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Color centers envisioned as confined quantum systems:
the case of F, F’ and F+2 centers
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Color centers in alkali halides, as well as point defects with dimensions of a few nanometers, have been considered to be confined systems
and were studied with a variational formalism within a semi-continuum model. This new approach was applied to the well-known F, F’ and
F+

2 centers, which are assumed to be cavities of a determined shape that can trap one or two electrons. Inside of the cavity, the electron
is subject to a constant potential (V0) related to the Madelung energy and outside of it, the potential is Coulomb type due to a continuum
polarizable medium. Because the F, F’ and F+

2 confined systems were considered to be hydrogen-like, helium-like and H+
2 -like molecular ion

systems, respectively, theansatzfunctions were constructed from wave functions corresponding to these kinds of systems. For these systems,
the energy transition (∆E) from the ground state to the first excited state in KCl crystals was calculated and compared with experimental
and calculated values obtained from the literature. The∆E behavior is shown for different values ofV0. It is worth mentioning that the
formalism presented in this work would be useful for both graduate and undergraduate students embarking on the study of some properties
of confined quantum systems, or some simple nanostructures as well.
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Se presenta un estudio con un formalismo variacional dentro del modelo semicontinuo de centros de color en halogenuros alcalinos ası́ como
defectos puntuales con dimensiones nanométricas, los cuales fueron considerados como sistemas confinados. Este enfoque fue aplicado
para los bien conocidos centros F, F’ y F+

2 , los cuales fueron asumidos como una cavidad de forma especı́fica que puede atrapar uno o dos
electrones. Dentro de la cavidad el electrón “siente” un potencial constanteV0 relacionado a la energı́a de Madelung, mientras que en la región
exterior el potencial es de tipo Coulombiano debido al medio continuo polarizable. Las funciones correspondientes a los centros F, F’ y F+

2

fueron construidas tomando en cuenta que estos sistemas fueron considerados como sistemas tipo hidrogenoide, helioide y ion molecular H+
2 ,

respectivamente. Ası́, para estos sistemas se calculó la enerǵıa de transicíon ∆E del estado base al primer estado excitado en cristales KCl
y se compaŕo con los valores experimentales, ası́ como los calculados en otros trabajos. Se presenta también el comportamiento de∆E para
diferentes valores deV0. Es importante mencionar que el formalismo presentado en este trabajo puede serútil para estudiantes de licenciatura
o posgrado que deseen incursionar en el estudio de algunas propiedades de sistemas cuánticos confinados o algunas nanoestructuras sencillas.

Descriptores:Centros de color; modelo semicontinuo; método variacional; sistemas confinados.

PACS: 61.72.Bb; 61.72.Ji; 68.65.-k

1. Introduction

In the last few years, the study of confined quantum systems
has been one of the more active fields in physics. A great
number of papers have been published regarding the so-called
called nanostructures. This trend could be explained if one
considers the promising technological uses shown by these
systems. Besides these important possibilities, the simplicity
of these systems has made it possible to use them to verify
many of the main quantum theoretical results.

Color centers (CC’s) have been the object of research
since the 40’s, in the past century, until now because these de-
fects induce some optical properties in materials that do not
show any particular optical features in any other case. Ex-
tensive theoretical and experimental studies of CC’s induced
by radiation were carried out systematically in the 40’s, 50’s
and 60’s in the 20th century. Research on ionizing radiation
damage has been connected with the purpose of finding mate-

rials and security criteria for storing radioactive wastes [1,2],
and lately, in the 70’s and 80’s, other applications were de-
veloped [3, 4]. Nowadays, the study of CC’s is a timely re-
search topic because of the various relevant roles that these
defects have in different applications with new and unusual
properties, particularly on a nanoscale dimension [5–7]. As
is well known, in alkali halide (HA) crystals the main ioniz-
ing radiation effect is the production of Frenkel defects such
as F and H centers through a primary process of electronic
excitation; depending of radiation, energy and doses, F, F+

2 ,
F2, F−2 , F3 and F+3 centers are formed. Laser emission in
KCl:Li containing FA centers [3] and LiF based on F+

2 and
F−2 centers [4] were reported in the 70’s, and the research
in this field is still a current problem, as shown in recent
works about the potential development of lasers of LiF ac-
tivated by F2, F+

3 [8, 9] and F+2 centers stabilized by anion
and cation impurities and anion vacancies [10]. At present,
the interest in developing miniaturized optical devices has al-
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ready prompted research on novel techniques for the creation
of low-dimensional structures and point defects (F2, F3, F+

3 ,
colloids, tracks) induced by irradiation with high energy par-
ticles [11–13]. Techniques such as soft X-rays and extreme
UV light microprobes and electron-beam lithography have
been used to produce luminescent nanostructures based on
F2 and F+3 centers in LiF crystals and films as well as minia-
turized active channel waveguides [14–17]. F2 and F+3 cen-
ters could also be the basis for producing miniaturized build-
in laser-active color centers and active waveguides by using
a new interfered infrared femtosecond (fs) laser pulse tech-
nique in transparent materials such as LiF crystals [18]. A
few years ago, the use of single color centers tightly con-
fined was suggested as a possible solid-state structure for
information processing and storage and computing applica-
tions based in quantum processes [19–21]. In particular, a
single nitrogen F center [(nitrogen-vacancy, (NV)] on dia-
mond nanocrystals and heterostructures has been proposed
as a ‘qubit’ element [19,20].

As is well known, the F center consists of an electron
trapped in an anion vacancy, and several models have been
discussed in order to explain the general characteristics of its
absorption and emission. In Ref. 22 and references therein,
an exhaustive study is presented. Of all these models, the
semi-continuum model has been the most successful because
of the very good matching between the experimental and the-
oretical parameters. In this model, the crystal effect outside
of the vacancy is considered by the introduction of a poten-
tial V0, which contains the Madelung energy, the effective
mass, the polarization energy and the electron affinity. More
recently, the electronic structure of the F center in NaCl crys-
tals was calculated from a NaCl cluster approach [23]. In
this model, the clusters are embedded in a point charge field;
different NaCl clusters with a Cl− ion vacancy are studied
usingab initio molecular orbital calculations. In the case of
F center aggregates, many other theoretical studies using dif-
ferent approaches were conducted in the 50’s and 60’s, but
most were a generalization of the F center case [24]. The
F2 and F+2 centers have been studied assuming the centers to
be hydrogen molecules immersed in a medium of dielectric
constantκ0 [25]. Alternatively, Nagamiya and Tatsuuma [26]
have developed a model for the F2 center, as in the semi-
continuum model. In this model the F2 center is considered
to be two F centers separated by a potential which contains
the interaction energy between the polarized lattice with the
positive (vacancies) and negative (trapped electrons) charge,
the electron interchange and the electrostatic interaction be-
tween vacancies and electrons. On the other hand in the
qubit element case, the F center is assumed to be an electric
dipole modelled in terms of an isotropic three-dimensional
harmonic oscillator embedded in a dielectric. In the present
work, a simple variational method within a semi-continuum
model has been used to explore the connection between con-
fined quantum systems and F, F′ and F+2 centers in alkali
halide crystals. In this peculiar quantum system of nanomet-
ric dimensions, one or two electrons are trapped and the sur-

rounding material is considered to be a continuum polarizable
medium. In doing so, we show that this approach constitutes
an interesting alternative in the study of some properties of
these kinds of defects, as was shown to be the case of other
real systems [27–30].

2. Variational formalism to study confined
quantum systems

In previous works [31–34], we proposed a simple variational
approach to the study of confined quantum systems which
is flexible enough to deal with impenetrable or penetrable
boundaries as well as one or two electron systems. Since we
shall mimic a real system, such as color centers, the most re-
alistic confining boundaries would be the penetrable ones this
means, in effective atomic units, the Hamiltonian associated
with such a system can be written as:

Hi = −1
2
∇2

q + Vi(q), (q ∈ Ωi) , (1)

Ho = −1
2
∇2

q + Vo(q), (q ∈ Ωo) , (2)

whereq is the set of generalized coordinates that generates
the inner (Ωi) and outer (Ωo) regions, andVi(o) is a potential
associated with the defect.

According to the variational method, an upper bound to
the energy of a particular state of the system may be found
by requiring that:

〈ϕi|Hi|ϕi〉Ωi + 〈ϕo|Ho|ϕo〉Ωo = minimum , (3)

whereϕi (ϕo) is the inner (outer)ansatzwave function.
In addition to Eqs. (1)-(3), we have also that

〈ϕi|ϕi〉Ωi + 〈ϕo|ϕo〉Ωo = 1 , (4)

the normalization condition, and

1
ϕi

∂ϕi

∂q

∣∣∣∣
q0

=
1
ϕo

∂ϕo

∂q

∣∣∣∣
q0

, (5)

the continuity of the logarithmic derivatives ofϕi andϕo at
the boundaryq = q0, must be satisfied.

The inneransatzwave function can be constructed as:

ϕi = ϕ0,i f , (6)

whereϕ0,i is closely related to the wave function of the free
system, andf is an auxiliary function that guarantees an
adequate matching at the boundary with the exterioransatz
wave functionϕo which keeps the proper asymptotic behav-
ior characteristic of the system under study. Furthermore,
the choice of the auxiliary functionf , must be such that it
reduces to a cut-off function when the potential becomes in-
finite. In the latter case,f is simply the contour of the con-
fining boundary. We shall use these ideas in the following
sections to study three realistic systems, namely, the F cen-
ter (one electron trapped in an anion vacancy), the F’ center
(two electrons trapped in an anion vacancy) and the F+

2 (one
electron trapped in two contiguous anion vacancies) in order
to explore the reliability of the formalism.
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FIGURE 1. Behavior of∆E = E2p − E1s for the F center, as a
function of the cavity radiusr0 for various potential well depths.
The filled circle represents the experimental value of∆E and the
most used value ofr0 for this defect. KCl was used as a generic
example.

FIGURE 2. Behavior of∆E = − E1s for the F’ center, as a func-
tion of the cavity radiusr0 for various potential well depths. The
filled circle represents the experimentally measured∆E and a typ-
ical value ofr0 used in other theoretical calculations for this defect.
KCl was used as a generic example.

3. Application of formalism to color centers

The simplest defect in alkali halides is the F center, which
is an electron trapped in a vacancy left by a missing halogen
ion. For purposes of this work, we shall consider that the
electron is trapped in a spherical cavity which is surrounded
by a continuum polarizable medium that emulates the rest of
the crystal in such a way that the potential felt by the electron
is of the form:

V (r) =





−V0 , 0 ≤ r ≤ r0

− 1
κ0r , r0 ≤ r < ∞

, (7)

where V0 is a constant related to the electrostatic energy
needed to bring the electron from infinity and place it at the
cavity (Madelung energy),r0 is the radius of the cavity and
κ0 is the high frequency dielectric constant. In this system,
the largest absorption band or F band would correspond to a
transition from the ground state to the first excited state. Due
to the spherical symmetry of the potential, this band would
be related, within the present model, to a transition from a
1s-like to a2p-like hydrogenic state. According to the previ-
ous section, theansatzwave functions for these states can be
written as:

Ψ1s(r) =





A(r0 − γr) exp(−αr) , 0 ≤ r < r0

B 1
r exp(−βr) , r0 < r < ∞

, (8)

and

Ψ2p(r)=





C(r0−γr)r cos θ exp(−αr) , 0≤r<r0

D cos θ
r exp(−βr) , r0<r<∞

, (9)

where (A, B, C, D) are normalization constants and (α, β, γ)
variational parameters. With these functions, the energy
functional can be constructed for each state, and its minimiza-
tion gives the values of the variational parameters for which
we have an upper bound for the energy. Note that the param-
eters (α, β, γ) are not independent of each other but related
through the condition given by Eq. (5),i.e. one of them can
be expressed as a function of the rest and the minimization
only involves two unknown parameters. In Fig. 1 we describe
the behavior of the transition energy∆EF = E2p − E1s

as a function ofr0 for different values ofV0 (around the
Madelung energyαM ) for a KCl crystal [22], as a generic
example of a typical alkali halide. For purposes of compari-
son, the F band energy measured at 77 K is shown as a point
in the same figure.

If we take as a reference the particle-in-a-box model for
a given value ofV0, the energy levels become closer asr0 is
increased, so that the difference between the ground state and
the first excited state decreases and the position of the F-band
(∆E) is shifted to the red. Moreover, if we make use of the
Hellman-Feynmann theorem, the force exerted by the spher-
ical wall on the electron will be related to the derivative of
the curves as it will exert a hydrostatic pressure on the crys-
tal, so that this model predicts, at least qualitatively, a shift
of the F-band to the blue because, when the crystal is under
pressure, the cavity radius decreases. In the case of F-band
energies, N. Singh and W. Joshi have reported a similar shift
for several alkali halides under pressure [35,36]. This shift is
consistent with our model.

Now, let us consider that an additional electron is trapped
in the vacancy or similarly, that an F center traps an electron,
forming the so-called F’ center. Taking atomic physics as a
reference, the F center would represent a hydrogen-like sys-
tem while the F’ center would be a helium-like system. In
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this case the potential can be modelled as

V (r1, r2)=





−V0+ 1
r12

, 0≤r1, r2≤r0

− 1
κ0

(
1
r1

+ 1
r2
− 1

r12

)
, r0≤r1, r2<∞

. (10)

Notice that in this case, the electron-electron interaction
would decrease the depth of the well, an event that would
shift the energy levels toward the ionization states or contin-

uum states since the well becomes shallow. Indeed, the cor-
responding absorption band for this center can be measured
at low temperatures (liquid nitrogen temperature or lower).
At room temperatures there is ionization of the center mainly
due to the thermal vibration of the lattice.

As we have mentioned before, taking atomic physics as
our reference, theansatzwave function for this system can
be constructed as a product of hydrogenic wave functions for
each electron, that is

Ψ1s(r1, r2) =





A(r0 − γr1)(r0 − γr2) exp(−α(r1 + r2)) , 0 ≤ r1, r2 < r0

B 1
r1r2

exp(−β(r1 + r2)) , r0 < r1, r2 < ∞
, (11)

and

Ψ2p(r) =





C(r0 − γr1)(r0 − γr2)r1r2 cos θ1 cos θ2 exp(−α(r1 + r2)) , 0 ≤ r1, r2 < r0

D cos θ1 cos θ2
r1r2

exp(−β(r1 + r2)) , r0 < r1, r2 < ∞
. (12)

Proceeding as in the previous case, it is possible to con-
struct the energy functional for these states and minimize it
with respect to the parameters involved to get an upper bound
for their energy. Surprisingly, this model predicts just the1s-
like bounded state, and no extremum for the2p-like state was
found. So, in our model the F’ band would be a transition
from the ground state to the continuum, a closer picture to
that observed experimentally. In Fig. 2 we depicted the en-
ergy associated with this transition, considering the bottom
of the continuum to be a final state, that is∆EF ′ = −E1s,
as a function ofr0 for different values ofV0. For purposes of
comparison, the experimental value measured at 77 K for the
F’ absorption band in KCl is also shown in Fig. 2.

The same observations made for the F-center can be ap-
plied to this center, the main difference being that, as the sec-
ond electron is loosely bound, the shift to the red of its band is
less pronounced, a result that is consistent with experimental
observations regarding the broad band measured at low tem-
peratures and the point that, at room temperatures, the center
can not be observed since the second electron is thermally
ionized.

To close this section, we shall study another defect in
alkali halides whose symmetry is very different from that of

the previous ones. In this defect, two neighboring anion va-
cancies in the (110) direction trap an electron. This defect
constitutes the so-called F+

2 center. If we now refer to molec-
ular physics, it would be anH+

2 -like molecular ion; this sim-
ilarity allows us to form an easy conception of the type of
ansatzwave functions, which, according to the properties
stated in Section 2, can be useful in obtaining the main fea-
tures of at least the principal absorption band. As in the case
of the molecular ion, the natural coordinates for this system
are the prolate spheroidal coordinates (ξ, η, ϕ), and the model
potential would be as follows:

V (ξ, η, ϕ) =





−V0 , 1 ≤ ξ < ξ0 ,

− 1
K0

( 1
r1

+ 1
r2

) , ξ0 < ξ < ∞
, (13)

where now, for this symmetry, the ‘size’ of the confining re-
gion is associated with the ‘radial’ coordinateξ in such a way
that (ξ = ξ0,−1 ≤ η ≤ 1, 0 ≤ ϕ ≤ 2π) is a spheroid of rev-
olution around thez-axis. If we assume that this axis is the
one where the neighboring anion vacancies are located, then
we have a symmetry compatibility of both the defect and the
system of coordinates. So, for this symmetry, theansatzwave
functions would be of the following form:

Ψ1sσg (ξ, η, ϕ) =





A(ξ0 − γξ) exp(−α(ξ + η)) , 1 ≤ ξ < ξ0

B exp(−β(ξ + η)) , ξ0 < ξ < ∞
, (14)

and

Ψ2pπu(ξ, η, ϕ) =





C(ξ0 − γξ)
√

(ξ2 − 1)(1− η2) exp(−α(ξ + η)) exp(iϕ) , 1 ≤ ξ < ξ0

D
√

(ξ2 − 1)(1− η2) exp(−β(ξ + η)) exp(iϕ) , ξ0 < ξ < ∞
. (15)
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TABLE I. Summary of the obtained results and the best calculated parameters for the studied centers and their comparison with experimental
available data and other theoretical calculations. KCl was used as generic example.EM = −(αM/a), is the Madelung energy for a
NaCl-type crystal (see for instance Ref. 19).

Center ∆ E (eV) ∆ Eexp(eV) r0(a.u.) ξ0 V0(eV) EM (eV)

F 2.29 2.31a 4.0(3.98b) - -6.0 -8.0

F’ 1.62 1.65a 5.0(5.18c) - -3.9 -8.0

F+
2 2.42 2.46a - 2.0d -4.7 -8.0

aFrom W.B. Fowler,Physics of Color Centers(Academic Press, New York, 1968).
bFrom G. Iadonisi and B. Preziosi, Nuovo Cimento B48, (1967) 92.
cFrom S.V. La and R.H. Bartram, Phys. Rev.144, (1966) 679.
dFrom the geometry of the defect and the interionic distancea.

In all casesa = 5.94 (a.u.) andκ0 = 2.19.

FIGURE 3. Behavior of∆E = E2pπu − E1sσg for the F+2 center,
as a function of the ‘size’ of the spheroidξ0 and various potential
well depths. The filled circle represents the experimentally mea-
sured∆E and the value ofξ0 consistent with the geometry and
dimensions of the lattice. KCl was used as a generic example.

The choice of these functions is closely related to the
form of the hydrogenic wave functions in prolate spheroidal
coordinates, as reported by Coulson and Robinson [37, 38].
As before, we proceed to construct the corresponding energy
functional and to find the energies of these bounded states. In
Fig. 3, we plot the main absorption band of the F+

2 center,
defined as∆E = E2pπu − E1sσg , as a function ofξ0, for
different values ofV0 and the interfocal distanceR ' √

2a
wherea is the lattice constant for this type of crystal. We
also include in this figure, for comparison purposes, the ex-
perimentally measured value∆Eexp.

The geometry of this defect is very different from the pre-
vious cases because when we choose a value for the inter-
focal distanceR, we can have a variety of values ofξ0, that is,
the corresponding spheroid with a constant mayor axis would
be flattened forξ0 ' 1, but could be almost a sphere when
ξ0 À 1; in the middle there is a diversity of shapes, which
would reflect the non-monotonic behavior of curves drawn in
Fig. 3 and perhaps is a limitation of the model since the po-
tential well assumed here is geometry independent. However,

a closer inspection of curves allows us to observe aV0 value
between−5.54 and−4.08 eV, which shows a monotonic be-
havior close to the experimental value for the transition en-
ergy (the filled dot in this figure).

4. Discussion and final remarks

The parameters used in calculations as well as the results for
the best values of transition energies for the centers here con-
sidered are shown in Table I. For comparison purposes, the
experimental values for the corresponding transitions ener-
gies are also included.

As the reader may notice, the free parameters involved
such as the size of the cofining region, or the depth of the
potential well, have reasonable values compared with those
used in similar studies [22,39–42]. The latter fact constitutes
a confirmation of the reliability of the model and a method of
calculation, which make them amendable as a previous step
for a more sophisticated calculation that would involve first
principle calculations. It is also worth mentioning that the
same formalism was used to study some properties of other
real systems such as excitons in semiconductor crystallites or
atoms trapped in solids, or to model atoms or molecules un-
der high pressures. All these studies were fairly successful,
in the light of experimental results.

In spite of its simple nature, the model proposed here
can be useful in estimating some parameters associated with
this kind of defect and would be, perhaps, a step leading
to a more sophisticated calculation in order to study other
properties. It is worth mentioning that there exist other for-
malisms used to study these defects, namely, the point ion
and finite-size ion models (or pseudopotential); the main re-
striction underlying these models is that the polarization of
the crystal cannot be accounted for properly, as it is by the
semi-continuum approach. This matter was widely discussed
for instance, in Refs. 22 and 39. Moreover, Fowler [43] and
Georgiev [44] have shown that an improvement to the tradi-
tional semi-continuum model, can account, for instance, for
Stokes shifts and vibronic coupling to the lattice of the states
of F-center. The latter would represent an interesting topic
for a future extension of the present model.
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Finally, we would like to point out the crucial role played
by hydrogen-like wave functions to construct theansatzwave
functions for all cases. Their flexibility is remarkable in
our present calculations, as well as in atomic or molecular
physics. Nowadays there exist more sophisticated tools for
studying this type of system in a more complex fashion, but
it seems that the use of this kind of function is still a very
powerful tool in many fields of theoretical physics as are the
harmonic oscillator wave functions [42]. This is one of the

legacies of Professor Carlos Ruiz-Mejı́a, regarding the theo-
retical study of this kind of defect in ionic crystals [45–49],
to mention just one example.
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