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Simple deductions of the integral representations of the relativistic Faraday
and Ampere-Maxwell laws and the relativistic transformation laws
of the electromagnetic field
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By using simple concepts of special relativity and the differential representations of the Faraday azré-Amagwell laws, we deduce their
Gelman-Monsivais integral representation. The relativistic transformation laws of the electromagnetic field are also obtained without using
tensorial analysis or covariant concepts.
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Usando conceptos simples de la relatividad especial y las representaciones diferenciales de las ecuaciones de Faeaddyigxdamalh se
deducen las representaciones integrales de Gelman-Monsivais ddtisi@s. Se obtienen al mismo tiempo las leyes de las transformaciones
relativistas del campo electromagito sin utilizar aalisis tensorial o conceptos covariantes.
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1. Introduction mations by using plane waves. Some final conclusions are
presented in Sec. 5.

It is very common to try to relate electromagnetism to spe-

cial relativity. However, both theories require a high level of ,

mathematical concepts to be related and it is very difficult t02' Faraday’s law

accomplish this in elementary courses. A counter-example Olgaraday's law is normally exposed in a partial way. Indeed

|th|s Contsr‘:iﬁ n (:Io?ng (t:_tlntg thefFara?_ay E}Hd Anefpthulaxvlvellt for simple expositions of electromagnetism, Faraday'’s law is
aws wi € relativistic fransiormation faws ot the electro- presented as follows. Firstly, the electromotive farde de-

magnetic field by just using vectorial analysis and some elef- ) ; ; ;
. . g ; in : ian units are requir
mentary notions of special relativity. Indeed, in 1989, Ares ed as: (Gaussian units are required)

de Parga and Rosales [1] have noted that Faraday’s induc- '
tion law required extension in order to apply it to situations €= f E-d, @)
in which circuits undergo deformation as they move and in c

which the motion may be relativistic. In 1990, Gelman [3] oo represents a closed circuit alds the electric field.

;upplied a new ‘”‘egfa' expression for Farad_ay’s law ValidSecondly, the magnetic flug through the open surfacg
in a reference frame in which all parts of a circuit move al\, hose contour i€ is defined as:

relativistic velocities. Recently, within the same order of

ideas, Monsivais [4] obtained a new integral expression for 6= /B - dS
the Ampere-Maxwell law. In both articles, the relativistic o ’
electromagnetic field transformations were used in order to s

obtain the integral representations. The purpose of this afjna)ly, the integral representation of Faraday’s law for a cir-
ticle is to obtain the Gelman-Monsivais integral representag,;it at rest is:

tions [3,4]. We also deduce the relativistic transformation 1d¢

g=——— 3

laws of the electromagnetic field by using simple concepts of cdt’

relativity and vectorial analysis. Since the law is valid for any circuit at rest, by using Stokes's
The paper is organized as follows. By using the Faratheorem it can be expressed in a differential representation

day and Amgre-Maxwell laws in their differential represen- as:

tations and the Lorentz contraction, in Secs. 2 and 3, we VxE~= _laﬁ_ 4)

will partially deduce the Gelman [3] integral representation c ot

of Faraday’s law and the Monsivais [4] integral representa£quation (4) represents the differential Faraday’s law. Eq. (3)

tion of Ampere-Maxwell’s law. Section 4 will be advocated represents the integral form of the Faraday’s law. However, it

to deduce the exact integral representations of both laws arid restricted to consideration of static surfaces and contours.

we will obtain the relativistic electromagnetic field transfor- If we want to generalize this law to time-dependent surfaces

@)
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and contours, we need to make some changes in the defite arrive at the following:

nitions of these quantities in order to maintain invariant the

integral representation of the Faraday’s law. Moreover, some 1 OB

authors [5] obtained an inexact relativistic transformation law GE'-dlI'=—~ - dS+/ (v-V)B-dS|. (9)

of the electromagnetic field by changing the regular definitionc,;(t) ¢ St) ot St

of the electromotive force. We shall propose an integral rep-

resentation of the Faraday’s law that permits us to obtain aft must be noted that, while the magnetic field is measured in
exact relativistic transformation law of the electromagneticthe laboratory frame for both right hand terms of Eq. (9), the

field. Therefore, we firstly propose the electromotive force aslectric field, in the left hand term, is measured in the mov-

follows: ing frames. The magnetic integral in Eq. (9) shows an extra
€= ]{ GE' -dl', (5) termdue to the motion of the circuit. By using the following
ot vector identity,
where G is an unknown function that we need to determi- (v-V)B=V x (Bxv)+v(V-B), (10)

nate andE’and dl’ represent the electric field and the dif-
ferential vector length of the circuit, both measured in thethe magnetic Gauss laWw/(B = 0) and Eq. (9), we arrive at
proper frame. Since the circuit is moving or suffering a defor-

mation, there exists a reference frame where the differential

vector length must be at rest and in this frame which we shall GE' - dl' = 1 9B ds

call the proper framell’ anddl’ must be measured with the . ¢ ot

particularity that the differential time in the laboratory frame o) S()

must vanish: that is§t = 0. The contourC' in the integral

has been substituted ly*(¢) in order to indicate the mo- + / Vx(Bxv)-dS|. (11)
tion of the circuit and to distinguish it from a regular integral.

Indeed, it must to be noted that the integral represented by

Eqg. (5) should be interpreted as the limit of an infinite sum ofo using the differential representation of the Faraday’s law,
quantities that has to be measured in each step [4]; that is, e substitutd1/c)(9B/dt) by V x E and we get
e= lim GE' - AY, 6
muo; ©) ]{GE’-dl':/VxE~dS—1/V><(B><v)-dS
c
(1) S(t) 5(t)

S(t)

where the sum is found by dividing the contour intsec-

guence of this we can definereference frames where each

section of the contour is at rest. In each frame, the section of ro 1 j{
’ E' -dl' = E-dl— - B -dl. (12
the contour measuresi’. To eachAl’ corresponds a vector ]{ ¢ ?{ c (B xv) (12)
AY. This means thaf must be a function which depends  ¢*(®) c) cm

on _the relative mo"of‘ be_tw/e(_en the frame where the d'ﬁer'Since Eq. (12) is valid for any circuit, and considering that
ential length of the circuitAl’ is at rest and the laboratory

f - that is( is a functi f th locity of the circuit the circuit is moving at a constant velocityin the direction
rame, that 1S 15 a function ot the veloCity of the CIrCUIL, = of the x-axis, that isy = vi, we can assert that

G=G(v).
With these considerations, Faraday’s law may be ex- GE. de' — E.dx (13)
pressed as v e
1
GE!,dy = (E, — ~B,v)dy
e= fGE'.dl':—li/B-ds, @) v e
cdt
C*(t) S(t) and

1
/ I _ -
whereC*(t) represents the special contour defined in Eq. (5) GE,dz' = (. + cByv)dZ'

associated withC(¢), the contour of the moving surface, on the other hand, the Lorentz contraction is obtained from

S(). ) S ] the general transformation laws of the coordinates; that is:
Let us now consider a closed circuit which is moving at a
speedv with respect to the laboratory frame. By using iden- de' = ~y(dx —vdt) dy =dy d2 =dz, (14)
tity [2],
wherey = 1/4/1—(V2/C?). Since we have mentioned
d 9B thatdl’ must be measured fat = 0, we arrive at
S(t) S(t) S(t) dx’ = vdx, dy =dy and dz’ =dz. (15)
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Therefore, we finally obtain By using the electric Gauss law/(- E = 47p), the differen-
L1 ) v tial form of Ampere-Maxwell’s law, Eq. (17), and Stokes's
GE, = ;E$> GE, = |:Ey - EBZ} (16)  theorem, we get
and
GE’:{E +33y} ]{ GpB'.dl' = j{B dl—— j{ (v x E)-dl
z z c .
Because we do not know the value of the functionwe are o C(t
not able to identify which is the exact integral form of the an ot pv—T).dS 22)
Faraday’s law and the relativistic transformation law of the P ’
electric field. In Sec. 3, we will analyze Arape-Maxwell’s S(t

law and then we shall be able to give an integral representa-.
tion of the Faraday and Anipe-Maxwell laws and the rela- Since this is valid for any moving contour with a constant ve-

tivistic transformation laws of the electromagnetic field. locity in the x-axis directiony = vi a”d, because the trans-
formation of the electric field does not include a dependence

., in the charge density or charge current, we can conclude that
3. Maxwell-Ampere’s Law

1

Maxwell-Ampere’s law is expressed in its differential repre- GpB, = —B,
sentation as: 4 10E 7
VxB= 3+ 17) GpB. = {By n BEZ}
c c ot Y c

For the case when the contour and the surface are at rest, we

v
can be sure that: GpB. = |:Bz - EEy} and J=J,+pv. (23)

fB dl = Og]ta ds+T /J-dS. (18) It should be pointed out that it may be possible to con-
S sider that] =pV in some specific situations, wheké rep-
By means of the same concepts described in Sect. 2, we c&gsents the velocity of the charges, and we can assert that
propose the integral representatlon of the law as: Jr = p(V — v) asis considered by Monsivais [4]. This is not

1d true in general since in some situations we can laye 0
?{ GgB'-dl' = E. dS+— / J.-dS, (19) and atthe same time= 0. This happens, for example, when
cdt we have a current with positive and negative charges moving
in opposite directions. In this situation, the charge density
whereB’ anddl’ represent the magnetic field and the differ- can vanish and the total current fails to do so. Another exam-
ential length vector, respectively, in the same way we haveye of this is when a current travels inside a conductor etc. . . .

consideredE” anddl’ in Eq.(7). We are obliged to suppose Therefore, we prefer to just keep the result as:
thatJ, does not represent the regular current vedtdhat is

J.# J. But taking into account Eq. (18J,. must coincide J.=J— pv. (24)
with J when the surface is at rest. By developing Eq. (19)

thth the same identity used in Sect. 2[2], Eq. (8), we ariveryo \ye can conclude that the integral representation of
a Ampere-Maxwell’s law may be written in a partial form as:

}{ GpB'-dl' = / —E.dS 1
7{ GpB' - dl' = - —

C(t) 5(t) S(t)

4

1 Az (1) S0 st
+ - / (v.V)E-dS+— / J.-dS. (20) (25)
C

S(t) S(t)

By using the identity represented by Eq. (10), we get 4. Integral form of the Faraday and Ampére-

GpBdl = / D s Maxwell laws and the relativistic electro-
oD ‘st magnetic field transformations
+1 / [(V-E)v -V x (v x E)]-dS In or\der to know the integral form _o_f _the Faraday z_;md
¢ Ampere-Maxwell laws and the relativistic transformation
5@ laws of the electromagnetic field, we just need to know the
+4l I dS 21) value of G and Gg. To calculate these functions, we will
c Y ' require other physical aspects of electromagnetism. Indeed,
5() let us consider a linear polarized plane wave moving in the
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x-axis direction, and let us suppose that the electric field os- Equation (23) has been obtained by assuming that the
cillates in the y-axis. Then the magnetic field oscillates in themotion of a circuit was constant along the x-axis. Since the
z-axis. Therefore the wave can be described by choice of the x-axis was arbitrary, we can immediately gener-
. R alize for any direction and we invite the reader, by using few

E =Ejexp(ikz—wt) and B =Bkexp(ikz—wt). (26)  geometrical aspects, to show that the general transformations

for any electromagnetic field can be expressed as follows:
By using Egs. (16) and (23), it is easy to confirm that the y g P

electric and magnetic fields measured in a moving frame with — - = 2

. E' =v(E + 3 x B) —
respect the laboratory frame and whose velocity is constant v |
in the x-axis,v = vi, are

3(3.E)

B-vB-FxE) - 375 35
E’is parallel toj and B’ is parallel to k. 27) =B - fx _7+16(ﬁ' ) @9

~—

Therefore, we obtain a linear polarized plane wave in thqlvhereﬁ — ?/C Then, we can express the integra| repre-
moving frame, and we know that for a linear polarized planesentation of Faraday’s law as:
wave in any reference frame,
B’ = ixE/. (28) ]{ %E/ dl' = —%% B dS, (36)
C=(t) S(t)
By using Eg. (16) and (23) in Eq. (28), we have

1 Vgl =L v e
Gp Kl B ;) E} G [E (1 c)} = G =0Cp. (29) lB'-dl’ = E-dS+4—7T /(J—pv)-dS. (37)
vy cdt c

In order to evaluat€’, let us consider an infinite charged line .., s st
with constant linear charge density Consider a frame at
rest with the charge. Applying the electric Gauss law, weThese last two equations coincide with the results obtained

and the integral representation of Agrp-Maxwell’s law as:

1d

obtain a radial electric field, by Gelman [3] and Monsivais [4].
A
E=2- and B =0. 30 .
r (30) 5. Conclusion

.If we calculate the. ma_gnetlc field in a referepce fra[ne,movwe have deduced from the differential representations of the
ing along the x-axis with a speead and applying Ampre’s

; : o Faraday and Amgre-Maxwell laws their corresponding in-
law, we obtain an azimuthal magnetic field, . : ]
tegral representations and at the same time we obtained the
. 2MNw relativistic transformation laws of the electromagnetic field
B = or (1) as described by Egs. (35), (36) and (37). The most impor-
o ) tant aspects of these results are their relativistic character-
where\" represents the charge density in the moving framegtics  Although the integral representations have been ob-
Since the total charge is conserved, we can assert that tained before by Gelman [3] and later by Monsivais [4] by
using both the relativistic transformation laws of the electro-
magnetic field, in this paper the relativistic transformation
where we have usedl’ = (1/+)dl, instead ofdz’ = ~yda laws of the electromagnetic field have been deduced in the

as in Eq. (15). The reason is the following: starting from ProCess for obtaining the integral representations. Another
Eq.(14), and consideringf = 0, we arrive atlz’ = ~dz. On interesting aspect is that we have used the electric Gauss law

the other hand, in order to calculate the magnetic figdit (V- E = 47p) and the magnetic Gauss laW ( B = 0).

has been necessary to consider the charge curréftaghis | herefore, following Monsivais's ideas [4], we can conclude
means thad’ has been considered @t — 0. Therefore. in  that the information that we can obtain by using the integral
this case, the identityl’ = (1/+)d! is the correct relation to representations must be richer than that obtained just by using

Al = Ndl! = N =), (32)

be used in Eq. (32). So we obtain: the differential representations of the Faraday and dmep
Maxwell laws.
B =42 E. (33)
C
By comparing Eq. (23) with Eqg. (33), we can conclude that ACknOWledgement
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