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Approximation expressions for the large-angle period
of a simple pendulum revisited
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This paper presents the experimental accuracy performance of each of the approximation expressions relative to the exact period for large
amplitudes of a simple pendulum in the interval 0◦ ≤ θ ≤ 180◦. The plots of the linearized exact period as a function of linearized formulae
were carried out and relative errors in these expressions were investigated. In addition, this paper gives a clear idea how each formula
approximates the exact period.
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Este art́ıculo presenta la eficacia sobre la precisión experimental de cada una de las expresiones de aproximaciones con relación al periodo
exacto de grandes amplitudes de un péndulo simple en el intervalo 0◦ ≤ θ ≤ 180◦. Las curvas del periodo exacto linealizado en función
de las ecuaciones de aproximaciones linealizadas han sido desarrolladas y los errores relativos de estas expresiones han sido estudiados.
Además, este artı́culo da una idea clara de cómo cada f́ormula se acerca del periodo exacto.
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1. Introduction

The pendulum is of great importance in science and edu-
cation. It was used by Galileo as an accurate and simple
timekeeper, and by Newton to prove the equivalence between
gravitational and inertia mass, and until recently the simple
pendulum was a pedagogical instrument used by teachers and
students to measure the local acceleration of gravity and to
study linear and nonlinear oscillations. In the limiting case of
smallest amplitudes, for which the approximation sinθ ≈ θ
(θ in radians), the periodic oscillation for a simple pendulum
is approximately harmonic, and is described by an expres-
sion given in most undergraduate textbooks [1]. However, for
large amplitudes the periodic oscillations are described by a
complicated formula which involves an elliptic integral or its
expansion series or numerical analysis [2,3]. To help physics
students and teachers resolve the problems of a simple pen-
dulum for a large displacement angle, several works on ap-
proximation schemes have been developed by researchers to
discuss large-angle oscillations [4-7].

To investigate the accuracy performance of each approx-
imation expression in the text, we have introduced the tech-
nique of linearization, by which the exact period expression
and the approximation formulae were put into a linear form
and the linear form of the exact period was then plotted as a
function of these linear formulae. The linearization method
makes possible the validation and verification of the accuracy
of the approximation expressions compared with the exact
period.

2. Exact period expression

The nonlinear oscillations of a simple pendulum are de-
scribed by the following differential equation[2]

d2θ

dt2
+

g

L
sin θ = 0, (1)

where g is the acceleration of gravity, L is the length of the
pendulum, andθ is the amplitude of the angular displace-
ment. The oscillations of the pendulum are subject to the
initial conditions

θ(0) = θ0 and

(
dθ

dt

)

t=0

= 0,

whereθo is the amplitude of oscillation. The system oscil-
lates between symmetric limits [-θo, + θo]. The periodic
solutionθ (t) to Eq. (1) depends on the amplitudeθo. For
θ = 0, we have T = T0 and the period, T0, of a linear oscil-
lation of a simple pendulum is given byT0 = 2π/ω, where
ω =

√
g/L.

The motion of the nonlinear pendulum depends on am-
plitude θ of the angle of displacement, and the relationship
between the amplitude and the corresponding period T de-
scribes the dynamic of this nonlinear motion.

The solution to Eq. (1) is expressed in terms of elliptic
integrals, and could be solved either numerically or by using
approximations. In most cases, there are no analytical solu-
tions to this differential equation.



60 D. AMRANI, P. PARADIS AND M. BEAUDIN

The simplest form of approximation is when the oscilla-
tions of a pendulum are small enough that sinθ can be ap-
proximated byθ, and Eq. (1) for nonlinear motion reduces to
the linear equation

sin θ ≈ θ,for smallθ

d2θ

dt2
+

g

L
θ = 0. (2)

Then the period of oscillation is given by

T0 = 2π

√
L

g
. (3)

In this case, the period of oscillation depends on the
length of the pendulum and the acceleration due to gravity,
and is independent of the amplitudeθ. However, the exact
solution to the period of oscillations is given by [8]

Tex ≈ T0
2
π

K(k), (4)

where the function K(k), k = sin2(θ0/2), is known mathe-
matically as an elliptic integral of the first kind. The values
of elliptic integrals are tabulated for numerous values of k
which can be found in mathematical tables [9]. The power
expansion of Eq. (4) provides the series result [10]

Tex ≈ T0

(
1 +

1
4
k+ 9

64
k2 +

25
256

k3 + . . .

)
. (5)

Further expanding the k =sin2(θ0/2) terms in Eq. (5) in
the power series gives us an expression for the exact period
of the form

Tex ≈ T0

(
1 +

1
16

θ2 +
11

3072
θ4 +

173
737280

θ6

+
22931

1321205760
θ8 + . . .

)
. (6)

3. Approximate formulae and validation

The approximation expressions for large-angle amplitude of
a simple pendulum that we have investigated are

Bernoulli’s expression[7]

TB = T0

(
1 +

θ2

16

)
(7)

Molina’s expression[6]

TM = T0

(
sin(θ)

θ

)−3/8

(8)

Kidd and Fogg’s expression[5]

TKF = T0 (cos(θ/2))−0.5 (9)

Parwani’s expression[4]

TP = T0

(
sin

(√
3 θ

2

)
(√

3 θ
2

)
)−0.5

(10)

Lima and Arun’s expression[7]

Tlog = To

(
ln

(
cos

(
θ
2

))

1− cos
(

θ
2

)
)

(11)

To compare the performance of each approximation for-
mula with the exact period for a large amplitude in the inter-
val 0◦ ≤ θ ≤ 180◦, we have proceeded to the linearization
of the exact period found by the power expansion series and
the approximation expressions. The linearizations of these
equations are

ln Tex ≈ ln T0 + b ln
(

1 +
1
16

θ2 +
11

3072
θ4

+
173

737280
θ6 +

22931
1321205760

θ8 + . . .

)
(12)

ln TB = ln T0 + b ln
(

1 +
θ2

16

)
(13)

ln TM = ln T0 + b ln
(

sin(θ)
θ

)−3/8

(14)

ln TKF = ln T0 + b ln (cos(θ/2))−0.5 (15)

ln TP = ln T0 + b ln

(
sin

(√
3 θ

2

)
(√

3 θ
2

)
)−0.5

(16)

ln Tlog = ln T0 + b ln

(
ln

(
cos

(
θ
2

))

1− cos
(

θ
2

)
)

(17)

To validate these approximation expressions and to ex-
amine their accuracy compared to the exact period oscilla-
tion, the log values of these equations were determined, and
graphs of these logs were plotted as a function of the log of
the exact period. The curves of these plots represent straight
lines of the form:

ln Tex = ln T0 + b ln (Approximation expressions) , this
corresponds toy = bx + a,
whereln T0 represents the intercept andb is the slope of the
straight line. Thebestvalues of intercepts and slopes for the
approximation expressions should bezeroandone, respec-
tively.

The equations obtained for straight lines representing
the linearization of approximation expressions with their (R-
squared) correlation coefficients in the ranges 0◦ ≤ θ ≤ 90◦

and 0◦ ≤ θ ≤ 180◦ are given in Table I. Two examples of
the linear regression fittings for these approximations are pre-
sented to the reader. The first example was Eq. (25), Fig. 1,
and the second one, Eq. (27), Fig. 2.
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TABLE I. Equations for the straight lines with their R-squared in the ranges 0◦ ≤ θ ≤ 90◦ and 0◦ ≤ θ ≤ 180◦.

Eq. No Equations R-squared (%) Angular amplitude Ranges (degrees)

18 ln Tex =0.0022 + 0.8759 ln TB 99.91 0◦ ≤ θ ≤ 90◦

19 ln Tex =0.0364 + 0.5283 ln TB 95.97 0◦ ≤ θ ≤ 180◦

20 ln Tex =-0.0002 + 1.018 ln TM 100 0◦ ≤ θ ≤ 90◦

21 ln Tex=-0.1003 + 1.6795 ln TM 78.40 0◦ ≤ θ ≤ 180◦

22 ln Tex=-0.0007 + 1.0393 ln TKF 99.99 0◦ ≤ θ ≤ 90◦

23 ln Tex=0.1423 + 1.9968 ln TKF 73.65 0◦ ≤ θ ≤ 180◦

24 ln Tex=-0.0002 + 1.0123 ln Tlog 100 0◦ ≤ θ ≤ 90◦

25 ln Tex=-0.0559 + 1.3871 ln Tlog 90.37 0◦ ≤ θ ≤ 180◦

26 ln Tex =0.0003 + 0.9949 ln TP 100 0◦ ≤ θ ≤ 90◦

27 ln Tex=0.0044 + 0.9555 ln TP 99.98 0◦ ≤ θ ≤ 180◦

FIGURE 1. Fitting the linear regression of Lima and Arun approx-
imation (ln Tlog) Angular amplitude 0◦ ≤ θ ≤ 180◦.

FIGURE 2. Fitting the linear regression of Parwani approximation
( ln TP ) Angular amplitude 0◦ ≤ θ ≤ 180◦.

From the analysis of the fitting results, we might give a
precise idea to physics students and teachers about the degree

of accuracy of each known approximation expression com-
pared to the exact period oscillation of a simple pendulum.

4. Comparison between exact and approxi-
mate expressions

The reported errors of the known approximation expressions
compared with the exact period oscillations were given for
each formula [7].

• The formula of Bernoulli (TB) shows errors of 0.1%
(0.5%) for amplitudes above 41◦(60◦);

• The Kidd and Fogg approximation (TKF ) has errors
greater than 0.1% for amplitudesθ ≥ 57◦ and reaches
0.8% forθ = 90◦;

• The proposed expression by Molina (TM ) has an error
greater than 0.1% forθ ≥ 69◦ and this error is 0.4%
for angular displacement,θ = 90◦;

• The approximation expression developed by Par-
wani [4] presents an accuracy of 1% for amplitudes as
large asθ ≈ 130◦;

• The approximation expression proposed by Lima and
Arun [7] has an error greater than 0.1% for amplitude
greater than 74◦ and reaches 0.2% forθ = 86◦. This
formula was supposed to approximate the exact period
better than existing approximations.

The quality of known approximations is determined by
comparison to the exact value, which is obtained by the
power expansion series. To increase the accuracy in the val-
ues of the exact period, we have taken into account all terms
up to and including the eight-order term. The ratios of exact
period (Tex /T0) and approximation expressions (T/T0) are
plotted in Fig. 3. As can be seen from this plot, all curves
increase differently with angular amplitudes.
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TABLE II. Slopes and relative errors of approximation expressions

Approx. Slope 0≤ θ ≤ 90◦ Slope 0≤ θ ≤ 180◦ Relative error E% 0≤ θ ≤ 90◦ Relative error E % 0≤ θ ≤ 180◦

TP 0.9961 0.9555 0.51 4.45

Tlog 1.0123 1.3871 1.23 38.71

TM 1.018 1.6795 1.8 67.95

TKF 1.0393 1.9968 3.93 99.68

TB 0.8759 0.5283 12.41 47.17

TABLE III. Intercepts and relative errors of approximation expressions.

Approx. Intercepts 0≤ θ ≤ 90◦ Intercepts 0≤ θ ≤ 180◦ Relative error E % 0≤ θ ≤ 90◦ Relative error E % 0≤ θ ≤ 180◦

TP 0.0003 0.0044 0.03 0.44

Tlog -0.0002 -0.0559 0.02 5.59

TM -0.0002 0.1003 0.02 10.03

TKF -0.0007 -0.1423 0.07 14.23

TB 0.0022 0.0364 0.22 3.64

FIGURE 3. Comparison of ratios for exact period (Tex/T0) and ap-
proximation expressions (T /T0) in the interval 0◦ ≤ θ ≤ 180◦..

FIGURE 4. Comparison of the relative errors for approximation
expressions in the interval 0◦≤ θ ≤ 90◦.

We attempted to quantify the degree of increase of each
approximation and give physics students and teachers the ac-
curacy of these formulae with respect to the exact period.
From the plots of the exact period linearization (ln Tex) as a
function of the linearization of each approximation (ln T), we
have obtained slopes, intercepts and correlation coefficients
for the straight lines in 10◦ steps from 20 to 180 degrees. The
results of slopes with their corresponding relative errors, and
intercepts with their corresponding relative errors, are pre-
sented in Table II and III, respectively, over an interval of
angular amplitude 0◦ ≤ θ ≤ 180◦.

The relative errors obtained for the approximation expres-
sions investigated in this work are shown in Figs. 4 and 5 for
angular amplitudes (0◦ ≤ θ ≤ 90◦) and (90◦ ≤ θ ≤ 180◦),
respectively. As can be seen from these plots, for angular am-
plitudes less than 20◦, their corresponding error curves tend
to zero, and for larger amplitudes the curves increase at a dif-
ferent rate. In other words, the error increase is different for
each curve.

To illustrate the accuracy of each approximation expres-
sion compared to the exact period, the error values of these
formulae for different angular amplitudes (20◦ to 180◦) are
presented in Table IV. From the results obtained in Table IV
and Figs. 4 and 5, it may be said that the best approximation
expression discussed in the text is that given by Parwani,
Eq. (10); it presents relative errors of 0.12, 0.16, 0.24, 0.39,
0.51, 1.17, 2.69, 4.11 and 4.45% at amplitudes of 20, 40, 60,
80, 90, 120, 150, 170 and 180◦, respectively. These relative
errors are smaller than for the other approximation formu-
lae mentioned in this work, except in amplitude range 20◦ to
40◦, where the logarithmic approximation given by Lima and
Arun, Eq. (11) offers a better approximation. This formula
has relative errors of 0.04, 0.15, 0.46, 0.68, 0.93, 1.23, 2.57,
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TABLE IV. Comparison of the relative errors for the approximation studies in this work.

Angular amplitudes (degrees)
Relative errors (%) ; [ ln Texact– ln T expression)/ ln Texact ]

TB expression TM expression TKF expression Tlog expression TP expression

20 0.76 0.01 0.1 0.04 0.12

30 1.59 0.1 0.34 0.04 0.13

40 2.7 0.25 0.66 0.15 0.16

50 4.1 0.4 1.08 0.29 0.19

60 5.78 0.7 1.6 0.46 0.24

70 7.73 1 2.24 0.68 0.31

80 9.94 1.36 3.01 0.93 0.39

90 12.41 1.8 3.93 1.23 0.51

100 15.15 2.33 5.04 1.6 0.67

110 18.14 2.98 6.37 2.04 0.88

120 21.41 3.78 8 2.57 1.17

130 25.0 4.8 10.02 3.27 1.55

140 28.81 6.19 12.66 4.162.06

150 32.98 8.24 16.33 5.51 2.69

160 37.46 11.7 22.03 7.83 3.42

170 42.22 18.88 32.85 12.67 4.11

180 47.17 67.95 99.68 38.71 4.45

FIGURE 5. Comparison of the relative errors for approximation
expressions in the interval 90◦≤ θ ≤ 180◦.

5.51, 12.67 and 38.71% for amplitudes 20, 40, 60, 70, 80,
90, 120, 150, 170 and 180◦, respectively. The approxima-
tion given by Molina, Eq. (8), is the most accurate of all the
formulae studied with a relative error of 0.01% at a smaller
angle of displacement of 20◦.

5. Conclusion

It seems that the reported errors in approximating the ex-
act period of the approximation formulae for large ampli-
tudes of a simple pendulum in the intervals 0◦ ≤ θ ≤ 90◦

and 0◦ ≤ θ ≤ 180◦ are not very precise or accurate for
physics students and teachers who perform the simple pen-

dulum experiment. For this reason, we have attempted to
investigate the accuracy of each approximation expression
in this text by using a linear form,i.e. taking the log of
both sides of the expressions, and plotting the relative error
(ln Tex – ln Texpression)/ T ex) as a function of amplitudes
in degrees.

As can be seen in Table III, the best approximation, of
all the expressions studied, that approximates the exact pe-
riod in the intervals 0◦ ≤ θ ≤ 90◦and 0◦ ≤ θ ≤ 180◦ is
Parwani’s, Eq. (10), where the error for the exact period is
approximately 0.51% for amplitude 90◦. Equation (8) better
approximates the exact period for angular amplitude 20◦ with
an error of 0.01 %. The second best formula in approximat-
ing the exact period is Eq. (11), called the log approximation
expression. It presents a relative error of 1.23% at ampli-
tude 90◦.

The analysis considered in this paper reveals the accuracy
and precision of each approximation expression for the exact
period that has some pedagogical interest for undergraduate
physics students.
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