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By using simple concepts of special relativity and the differential representations of the Faraday and Ampère-Maxwell laws, we deduce their
Gelman-Monsivais integral representation. The relativistic transformation laws of the electromagnetic field are also obtained without using
tensorial analysis or covariant concepts.
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Usando conceptos simples de la relatividad especial y las representaciones diferenciales de las ecuaciones de Faraday y Ampère-Maxwell, se
deducen las representaciones integrales de Gelman-Monsivais de estasúltimas. Se obtienen al mismo tiempo las leyes de las transformaciones
relativistas del campo electromagnético sin utilizar ańalisis tensorial o conceptos covariantes.
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1. Introduction

It is very common to try to relate electromagnetism to spe-
cial relativity. However, both theories require a high level of
mathematical concepts to be related and it is very difficult to
accomplish this in elementary courses. A counter-example of
this consists in connecting the Faraday and Ampère-Maxwell
laws with the relativistic transformation laws of the electro-
magnetic field by just using vectorial analysis and some ele-
mentary notions of special relativity. Indeed, in 1989, Ares
de Parga and Rosales [1] have noted that Faraday’s induc-
tion law required extension in order to apply it to situations
in which circuits undergo deformation as they move and in
which the motion may be relativistic. In 1990, Gelman [3]
supplied a new integral expression for Faraday’s law valid
in a reference frame in which all parts of a circuit move at
relativistic velocities. Recently, within the same order of
ideas, Monsivais [4] obtained a new integral expression for
the Amp̀ere-Maxwell law. In both articles, the relativistic
electromagnetic field transformations were used in order to
obtain the integral representations. The purpose of this ar-
ticle is to obtain the Gelman-Monsivais integral representa-
tions [3, 4]. We also deduce the relativistic transformation
laws of the electromagnetic field by using simple concepts of
relativity and vectorial analysis.

The paper is organized as follows. By using the Fara-
day and Amp̀ere-Maxwell laws in their differential represen-
tations and the Lorentz contraction, in Secs. 2 and 3, we
will partially deduce the Gelman [3] integral representation
of Faraday’s law and the Monsivais [4] integral representa-
tion of Ampère-Maxwell’s law. Section 4 will be advocated
to deduce the exact integral representations of both laws and
we will obtain the relativistic electromagnetic field transfor-

mations by using plane waves. Some final conclusions are
presented in Sec. 5.

2. Faraday’s law

Faraday’s law is normally exposed in a partial way. Indeed,
for simple expositions of electromagnetism, Faraday’s law is
presented as follows. Firstly, the electromotive forceε is de-
fined as: (Gaussian units are required)

ε =
∮

C

E · dl, (1)

whereC represents a closed circuit andE is the electric field.
Secondly, the magnetic fluxφ through the open surfaceS
whose contour isC, is defined as:

φ =
∫

S

B · dS. (2)

Finally, the integral representation of Faraday’s law for a cir-
cuit at rest is:

ε = −1
c

dφ

dt
. (3)

Since the law is valid for any circuit at rest, by using Stokes’s
theorem it can be expressed in a differential representation
as:

∇×E = −1
c

∂B
∂t

. (4)

Equation (4) represents the differential Faraday’s law. Eq. (3)
represents the integral form of the Faraday’s law. However, it
is restricted to consideration of static surfaces and contours.
If we want to generalize this law to time-dependent surfaces
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and contours, we need to make some changes in the defi-
nitions of these quantities in order to maintain invariant the
integral representation of the Faraday’s law. Moreover, some
authors [5] obtained an inexact relativistic transformation law
of the electromagnetic field by changing the regular definition
of the electromotive force. We shall propose an integral rep-
resentation of the Faraday’s law that permits us to obtain an
exact relativistic transformation law of the electromagnetic
field. Therefore, we firstly propose the electromotive force as
follows:

ε =
∮

C∗(t)

GE′ · dl′, (5)

whereG is an unknown function that we need to determi-
nate andE′and dl′ represent the electric field and the dif-
ferential vector length of the circuit, both measured in the
proper frame. Since the circuit is moving or suffering a defor-
mation, there exists a reference frame where the differential
vector length must be at rest and in this frame which we shall
call the proper frame,E′ anddl′ must be measured with the
particularity that the differential time in the laboratory frame
must vanish: that is,dt = 0. The contourC in the integral
has been substituted byC∗(t) in order to indicate the mo-
tion of the circuit and to distinguish it from a regular integral.
Indeed, it must to be noted that the integral represented by
Eq. (5) should be interpreted as the limit of an infinite sum of
quantities that has to be measured in each step [4]; that is,

ε = lim
∆l′→0

∑

∆l′
GE′ ·∆l′, (6)

where the sum is found by dividing the contour inton sec-
tions,∆l. Each section possesses a velocity, and as a conse-
quence of this we can definen reference frames where each
section of the contour is at rest. In each frame, the section of
the contour measures∆l′. To each∆l′ corresponds a vector
∆l′. This means thatG must be a function which depends
on the relative motion between the frame where the differ-
ential length of the circuit∆l′ is at rest and the laboratory
frame; that is,G is a function of the velocity of the circuit,
G = G(v).

With these considerations, Faraday’s law may be ex-
pressed as

ε =
∮

C∗(t)

GE′ · dl′ = −1
c

d

dt

∫

S(t)

B · dS, (7)

whereC∗(t) represents the special contour defined in Eq. (5)
associated withC(t), the contour of the moving surface,
S(t).

Let us now consider a closed circuit which is moving at a
speedv with respect to the laboratory frame. By using iden-
tity [2],

d

dt

∫

S(t)

B · dS =




∫

S(t)

∂B
∂t

· dS +
∫

S(t)

(v · ∇)B · dS


 (8)

we arrive at the following:

∮

C′∗(t)

GE′·dl′=−1
c




∫

S(t)

∂B
∂t

· dS+
∫

S(t)

(v · ∇)B · dS


 . (9)

It must be noted that, while the magnetic field is measured in
the laboratory frame for both right hand terms of Eq. (9), the
electric field, in the left hand term, is measured in the mov-
ing frames. The magnetic integral in Eq. (9) shows an extra
term due to the motion of the circuit. By using the following
vector identity,

(v · ∇)B = ∇× (B× v) + v(∇ ·B), (10)

the magnetic Gauss law (∇.B = 0) and Eq. (9), we arrive at

∮

C∗(t)

GE′ · dl′ = −1
c




∫

S(t)

∂B
∂t

· dS

+
∫

S(t)

∇× (B× v) · dS


 . (11)

By using the differential representation of the Faraday’s law,
we substitute(1/c)(∂B/∂t) by∇× E and we get
∮

C∗(t)

GE′ · dl′ =
∫

S(t)

∇×E · dS− 1
c

∫

S(t)

∇× (B× v) · dS

Then, the application of Stokes’s theorem gives us
∮

C∗(t)

GE′ · dl′ =
∮

C(t)

E · dl− 1
c

∮

C(t)

(B× v) · dl. (12)

Since Eq. (12) is valid for any circuit, and considering that
the circuit is moving at a constant velocityv in the direction
of the x-axis, that is,v = v̂i, we can assert that

GE′
x′dx′ = Exdx, (13)

GE′
y′dy′ = (Ey − 1

c
Bzv)dy

and

GE′
z′dz′ = (Ez +

1
c
Byv)dz.

On the other hand, the Lorentz contraction is obtained from
the general transformation laws of the coordinates; that is:

dx′ = γ(dx− vdt) dy′ = dy dz′ = dz, (14)

whereγ = 1/
√

1− (V2/C2). Since we have mentioned
thatdl′ must be measured fordt = 0, we arrive at

dx′ = γdx, dy′ = dy and dz′ = dz. (15)
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Therefore, we finally obtain

GE′
x =

1
γ

Ex, GE′
y =

[
Ey − v

c
Bz

]
(16)

and
GE′

z =
[
Ez +

v

c
By

]
.

Because we do not know the value of the functionG, we are
not able to identify which is the exact integral form of the
Faraday’s law and the relativistic transformation law of the
electric field. In Sec. 3, we will analyze Ampère-Maxwell’s
law and then we shall be able to give an integral representa-
tion of the Faraday and Ampère-Maxwell laws and the rela-
tivistic transformation laws of the electromagnetic field.

3. Maxwell-Ampère’s Law

Maxwell-Ampère’s law is expressed in its differential repre-
sentation as:

∇×B =
4π

c
J +

1
c

∂E
∂t

. (17)

For the case when the contour and the surface are at rest, we
can be sure that:∮

C

B · dl =
1
c

∫

S

∂E
∂t

· dS+
4π

c

∫

S

J · dS. (18)

By means of the same concepts described in Sect. 2, we can
propose the integral representation of the law as:

∮

C∗(t)

GBB′ · dl′ =
1
c

d

dt

∫

S(t)

E · dS+
4π

c

∫

S(t)

Jr · dS, (19)

whereB′ anddl′ represent the magnetic field and the differ-
ential length vector, respectively, in the same way we have
consideredE′ anddl′ in Eq.(7). We are obliged to suppose
thatJr does not represent the regular current vectorJ; that is
Jr 6= J. But taking into account Eq. (18),Jr must coincide
with J when the surface is at rest. By developing Eq. (19)
with the same identity used in Sect. 2 [2], Eq. (8), we arrive
at ∮

C∗(t)

GBB′·dl′ =
1
c

∫

S(t)

∂

∂t
E·dS

+
1
c

∫

S(t)

(v.∇)E·dS+
4π

c

∫

S(t)

Jr · dS. (20)

By using the identity represented by Eq. (10), we get
∮

C∗(t)

GBB′·dl′ =
1
c

∫

S(t)

∂

∂t
E·dS

+
1
c

∫

S(t)

[(∇ ·E)v −∇× (v ×E)] ·dS

+
4π

c

∫

S(t)

Jr · dS. (21)

By using the electric Gauss law (∇ ·E = 4πρ), the differen-
tial form of Ampère-Maxwell’s law, Eq. (17), and Stokes’s
theorem, we get

∮

C∗(t)

GBB′.dl′ =
∮

C(t)

B · dl− 1
c

∮

C(t)

(v ×E)·dl

+
4π

c

∫

S(t)

(Jr + ρv − J).dS. (22)

Since this is valid for any moving contour with a constant ve-
locity in the x-axis direction,v = v̂i and because the trans-
formation of the electric field does not include a dependence
in the charge density or charge current, we can conclude that

GBB′
x =

1
γ

Bx

GBB′
y =

[
By +

v

c
Ez

]

GBB′
z =

[
Bz − v

c
Ey

]
and J = Jr + ρv. (23)

It should be pointed out that it may be possible to con-
sider thatJ =ρV in some specific situations, whereV rep-
resents the velocity of the charges, and we can assert that
Jr = ρ(V − v) as is considered by Monsivais [4]. This is not
true in general since in some situations we can haveJ 6= −→

0
and at the same timeρ = 0. This happens, for example, when
we have a current with positive and negative charges moving
in opposite directions. In this situation, the charge density
can vanish and the total current fails to do so. Another exam-
ple of this is when a current travels inside a conductor etc. . . .
Therefore, we prefer to just keep the result as:

Jr= J− ρv. (24)

Then we can conclude that the integral representation of
Ampère-Maxwell’s law may be written in a partial form as:

∮

C∗(t)

GBB′ · dl′ =
1
c

d

dt

∫

S(t)

E · dS+
4π

c

∫

S(t)

(J−ρv) · dS.

(25)

4. Integral form of the Faraday and Ampère-
Maxwell laws and the relativistic electro-
magnetic field transformations

In order to know the integral form of the Faraday and
Ampère-Maxwell laws and the relativistic transformation
laws of the electromagnetic field, we just need to know the
value ofG andGB . To calculate these functions, we will
require other physical aspects of electromagnetism. Indeed,
let us consider a linear polarized plane wave moving in the
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x-axis direction, and let us suppose that the electric field os-
cillates in the y-axis. Then the magnetic field oscillates in the
z-axis. Therefore the wave can be described by

E =E ĵ exp(ikx−wt) and B =Bk̂ exp(ikx−wt). (26)

By using Eqs. (16) and (23), it is easy to confirm that the
electric and magnetic fields measured in a moving frame with
respect the laboratory frame and whose velocity is constant
in the x-axis,v = v̂i, are

E′ is parallel tôj and B′ is parallel to k̂. (27)

Therefore, we obtain a linear polarized plane wave in the
moving frame, and we know that for a linear polarized plane
wave in any reference frame,

B′ = î×E′. (28)

By using Eq. (16) and (23) in Eq. (28), we have

1
GB

[(
1− v

c

)
E

]
=

1
G

[
E

(
1− v

c

)]
⇒ G = GB . (29)

In order to evaluateG, let us consider an infinite charged line
with constant linear charge densityλ. Consider a frame at
rest with the charge. Applying the electric Gauss law, we
obtain a radial electric field,

E = 2
λ

r
and B = 0. (30)

If we calculate the magnetic field in a reference frame mov-
ing along the x-axis with a speedv, and applying Amp̀ere’s
law, we obtain an azimuthal magnetic field,

B′ =
2λ′v
cr

, (31)

whereλ′ represents the charge density in the moving frame.
Since the total charge is conserved, we can assert that

λdl = λ′dl′ ⇒ λ′ = γλ, (32)

where we have useddl′ = (1/γ)dl, instead ofdx′ = γdx
as in Eq. (15). The reason is the following: starting from
Eq.(14), and consideringdt = 0, we arrive atdx′ = γdx. On
the other hand, in order to calculate the magnetic fieldB′, it
has been necessary to consider the charge current asλ′v. This
means thatλ′ has been considered atdt′ = 0. Therefore, in
this case, the identitydl′ = (1/γ)dl is the correct relation to
be used in Eq. (32). So we obtain:

B′ = γ
v

c
E. (33)

By comparing Eq. (23) with Eq. (33), we can conclude that

G =
1
γ

. (34)

Equation (23) has been obtained by assuming that the
motion of a circuit was constant along the x-axis. Since the
choice of the x-axis was arbitrary, we can immediately gener-
alize for any direction and we invite the reader, by using few
geometrical aspects, to show that the general transformations
for any electromagnetic field can be expressed as follows:

−→
E′ = γ(

−→
E +

−→
β ×−→B )− γ2

γ + 1
−→
β (
−→
β .
−→
E )

−→
B′ = γ(

−→
B −−→β ×−→E )− γ2

γ + 1
−→
β (
−→
β .
−→
B ), (35)

where
−→
β = −→v /c. Then, we can express the integral repre-

sentation of Faraday’s law as:
∮

C∗(t)

1
γ
E′ · dl′ = −1

c

d

dt

∫

S(t)

B · dS, (36)

and the integral representation of Ampère-Maxwell’s law as:
∮

C∗(t)

1
γ
B′ ·dl′ =

1
c

d

dt

∫

S(t)

E·dS+
4π

c

∫

S(t)

(J−ρv)·dS. (37)

These last two equations coincide with the results obtained
by Gelman [3] and Monsivais [4].

5. Conclusion

We have deduced from the differential representations of the
Faraday and Amp̀ere-Maxwell laws their corresponding in-
tegral representations and at the same time we obtained the
relativistic transformation laws of the electromagnetic field
as described by Eqs. (35), (36) and (37). The most impor-
tant aspects of these results are their relativistic character-
istics. Although the integral representations have been ob-
tained before by Gelman [3] and later by Monsivais [4] by
using both the relativistic transformation laws of the electro-
magnetic field, in this paper the relativistic transformation
laws of the electromagnetic field have been deduced in the
process for obtaining the integral representations. Another
interesting aspect is that we have used the electric Gauss law
(∇ · E = 4πρ) and the magnetic Gauss law (∇ · B = 0).
Therefore, following Monsivais’s ideas [4], we can conclude
that the information that we can obtain by using the integral
representations must be richer than that obtained just by using
the differential representations of the Faraday and Ampère-
Maxwell laws.
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