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This paper presents the experimental accuracy performance of each of the approximation expressions relative to the exact period for larg
amplitudes of a simple pendulum in the intervalQ # < 180°. The plots of the linearized exact period as a function of linearized formulae

were carried out and relative errors in these expressions were investigated. In addition, this paper gives a clear idea how each formule
approximates the exact period.
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Este ariculo presenta la eficacia sobre la premisexperimental de cada una de las expresiones de aproximaciones cdamralgeriodo

exacto de grandes amplitudes de @mgulo simple en el intervalo’0< 6 < 18C°. Las curvas del periodo exacto linealizado en fanci

de las ecuaciones de aproximaciones linealizadas han sido desarrolladas y los errores relativos de estas expresiones han sido estudiac
Ademas, este artulo da una idea clara démo cada®rmula se acerca del periodo exacto.

Descriptores:Grandes amplitudesgpdulo simple; expresiones de aproximaciones; periodo exacto; experiencia de laboratorio.
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1. Introduction 2. Exact period expression

: . . . The nonlinear oscillations of a simple pendulum are de-

The pendulum is of great importance in science and edu- . . ) . )
: : .~ ~“scribed by the following differential equation[2]

cation. It was used by Galileo as an accurate and simplée

timekeeper, and by Newton to prove the equivalence between 220

gravitational and inertia mass, and until recently the simple — + I sinf = 0, @

2
pendulum was a pedagogical instrument used by teachers and dt L

students to measure the local acceleration of gravity and tQ;nere g is the acceleration of gravity, L is the length of the
study linear and nonlinear oscillations. In the limiting case Ofpendulum and is the amplitude of the angular displace-

smallest amplitudes, for which the approximation&ir- 6 ment. The oscillations of the pendulum are subject to the
(¢ in radians), the periodic oscillation for a simple pendulumipitial conditions

is approximately harmonic, and is described by an expres-

sion given in most undergraduate textbooks [1]. However, for do

large amplitudes the periodic oscillations are described by a 6(0) =6 and <dt> = 0,

complicated formula which involves an elliptic integral or its =0

expansion series or numerical analysis [2,3]. To help physicghered, is the amplitude of oscillation. The system oscil-
students and teachers resolve the problems of a simple peftes between symmetric limits f,, + 6,]. The periodic
dulum for a large displacement angle, several works on apsolutioné (t) to Eq. (1) depends on the amplitudg. For
proximation schemes have been developed by researchersde- 0, we have T = § and the period, J; of a linear oscil-
discuss large-angle oscillations [4-7]. lation of a simple pendulum is given 1%, = 27 /w, where

To investigate the accuracy performance of each approx¥ = V g9/L.
imation expression in the text, we have introduced the tech- The motion of the nonlinear pendulum depends on am-
nique of linearization, by which the exact period expressiorplitude ¢ of the angle of displacement, and the relationship
and the approximation formulae were put into a linear formbetween the amplitude and the corresponding period T de-
and the linear form of the exact period was then plotted as &cribes the dynamic of this nonlinear motion.
function of these linear formulae. The linearization method  The solution to Eq. (1) is expressed in terms of elliptic
makes possible the validation and verification of the accuracintegrals, and could be solved either numerically or by using
of the approximation expressions compared with the exacapproximations. In most cases, there are no analytical solu-
period. tions to this differential equation.
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The simplest form of approximation is when the oscilla- Parwani’s expression[4]
tions of a pendulum are small enough that &ican be ap- Cos
proximated byg, and Eq. (1) for nonlinear motion reduces to sin (v/39) ‘
the linear equation Tp =To W (10)
sin 6 = 6,for smallg 2

Lima and Arun’s expression[7]

Tlog =T, (hl(COS(gg))> (11)

1 — cos (5)

6
dt?
Then the period of oscillation is given by

9y _
+40=0. )

Ty =2m (3)  mula with the exact period for a large amplitude in the inter-
val 0° < 6 < 180°, we have proceeded to the linearization
In this case, the period of oscillation depends on theof the exact period found by the power expansion series and
length of the pendulum and the acceleration due to gravitythe approximation expressions. The linearizations of these
and is independent of the amplitude However, the exact €quations are

solution to the period of oscillations is given by [8]

L To compare the performance of each approximation for-
g

~ 1, 11,
2 lnTezwlnTo+bhl (1+169 +m€
Ter ~ TO*K(k)v (4)
T L 1T g 22931 ¢ 12)
where the function Kk), & = sin?(6y/2), is known mathe- 737280 1321205760
matically as an elliptic integral of the first kind. The values 92
of elliptic integrals are tabulated for numerous values of k InTg =InTp+bln (1 + 16) (13)
which can be found in mathematical tables [9]. The power
expansion of Eq. (4) provides the series result [10] sin(6) —-3/8
InTy =InTh+bln () (14)
1,9 25 0
T., ~ T, (1+k:+k:2+k:3+...). (5) o5
4 64 256 InTxpr =InTy + bln (cos(0/2)) ™ (15)
Further expanding the ksim?(6,/2) terms in Eq. (5) in sin (v/32) —0.5
the power series gives us an expression for the exact period  In7Tp =InT, + bln ?02 (16)
of the form ( 35)
1 11 173 In (cos (%))
Tow =Ty (14 —67 04 6 InTiog = InTp + bln | ———24=2 17
0(+16 T 30m” T 73780 Hhos T IO TIMA T s (2) )
+ﬂ98 ) (6) To validate these approximation expressions and to ex-
1321205760 amine their accuracy compared to the exact period oscilla-

_ o tion, the log values of these equations were determined, and
3. Approximate formulae and validation graphs of these logs were plotted as a function of the log of

o ) ) the exact period. The curves of these plots represent straight
The approximation expressions for large-angle amplitude oOfines of the form:

a simple pendulum that we have investigated are InT., = InTy + bIn (Approximation expressions this
Bernoulli's expression[7] corresponds tg = bz + a,
92 whereln Tj represents the intercept ahds the slope of the
T =T <1 + ) (7)  straight line. Thebestvalues of intercepts and slopes for the
16 approximation expressions should beroand one respec-
Molina’s expression[6] tively.
The equations obtained for straight lines representing
sin() —3/8 the linearization of approximation expressions with their (R-
T =To ( 0 ) (8) squared) correlation coefficients in the ranges00 < 90°
and @ < 6 < 18C° are given in Table I. Two examples of
Kidd and Fogg’s expression([5] the linear regression fittings for these approximations are pre-
05 sented to the reader. The first example was Eq. (25), Fig. 1,
Trr = To (cos(6/2)) (®  and the second one, Eqg. (27), Fig. 2.
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TABLE |. Equations for the straight lines with their R-squared in the ranfies 8 < 90° and 0 < 6 < 18C°.

Eqg. No Equations R-squared (%) Angular amplitude Ranges (degrees)
18 In T., =0.0022 + 0.8759 In & 99.91 0<6<90°
19 In Te, =0.0364 + 0.5283 In & 95.97 0 <6<180C
20 In T., =-0.0002 + 1.018 In T; 100 0 <6<
21 In T.,=-0.1003 + 1.6795 In J; 78.40 0 <6<180
22 In T.,=-0.0007 + 1.0393 In k 99.99 0 <6<
23 In Te;=0.1423 + 1.9968 In k 73.65 0 <6<180
24 In Te;=-0.0002 + 1.0123 In if,, 100 0 <6<
25 In Te,=-0.0559 + 1.3871 In 54 90.37 0 <6<180
26 In T, =0.0003 + 0.9949 In ¥ 100 0 <6<
27 In T.,=0.0044 + 0.9555 In % 99.98 0 <6<180

25

of accuracy of each known approximation expression com-
pared to the exact period oscillation of a simple pendulum.

4. Comparison between exact and approxi-
=138 00558 mate expressions

R?=0.9037

Ln Tex

The reported errors of the known approximation expressions
compared with the exact period oscillations were given for
each formula [7].

e The formula of Bernoulli () shows errors of 0.1%
(0.5%) for amplitudes above 4B0°);

InT,

e The Kidd and Fogg approximation (I-) has errors
FIGURE 1. Fitting the linear regression of Lima and Arun approx- greater than 0.1% for amplitudés> 57° and reaches
imation (In T;og) Angular amplitude 8 < 6 < 180C°. 0.8% ford = 90°;

e The proposed expression by Molinay(T has an error
! greater than 0.1% fa# > 69° and this error is 0.4%
0481 for angular displacement,= 90;

R y=0.3555 + 0.0044 . . .
R =0.9395 e The approximation expression developed by Par-

wani [4] presents an accuracy of 1% for amplitudes as
081 large a9 ~ 130°;

0s

07

LnT,

e The approximation expression proposed by Lima and
Arun [7] has an error greater than 0.1% for amplitude
greater than 7and reaches 0.2% fd@r = 86°. This
formula was supposed to approximate the exact period

041 1 better than existing approximations.

0.4

0.3

0.2

. ne o4 ne ns ! 12 The quality of known approximations is determined by

e comparison to the exact value, which is obtained by the
FIGURE 2. Fitting the linear regression of Parwani approximation power expansion series. To increase the accuracy in the val-
(InTp) Angular amplitude 0 < 6 < 180 ues of the exact period, we have taken into account all terms

up to and including the eight-order term. The ratios of exact
From the analysis of the fitting results, we might give aperiod (T.. /To) and approximation expressions (fjTare

precise idea to physics students and teachers about the degpetted in Fig. 3. As can be seen from this plot, all curves
increase differently with angular amplitudes.
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TABLE Il. Slopes and relative errors of approximation expressions

Approx. Slope X 0 < 90° Slope 0< 6 < 180°

Relative error E% &< 6 < 90° Relative error E % X 6§ < 18C°

Tp 0.9961 0.9555 0.51 4.45

Tlog 1.0123 1.3871 1.23 38.71

Tum 1.018 1.6795 1.8 67.95

Tkr 1.0393 1.9968 3.93 99.68

T 0.8759 0.5283 12.41 47.17
TABLE Ill. Intercepts and relative errors of approximation expressions.

Approx. Intercepts X 6 < 90°

Intercepts (< 0 < 18C°

Relative error E% X § < 90° Relative error E % X 0 < 180°

Tp 0.0003 0.0044
Tiog -0.0002 -0.0559
Tm -0.0002 0.1003
Tkr -0.0007 -0.1423
Ts 0.0022 0.0364

0.03 0.44
0.02 5.59
0.02 10.03
0.07 14.23
0.22 3.64

35

25

Ratio (T/To)

FIGURE 3. Comparison of ratios for exact period{¥ITo) and ap-
proximation expressions (T 4} in the interval 0 < 6 < 180°..
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We attempted to quantify the degree of increase of each
approximation and give physics students and teachers the ac-
curacy of these formulae with respect to the exact period.
From the plots of the exact period linearization (In.Tas a
function of the linearization of each approximation (In T), we
have obtained slopes, intercepts and correlation coefficients
for the straight lines in 10steps from 20 to 180 degrees. The
results of slopes with their corresponding relative errors, and
intercepts with their corresponding relative errors, are pre-
sented in Table Il and l]irespectively, over an interval of
angular amplitude 0< 6 < 180°.

The relative errors obtained for the approximation expres-
sions investigated in this work are shown in Figs. 4 and 5 for
angular amplitudes (0< # < 90°) and (90 < 0 < 180°),
respectively. As can be seen from these plots, for angular am-
plitudes less than 2Qtheir corresponding error curves tend
to zero, and for larger amplitudes the curves increase at a dif-
ferent rate. In other words, the error increase is different for
each curve.

To illustrate the accuracy of each approximation expres-
sion compared to the exact period, the error values of these
formulae for different angular amplitudes 2t 180°) are
presented in Table IV. From the results obtained in Table IV
and Figs. 4 and 5, it may be said that the best approximation
expression discussed in the text is that given by Parwani,
Eq. (10); it presents relative errors of 0.12, 0.16, 0.24, 0.39,
0.51,1.17, 2.69, 4.11 and 4.45% at amplitudes of 20, 40, 60,
80, 90, 120, 150, 170 and 180espectively. These relative
errors are smaller than for the other approximation formu-
lae mentioned in this work, except in amplitude range @0
40°, where the logarithmic approximation given by Lima and
Arun, Eq. (11) offers a better approximation. This formula

FIGURE 4. Comparison of the relative errors for approximation has relative errors of 0.04, 0.15, 0.46, 0.68, 0.93, 1.23, 2.57,
expressions in the intervaf & 6 < 90°.
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TaBLE IV. Comparison of the relative errors for the approximation studies in this work.

i R I t 0/ 1 | xrac _I TEIE Tession /| TEIG.C
Angular amplitudes (degrees) elative errors (%) ; [IN Toaci=IN T cap )/In ¢]

T expression Trexpression k r expression T4 expression b expression

20 0.76 0.01 0.1 0.04 0.12
30 1.59 0.1 0.34 0.04 0.13
40 2.7 0.25 0.66 0.15 0.16
50 4.1 0.4 1.08 0.29 0.19
60 5.78 0.7 1.6 0.46 0.24
70 7.73 1 2.24 0.68 0.31
80 9.94 1.36 3.01 0.93 0.39
90 12.41 1.8 3.93 1.23 0.51
100 15.15 2.33 5.04 1.6 0.67
110 18.14 2.98 6.37 2.04 0.88
120 21.41 3.78 8 2.57 1.17
130 25.0 4.8 10.02 3.27 1.55
140 28.81 6.19 12.66 4.162.06

150 32.98 8.24 16.33 551 2.69
160 37.46 11.7 22.03 7.83 3.42
170 42.22 18.88 32.85 12.67 411
180 47.17 67.95 99.68 38.71 4.45

dulum experiment. For this reason, we have attempted to
investigate the accuracy of each approximation expression
in this text by using a linear formi,e. taking the log of
both sides of the expressions, and plotting the relative error
© e T (In Tez = IN Tegpression)! T ez) @s a function of amplitudes

InTex - InTKF in degrees.

iTex - nlog As can be seen in Table Ill, the best approximation, of

100

80

——InTex - InTB

Relative error ( %)

® R all the expressions studied, that approximates the exact pe-
" riod in the intervals 9 < § < 90Pand 0 < 9 < 18C is
Parwani’'s, Eq. (10), where the error for the exact period is
0 e e e approximately 0.51% for amplitude 90Equation (8) better
& 100 120 140 160 180 2 approximates the exact period for angular amplitudevth
angular amplitude (degrees) an error of 0.01 %. The second best formula in approximat-
FIGURE 5. Comparison of the relative errors for approximation ing the exact period is Eq. (11), called the log approximation
expressions in the interval 9g ¢ < 180°. expression. It presents a relative error of 1.23% at ampli-
tude 90.

5.51, 12.67 and 38.71% for amplitudes 20, 40, 60, 70, 80, The analysis considered in this paper reveals the accuracy
90, 120, 150, 170 and 180respectively. The approxima- and precision of each approximation expression for the exact

tion given by Molina, Eq. (8), is the most accurate of all the period that has some pedagogical interest for undergraduate
formulae studied with a relative error of 0.01% at a smallerphysics students.

angle of displacement of 20
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