). On the other hand, the result expressed in Eg. (3)
—Q—ﬁu(r) +V(r)u(r) = Eu(r) (1) was specifically demonstrated in Ref. 1 by considering the
m ar

big impenetrable barrier at > «a to be the limit of a (finite)
step potential (as the height of the step becomes extremely
large).

The paper is planned as follows: In Sec. 2, we present
a straightforward and simple derivation of the property

52 ate V(z)u(z) « d(x — a) (the impenetrable barrier being at

lim —u/(a —¢) + lim drV(r)u(r)=0 (2) thepointz = a = 0). By considering issues surrounding the
em0 2m =0 well-known problem of a particle in an infinite step potential

a—e

was integrated from = a — e tor = a + ¢, whilee — 0,
the following expression could be written:
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(V(z < 0) =0andV(z > 0) = co), we show that this re- which satisfiea:(0—) = u(0+) andv/(0—) = «/(0+) for
sult can be directly obtained, without using a limiting processenergies) < E < 1}, with a a complex constant. Taking the
(as Seki used). We complement the result obtained in Ref. limit of V; — oo, we easily obtain

but in its simplest form (by using only some ordinary proper-

ties of the Dirac delta distribution). In Sec. 3, we also present u(r) = a2i©(-x) sin(kz), (6)
a very simple extension of this procedure with a well poten- ) _ _ )
tial in the allowed region: < 0 (V(z < 0) = v(z) # 0).  this expression being a solution to Eq. (4) with the new po-

In the course of this demonstration, the two most reasonabf@ntialV(z) = lim Vo ©(z). With this procedure, we have
but mathematically different Hamiltonian operators associ-obtained an impenetrable barrienat= 0 becausei(x)u’(x)

ated with the existence of an impenetrable barrier at 0 is real and, as a result, the probability current vanishes at
appear. that wall. The solution in (6) is continuous over the real line
(u(0—) = u(0+) = u(0) = 0), but its derivative is discon-
tinuous atr = 0 (u/(0—) # «/(0+) = 0). As is well known,

for a discontinuous function, a term proportional to the Dirac
delta function is added to the ordinary derivative. We now
write explicitly the two first derivatives of the solution (6):

(i) the operatorH (with a singular potentialj.e., infi-
nite, in a huge region) acting on suitable functions
u(z) on the interval-co < = < +oo but verifying
u(z > 0) =0and

(i) the operatorh acting on functionsf(z) on the inter-

val —oo < < 0 and obeying the Dirichlet boundary v (r) = a2tk O(—x) cos(kz), )
condition f(0) = 0. In Sec. 4, we present another
operator: 1) P u'(x) = —a2ik? O(—z) sin(kx) — a 2ik 6(x)

(iii) the operatoris (with a distributional potential satis- = —ku(x) — a2ik §(z). 8)

fying V(z) u(z) « u/(0—)d(z)) acting on functions , _ _
u(z) on the interval—oo < 2 < +oo and obeying Note thatu (x) does have &-term owing to the discon-

u(0) = 0. tinuity in «’(x). We made use of the relatid®' (z) = d(x)
and also of one common property of the Dirac delta function

We connect these Hamiltonian operators and discuss theg[n(km)(s(m) = sin(0)d(x) = 0 and
differences. In what follows (Sec. 5), we also consider the
representative problem of a particle in an infinite square-well cos(kz)d(x) = cos(0)d(z) = §(x).
potential {/ (0<xz<L)=0andV (z<0) = V(x>L)=00) and
merely use some of the results presented at the beginnirye used Eq. (6) to finally write (8) as well.
to study this system. Finally in Sec. 6, we summarize and If we substitutew’'(z) into the Schidinger equation:
discuss the results obtained. We believe that the discussiod’ (z) + k*u(z) = (2m/h?)V(z) u(zx), we obtain the re-
followed here may complement the standard textbook dislation )
cussion about one-dimensional potentials and impenetrable V(z)u(z) = _}Lagik (), (9)
barriers as well as some results recently examined about “re- m
lated confined and global observables” (see Ref. 4 and othdreing preciselyu’(0—) = a2ik (Note that for a station-
references therein). ary state with energy, the delta strength is energy depen-
dent,i.e., u'(0—) o< vE). With this simple procedure, the
same type of “boundary potential” obtained for Seki's sys-
tem (V(r)u(r) atr = a) is also obtained in our system
(V(z)u(z) atz = 0).

We start our discussion with the examination of a very com-

mon system: a particle of mass in the one-dimensional 3 Two Hamiltonian operators describing an
step potential} (z) = Vp ©(z), wherex € (—oo, +00) and impenetrable barrier
O(z) is the Heaviside function. We look for positive energy

2. A usual infinite step potential giving a
boundary potential term

solutions to the Scldinger equation: First, let us generalize the result given by Eq. (9) by consid-
h? d? v 5 4 ering the potential
~5m g2 @) +V(z)u(@) = Eu(). 4)

If we write k = v2mE/h anda = /2m(Vy — E) /A, V(@) =v(z)6(=2) + V(l)igloo Vo 6(a), (10)

h | soluti hi ion i
the most general solution to this equation is whereu(z < 0) < 0, v(z — —o0) — 0 andv(0) = 0, that

w(z) = aO(—2) (exp(z‘kx) n zk +a exp(ikx)> is, v(x) is a well potential. In this new situation, the solution

—o u(z) to the Schddinger equation (on the real line)
¢ 2 2
+aO(z) ik —« exp(—ax), (5) (flu)(gc) = —%%U(ZE) +V(z)u(z) = Eu(z) (11)
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once again vanishes at the origin € 0) and forz > 0 as

well. Thus,u(x) has the form , ,
u'(z) = F'(2) O(=x) + F'(z) ©'(~2)

u(z) = F(z) ©(-z) (12) 2m
= F(E—v(x))F(x) O(—z) — F'(z)d(z), (14)
We suppose at this point that the functiéifz) and the
potentialu(z) also have values in the regian> 0. However, ~Where we have used Eq. (13) afl(-z) = —i(z)

again. We can go further with”’(z) by using Eq. (12),
F'(x)6(x) F’(0)§(xz). At this point, F’(x) must
be considered as a continuous functionzat= 0, and
u’'(0—) = F'(0—) = F’(0). Note that,F”’(z) is in fact only
relevant in the regior < 0, thatis,u’(0+) = 0; on the other
hand,u’(0) = F’(0) ©(0) cannot be defined sindé®(—x) is

not defined at: = 0. Eq. (14) becomes

in the regionz < 0, the functionF(x) is: F(z) = f(z),
which satisfies the equation

2 2
( )(&) = o @) + o) (o) = B f(2) (19
and must fulfill f(0—) = f(0) = 0, whereau(x) satisfies
u(0+) = u(0—) = u(0) = 0. The energy values satisfy
Enin < E < 400, sincev(z) is bounded from below and Eu(z). (15)
the allowed energies must exceed,g, value. h?

As usual, one must assume that the operafomtro- By comparing this expression with the Setimger equa-
duced in (11) (and describing a particle on the whole reation (11) (in the potential given by Eq. (10)), we finally obtain
line —oo < & < 400 but permanently living in the region 52
2 < 0) acts on functions(x) belonging to the Hilbert space v(x)u(z) — —u'(0-) d(z),

of square-integrable functions?(%), that is, ||u | < o
(with the usual definition of the normiu| — \/W which is a generalization of the result obtained in Eq. (9).

where the scalar product of two functions is

(@)= 2™ () )+l (0-) 6(z) = — 2

(16)

2m

4. Another Hamiltonian operator for an im-

(f,9) =/dxfg )- penetrable barrier
e

Let us consider the Scobdinger equation on the whole real

The function (Hu)(z) is also normalizable, that is, M€

] i ivati . B2 42

Hu .<oo. Moreove.r,u(as) has a corl1t|nuous derlvat|v§ and (Hsu)(z) = —-———u(z) + V(z)u(z) = Eu(z) (17)
«'(x) Is not only continuous but also is absolutely continuous 2m dx

(roughly speaking, a function is absolutely continuous if it iswith the potential term given by Eq. (16). Clearly, Eq. (17)
the integral of its derivative),e., we say that(x) belongsto s precisely the differential equation (15), however, with its
AC?*(R) and, moreover,(z > 0) = 0. The space of func-  solution u(z) satisfying the Dirichlet boundary condition
tionsu(z) satisfying all these requirements is a “natural” do- 4,(0+) = w(0—) = u(0) = 0. Since the wall is placed
main for : D(H). With the potential given by Eq. (10), we atz = 0, we impose preliminarily only this condition on the
automatically have(z > 0) = 0; but supposing that there is  solutions to Eq. (17). As is well known, due to the delta inter-
no an infinite potential at the regian> 0, the boundary con-  action in Eq. (17), this equation can be turned into boundary

dition u(z) = 0 for all z > 0 mathematically characterizes conditions. In fact, integrating it frome to +¢ yields

an impenetrable barrier there. In Appendix A we gathered N

some (technical) results about this non self-adjoint Hamil- 32 ) ) B
tonian operator (specifically, with the domain that we have =5 (' (+¢) —w'(=¢)) + / dzv(z) u(®) — 5 —u'(0-)
written above). A Ze

On the other hand, the operatar in Eq. (13) de- Ge
scribes a particle living on the half line<0 and acts on o ’
functions f(x) belonging to the Hilbert spacg?(2) with N E/ dzu(z), (18)

Q= (—00,0] C R, thus,|| f|| < oo, in the same way, we

—€

must add taD(h) the condition#‘ﬁf“ < oo, with f(z) be-  where we also used the delta function property

longing to AC?(2) and obeying the Dirichlet boundary con-

dition f(0) = 0 (in this last case, the scalar product in the
definition of the norm is obtained by integrating on the new

interval Q2).

From expression (12), we can easily writ€(z) (but
first w/(x) = F'(x)©(—z), since®’(—x) = —4§(x) and
F(z)dé(x) = F(0)d(x) =0):

+e
/ dxé(z) = 1.

—E

Taking the limite — 0, we get the following boundary con-

dition:

u'(04) = 0. (19)
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Likewise, integrating Eq. (17) first from = —L (with Eq. (17) (with operatoﬁ;). These two different Hamilto-
L > 0) to z and then once more frome to +-¢ gives nian operators (with their corresponding singular potentials)
are essentially equivalent because, in this situation, they lead

K2 R a to equal results. On the other hand, the formal operBtor
- %(“Hg) —u(—€)) + om (=L) / dz with its heuristic perturbation at the origin is certainly not a
—c proper operator ii.2(R), that is,HFL;uH = oo. In fact, with
o 2 i o) =0,
+ / dx/ dyv(y) u(y) — Z—u’(O—) / dzO(z) ,
m ~
Lo L Ze H Vu H = |Vu|?® = lim g(h?/2m)?| v/ (0-)|? = oo
g—o0
+e x
= E/ dx / dyu(y). (20)  thus, it is not strictly correct to writds with the distribu-
s tional potential given by Eq. (16). Nevertheless, diy

o _ yields a solution [Eq. (12)] that makes sense quantum me-
In the limite — 0, we obtain chanically. The operatofls; (with the boundary potential
o term V(x) u(z) « «'(0—)d(x)) acting on (suitable) func-
w(0+4) = u(0-), (21) tionsu(x) satisfyingu(x = 0) = 0, is not self-adjoint. We
which is not an unexpected boundary condition. What carprovide some mathematical details in Appendix B.
be obtained from all this? If we impose on a general solu- The operator: (defined to act on an appropriate set of
tion u(z) (but with z > 0) the starting Dirichlet boundary functions belonging ta.?(2)) does not have this kind of
condition @(0+) = 0) together with Eq. (19)«’(0+)=0),  problem. Notably, however, when we ubgthere is not a
we necessarily geti(x > 0) = 0. In fact, the solu- consistent canonical quantization procedure (that can be car-
tion in the regionz > 0 could be written in the form ried outin the interval2, see Ref. 4). Indeed, for a particle on
u(z) = aui(x) + bua(z), wherea andb are complex con-  a half-line, there is no (self-adjoint) momentum operator of
stants. The solutions, (z) anduy(x) are linearly indepen- the formp = —ih(d/dx) (see, for example, Refs. 4 and 5);
dent and satisfy the following Wronskian relation in that re-nevertheless, the operatbr (p)?/2m (with the domain
gion: u (z) ub(z) — uz(x) v} (z) # 0. By imposing the two  given by D(h)) is self-adjoint (see, for example, Refs. 5, 6
boundary conditions we have mentioned in this regard, onand 7). This last requirement appears to be the most impor-
obtains a homogeneous systemi; (0+) + bus(0+) = 0,  tant reason for using the operatlr since the particle can
avu)(0+) + bub(0+) = 0, the determinant of which cannot only be in the regior: < 0 in the end.
be zero due to the Wronskian relation, so the only solution is

the trivial one; for the region in question, of course. On the . o
other hand, the solution to Eq. (17) in the regiorc 0van- 9. Construction of an infinite square-well po-

ishes atr = 0 but its derivative does note., v/ (0—) # 0; tential
for this reason, we have a non trivial solution on the negative
real semi-axis. In this same framework, what can we say about the infinite

In conclusion, the solutions to the Sédinger equa- square-well potential,e. two infinite walls which are sepa-
tion (17) (on the whole real axis), with the “boundary poten-rated by a distancé? By supposing that the walls are placed
tial” term given by Eq. (16) (and a regular well potential at 8tz = 0 andz = L, which implies
2 < 0) and satisfying only the Dirichlet boundary condition
atz = 0, i.e, u(0) = 0 (this boundary condition is consid- V(z)= lim Vo (O(-z)+6(z L)),
ered a critical part of the domain afL;) must be written as ’

u(z) = F(z) ©(—z), whereF'(z) satisfies the Scbdinger  we can throw away the Sdbdinger equation on the whole
equation (13) on the half line < 0. We identified this func- real axis with this infinite square-well potential. That is, we
tion in that region as'(x) = f(z) with potentialv(x) and  can discard a non-self-adjoint Hamiltonian operatb(see
satisfiesF'(0) = 0. In this manner, the delta term or point Ref. 8) with the “strong” boundary condition(z < 0) =
interaction in Eq. (16), with.(0) = 0 situates the exten- u(z > L) = 0 inside its domainD(H) and replace it with
sive infinite wall on the right-hand side of the real axis. If the following:

we change the term:=u/(0—) §(z) — +u/(04)d(z) (see 2 g

Eq. (18) and subsequent comments), the impenetrable bar-, 7 _ W a N

rier could be placed on the left-hand side of the real axis; this (Hsu)(w) = 2m dx? u(@) + V(z)ulz) = Bu(z) (22)
simple result will be useful in constructing an infinite square-

well potential in Sec. 5 of this paper (also on the real line), where the boundary potential term is

Finally, it is worth while (and important) to insist that given by
we obtain the same solution (12) from the Sitinger 72
eigenvalue equation (11) (with operatél) as well as from  V(z)u(z) = %(u/(oﬂ o(x) —u'(L—)d(x — L)) (23)

Rev. Mex. is. E54 (1) (2008) 1-6



IMPENETRABLE BARRIERS IN QUANTUM MECHANICS 5

(we took the potential zero inside the interv@l L), i.e., i.e.,v(x) = 0, and naturally we take the impenetrable barrier
v(z) = 0) and the solutiom(x) satisfies the Dirichlet bound- as a boundary condition in the regiorn> 0):

ary conditionu(0) = u(L) = 0. Consequently, this solu- . ) )

tion has the formu(z) = F(x) (©(z) — O(z — L)), where ~ D(H) = {ufu € L*(R), u € AC*(R),

F(z) = f(x) specifically satisfies the free Séhlinger equa- A 2 _

tion on the one-dimensional bo € « < L) (Hu) € L*(R), u(z 2 0) = 0},

) B2 g2 however, this operator is not self-adjoint; to check this, we
(hf)(z) = —5——=f(x) = E f(2), (24)  use some results obtained in Ref. 9. In fact, we can write any

2

o 2m dm, _ u€ L*R) (andu € AC%(R)) as:
and also satisfies the Dirichlet boundary condition
f(0) = f(L) = 0. We know without a doubt which the u(z) = uy (x) O(—x) + uz(z) (),
eigenfunctions of the Hamiltoniah are in this traditional
case. where u;(z) and uz(z) belong to L?(R) and AC?(R).
Hence, a boundary condition likez > 0) = 0 can be ob-
tained fromu; (z = 0) = 0 andug(z=0)=ub(z=0)=0. It

We have seen that an impenetrable barrier is a singular poteﬁ?u'd be useful to read the discussion that follows Eq. (21).

tial, i.e., infinite, on some extremely large region contained in owever, this boundary condition is not included in any of

. Mathematically, we can characterize this large, solid, im_the boundary conditions that are self-adjoint to the globally

penetrable barrier by the wave function vanishing in that ex_defmed Hamiltonian.All these (confining and transversal)

tremely large region. Since the particle is actually confined t oundary condﬂm_ns can be written as the following (see

the rest of the whole real line, one can study the problem onl g (80) in Ref. 9).

in that region (the allowed region) and the wave function is p .

zero only on the solid wall. Certainly, this is a usual and nat- < u(0) = \7(1 h Z_) u(0) )

ural procedure and we do not need a singular potential in this u5(0) + %57 (1 = 1) uz(0

case. Besides, the representative Hamiltonian operator for the (
=U

6. Discussion and summary

\
Sl

=

u

[Sref

confined particle in this region is self-adjoint with the Dirich-
let boundary condition and also with other several types of
boundary conditions (see, for example, Ref. 6). As we have hereU is a2 x 2 unitary matrix and as a result, there is a
demonstrated, an impenetrable barrier is also a distribution%\'\’ ter famil fi/) d dit '

(singular potential) at the wall with a very precise strength our parameter family of boundary conditions.

(see Eqg. (16)). With the wave function vanishing there, the

corresponding Hamiltonian operator is not self-adjoint (it isAppendix B

not also a proper operator, as was explained early). Thus, we . ) ]

have identified three Hamiltonian operators which describd € operator H; with the boundary potential term
an impenetrable barrier at a pointin(h), or in a big region V(%) u(z) o< u’(0—) d(x) acting on (suitable) functions(x)
contained ink (A and H;). As we have seen, these ideas Satisfyingu(z = 0) = 0, is not self-adjoint. Essentially,
also work when we have several impenetrable barriers on th&iS is because the boundary conditions (19) and (21), sup-
real line, specifically, when we have two impenetrable barriPlemented withu(0) = 0 (= u(z > 0) = 0), do not coin-

ers for building an infinite square well (a box). We believe ¢ide with any included in the families of (confining) suitable
that the subject may be of interest to teachers and students Bpundary conditions at the origin and belonging to the do-

quantum mechanics; to our knowledge, it has not been suffiain of the (globally) extended self-adjoint operafdrin

U

1(0) - <1+z’>u1<o>>
5(0) + B2 (1 + i) uy(0) )’

ciently discussed in quantum mechanics textbooks. L*(R). See these specific extensions in Eq. (93) of Ref. 9.
Certainly, these confining extensions (without the condition
Acknowledgements u(z > 0) = 0) could be written in terms of boundary poten-
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Appendix A though ours were obtained in a much simpler manner. They
prefer to write the produdt (z) u(z) in terms of the deriva-
The (Hamiltonian) operatatl has a natural domain (for sim- tive of a particular Dirac delta function. For instance, Dias
plicity’s sake, we shall consider only the “free” Hamiltonian, and Prata’s expression can be obtained from our Eq. (16) if
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one introduces, as they did in Ref. 11, a new distribution  Note that the presence of this kind of distribution is re-

u/(0—) é(x) = u'(x—) 6(x) which also obeys the Dirac delta quired because we do not define, in general, the product of

propertyu’(z—) d(x) = —u(x—) ¢’(z); in fact, the usual Dirac delta(x) with a function which is discon-
tinuous, as is the function’(z) atz = 0 (See Ref. 12). In
K2 any case, the produ&f(x) u(x) in our approach, as well as
V(z)u(z) = —%“/(0—)5(33) in Dias and Prata’s initial formulation, leads to the bound-
h2 9 ary conditionu(z > 0) = 0 (in the problem of a particle
= ——u(z—) 5(55) = +—u(z—) Sf(x), on the whole real line but permanently living on the half-line
2m 2m x < 0) [10], and (the two formulations) could be considered

to be equivalent for this reason alone.
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