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It is becoming common to hear teaching advice about spending more time on the “physics of the problem” so that students will get more
physical insight and develop a stronger intuition that can be very helpful when thinking about physics problems. Based on this type of
justification, mathematical skills such as the ability to compute moments of inertia, center of mass, or gravitational fields from mass distri-
butions, and electrical fields from charge distributions are considered “distracting mathematics” and therefore receive less attention. Based
on published cited research on the subject, we’ll argue a) that this approach can have a negative influence on student reasoning when dealing
with questions of rotational dynamics, a highly non-intuitive subject where even instructors may fail to provide correct answers, and b) that
exposure of students to mathematical reasoning and to a wide range of computational techniques to obtain the moment of inertia of different
mass distributions will make students more comfortable with the subject of rotational dynamics, thus improving their physical insight on the
topic.
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Se est́a haciendo coḿun escuchar sobre estrategias de enseñanza en los cursos de fı́sica que haceńenfasis en la ”f́ısica del problema”,
justificándose en la esperanza que de esa forma los estudiantes obtendrı́an mejor intuicíon f́ısica y desarrolları́an mejor sus capacidades al
pensar en problemas de ciencias e ingenierı́as. De acuerdo con estas estrategias de enseñanza, habilidades matemáticas como por ejemplo
la capacidad de calcular e interpretar momentos de inercia, centro de masa, campos gravitacionales de distribuciones de masa o campos
eléctricos de distribuciones de carga se consideran como ”matemáticas que distraen” y por lo tanto han de recibir menos atención. Con
apoyo en estudios reportados en la literatura que referenciamos, en este trabajo discutimos a) que estas estrategias de enseñanza influenyen
negativamente en el razonamiento de los estudiantes cuando intentan describir aspectos relacionados con la dinámica rotacional, un tema
altamente no-intuitivo donde incluso instructores con amplia experiencia enseñando la teḿatica pueden no poder proporcionar respuestas
correctas a problemas relacionados con el tema y b) que una exposición de los estudiantes al razonamiento matemático que les permita
discernir con certeza cuantitativa y cualitativa sobre la dependencia de la inercia rotacional de distribución de masa referente al eje de
rotacíon les permitiŕıa sentir ḿas confianza, no solo cuando tratan del tema de la dinámica rotacional, sino también de otros temas afines de
estudios en los cursos introductorios de fı́sica.

Descriptores: Intuición en f́ısica; aprendizaje en fı́sica; ensẽnanza de la fı́sica; razonamiento matemática; rendimiento estudiantil.
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1. Introduction

A common piece of advice that the Nobel prize winning
physicist Lev Davidovich Landau often offered to students
and colleagues asking him about what and how to study, par-
ticularly to those interested in physics, was about the impor-
tance of mastering first the techniques of working in the field
of interest because “fine points will come by themselves.” In
his own words, “You must start with mathematics which, you
know, is the foundation of our science. [...] Bear in mind that
by ’knowledge of mathematics’ we mean not just all kinds of
theorems, but a practical ability to integrate and to solve in
quadratures ordinary differential equations, etc.” Or, in an-
other response, “What is needed is not all kinds of existence
theorems, on which mathematicians lavish so much praise,
but mathematical techniques, that is, the ability to solve con-
crete mathematical problems” [1].

The importance of being able to express, interpret and
manipulate physical results in mathematical terms was also
stressed by the great physicist Lord Kelvin: “I often say that
when you can measure something and express it in numbers,
you know something about it. When you can not measure it,
when you cannot express it in numbers, your knowledge is of

a meager and unsatisfactory kind. It may be the beginning of
knowledge, but you have scarcely in your thoughts advanced
to the state of science, whatever it may be” [2]. Freeman
Dyson was more eloquent: “...mathematics is not just a tool
by means of which phenomena can be calculated; it is the
main source of concepts and principles by means of which
new theories can be created” [3].

The remarks of these great physicists bring to mind the
challenges of undergraduate students learning rotational dy-
namics in the science and engineering fields while in a typ-
ical calculus-based physics course. Students face the prob-
lem of not finding sufficient detailed solved textbook exam-
ples of rotational inertia (I) computations. Despite the fact
that in general “intuition” cannot be used as a good guide
for computingI (although it can be of help when comput-
ing, for instance, the center of mass of a continuous body),
no more than two or three worked examples can be found in
most calculus-based physics textbooks [4–7]. Accordingly,
based on published recent results [9] we would argue that
students’ limited exposure to or poor training in computing
I for several rigid body geometries with rotational motion
about different axes, can limit their intuition [10] when asked
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to answer questions involving the comparison, for instance,
of the rotational kinetic energy of different objects in similar
situations.

2. About the Problem

The difficulties that students have in realizing the dependence
of I on the mass distribution about the rotating axis is evident
when they are asked to compute the rotational inertia of a thin
rod about one of the rod’s ends and compare it with the cor-
respondingI of a thin rectangular plate rotating about one of
its edges. Students become uneasy about the unexpected re-
sult that, in the latter case,I does not depend on the length of
the edge about which the rotation takes place, and thatI has
the same dependence on the length of the edges perpendicu-
lar to the rotational axis as the thin rod. Moreover, in spite
of learning that the moment of inertia of a system of parti-
cles is the sum of the rotational inertia of individual particles
about the same rotational axis, students are amused by the
idea that to computeI for an axis through the center of mass
and perpendicular to the plane of a rectangular thin plate of
uniform massM , for instance, we can divide the object into
four rectangular smaller plates, each one of massM/4 rotat-
ing around an axis through a corner and perpendicular to the
surface of each lamina. Thus the desiredI is four times the
rotational inertia of one of the smaller plates.

Their anxiety diminishes somewhat when they can com-
pute I using different methods such as direct integration,
using the parallel axis theorem, and dividing a complicated
body into smaller pieces of knownI about the axis of inter-
est. They gain even more confidence about the correctness
of the result after finding the right answer in a textbook or
after measuring a prediction of a physical quantity that de-
pends onI (i.e. the period of oscillation of the corresponding
physical pendulum for both objects). Nevertheless, the exper-
imental approach also requires students to have first foundI
mathematically. In other words, it is required that students
have some conceptual knowledge before they carry out ex-
periments [11,12].

Analogous “surprising results” can be shown to confuse
students when doing similar computations of, for instance,
the moment of inertia of a hollow thin cylinder and a solid
cylinder, each one rotating around their respective axis. How
can it be thatI is smaller for the latter case than for the former
case?

To be able to tackle the above mentioned difficulties with
some success, students need to believe that these results are
neither obvious nor intuitive. Moreover, even for instructors
many rotational dynamics outcomes are not intuitive [10].
Accordingly, the old maxim “A repetitio studiorum mater
est” applies, but it has to be “guided by critical feedback and
deliberateattempts to improve” [13]. That is, the only way
for students not to be surprised by surprising results is by
doing more rotational inertia computations, which many col-
leagues dismiss as “distracting mathematics”, which hardly
help students gain physical insight.

We might agree that in standard calculus courses stu-
dents will learn, among other mathematical skills, the for-
mal techniques in how to carry out some integrals. But it
is in physics courses where students start to apply what they
have learned in their math classes and to find new non-formal
approaches to performing computations [14]. Some warn-
ings on the traditional instruction of math in physics are also
available [15, 16]. We believe that the mathematical under-
standing of a problem is a process that involves meaningful
learning which goes beyond the merely application of rote
procedures and involves “higher order thinking skills” [17].
Moreover, using properly designed quantitative problems re-
quiring students to illustrate their conceptual learning and
understanding will reveal much to the teachers and provide
invaluable feedback [18–21], and they can also be a power-
ful means for helping students to understand the concepts of
physics [17,21].

3. About the evidence

In a study on students’ understanding of rotational dynamic
concepts, Rimoldini and Singh [9] point out some difficulties
that students encounter when dealing with the subject. In par-
ticular, when students they interviewed were asked about how
the angular velocity or the period of rotating objects would
depend on the mass distribution of the object, “Many did not
use the concept of rotational inertia correctly. Some said that
they vaguely remember that the distribution of mass matters
but did not remember the exact relation.” This observation
is a reflection of the limited exposure students have to the
computation of the rotational inertia of different mass distri-
butions and how it actually depends on the mass distribution
about the rotational axis.

This difficulty is further made explicit in a written test of
thirty multiple-choice questions that the authors [9] also ad-
ministered to 652 students from calculus- and algebra-based
introductory physics courses, which includes an honor class
of 97 students and an upper-level class of 17 physics majors
enrolled in an intermediate mechanics course. The test ques-
tions, a total of thirty, are available as Appendix B of the
report [9], and students were required to provide justification
for their answers.

In addition to two classes of student difficulties identified
by Rimoldini and Singh, a) those sharing a common ancestry
with linear motion and b) those uniquely related to the more
intricate nature of rotational motion, we could add a third cat-
egory c) those associated with insufficient training of students
on the mathematical computation of rotational inertia.

Rimoldini and Singh found that some of the students they
interviewed were uncertain about the meaning ofI, which
likely indicates that the students had little practice in com-
puting I and had not mastered the techniques of computing
I. Recalling that mathematically solving problem involves
a “higher-order thinking skills,” [17] we also share the idea
expressed by Rigden in the sense that “a student’s ability to
discuss the problem–to do so in words of their own choosing,
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to do so clearly and accurately–indicates an understanding in
which we can have confidence.” [17] And to get to that level
some practice is required [22]. In fact, in studies compar-
ing conceptual learning and problem solving skills, students
enrolled in courses based on traditional instruction scored
on average higher in quantitative problems than students en-
rolled in courses emphasizing conceptual learning [23–25].
As pointed out by L.D. Landau “I can only emphasize that
you must perform all the calculations by yourself, and must
not leave it to the authors of the books you have read” [1].
Though the ability to do so is a matter of training in “dis-
tracting mathematical computations” such as computing rota-
tional inertia, the training should also involve a proper physi-
cal interpretation of the quantitative results obtained [19,26].

To make our third category more evident, we first concen-
trate on the responses to the thirty questions given by students
of the honor class. The answers can be divided into two sets:
those that were answered correctly by eighty or more percent
of the students (high level of correct response) and those that
were answered correctly by less than eighty percent of the
students. We find 14 questions in the first group. In the sec-
ond group fall the remaining 16 questions. The answers to
the questions are given on page 7 of the report [9].

It is expected that students of an honor class would be
able to perform standard computations involving integration
of not too complicated expressions. Correspondingly, ac-
cording to this expectation we would expect that all 7 of the
questions involving knowledge of the rotational inertia of the
rotating solid (i.e. questions 1, 3, 4, 20, 24, 25, and 29) would
have received a higher level of correct responses (to make the
article self-contained we are including these 7 questions as
appendix A and the respective responses to these questions
are shown in Table I). Such an expectation is reasonable be-
cause the required computations are fairly easy. The results
show that only question number 20 was answered in confor-
mity with this expectation, and it was answered correctly by
85 percent of the students of the honor class (because the
computation requires a simple integration and, more impor-
tantly, the rotational inertia of a homogeneous cylinder is one

of the few textbook-worked examples, this level of response
should have been much better). By similar reasoning, ques-
tions 1, 3, and 4 should have received a higher level of correct
responses by the honor class.

We believe that if students of the honor class had received
enough training in computing the rotational inertia in com-
posite and simple objects (like the ones involved in these
questions), they would have given a higher level of correct
responses on 7 of the questions requiring these simple com-
putations [17, 19, 20, 24, 26]. This would have reduced the
gap between the questions receiving a high level of correct
responses and those that did not.

These observations also apply to the other group of stu-
dents that took the test. For example, while 76 percent of
honors students provided the correct response to question 3
(see Table I), physics majors in an upper-level class did not
perform better on this than non-honors introductory students
(41 and 45 percent correct responses respectively). The upper
level class did better in answering question 4 than the other
two. Regarding rotational inertia, these were the only two
questions common to each group. On average, 71 percent of
the students from the honor class answeredall the questions
regarding rotational inertia correctly while 56 percent of the
non-honor class answered the same questions correctly.

We feel that, since the mathematical computations and
algebraic manipulations involved in these questions are not
really demanding, the failure of honor students to respond
correctly is a consequence of neglecting mathematical skills
over physical insight [13, 14, 16, 27]. In addition, in their
study Hoellwarthet al. [23] conclude that “students must be
taught both concepts and problem solving skills explicitly
if we want students to be proficient at both.” In this sense,
proactive teaching strategies should lead to the identification
of quantitative problems helpful to recognize both concep-
tual and quantitative understanding of students. In fact, some
fruitful ideas have been advanced on how to properly address
the design of instruction so that the involved learning cogni-
tive mechanism of the students are triggered, leading to more
effective teaching outcomes [13,18,19,21,28,29].

TABLE I. Multiple-choice questions (included in Appendix A) were administered to a total of 669 students. The performance of 559 general
(calculus- and algebra-based) introductory non-honor students (GI) is distinguished from an honor class (HC) of 93 introductory students,
and an upper-level (UL) class of 17 physics majors enrolled in an intermediate mechanics course (who were administered a subset of 11
questions). The table presents the average percentage (rounded to the nearest integer) of students selecting the answer choices (a)–(e) for
each question of the test (bold numbers refer to the correct responses).

Answers (a) (b) (c) (d) (e)

Questions GI HC UL GI HC UL GI HC UL GI HC UL GI HC UL

1 16 10 23 16 57 73 4 1 1 0

3 18 27 29 45 71 41 35 2 18 1 0 6 1 0 6

4 13 7 6 22 15 6 61 76 82 3 0 6 0 2 0

20 2 2 3 2 71 85 18 9 6 2

24 33 61 32 24 3 0 4 0 28 15

25 28 58 32 21 4 2 34 18 2 1

29 19 9 60 75 3 0 1 1 17 15
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4. Concluding remarks

We suggest that the common difficulty students have in an-
swering correctly questions of physical quantities involving
rotational inertia is likely rooted in the limited exposure stu-
dents have to computing and analyzing these quantities be-
cause these techniques, while essential, are considered to be
“distracting mathematics,” and their importance is not em-
phasized by instructors [13, 18, 19]. Another reasons for stu-
dents’ difficulty is that textbooks used by students provide
just one or two simple examples as models for students to
learn these computational techniques [7]. Considering the
non-intuitiveness of rotational dynamics, even for instructors
having a wide experience teaching the subject [10], both rea-
sons conspire against students reasoning on this subject.

In the analysis of the collected data, on page 6 of the re-
port [9], Rimoldini and Singh pointed out that “many stu-
dents were unsure about this concept. For example, many did
not know thatI is a function of the mass distribution about
an axis and that the rotational kinetic energy depends onI
and not just on the total mass.[...] Interviews showed that this
type of difficulty was partly due to the students’ unfamiliarity
with I”.

In some sense, the research of Rimoldini and Singh
somehow supports the idea that because of an overempha-
sis [23,27,30] on the qualitative (conceptual) physical aspects
of the problems, standard mathematical abilities, which are
essential for understanding the whole physical process, are
not taught because, to rephrase a passage from a recent edito-
rial [31], they interfere with the students’ emerging sense of
physical insight.

Thus, if instructors do not have enough time to train stu-
dents relevant computational techniques, textbook publish-
ers should not leave mathematical computations only to the
students. In addition to rotational inertia, textbooks should
also include more solved illustrative examples on comput-
ing center of mass, gravitational and electric fields [7] and
constantly point out that the involved techniques are essen-
tially the same [14]. This is an important requirement for a
textbook because innovative active-learning teaching strate-
gies require students to acquire basic and fundamental knowl-
edge through reading a textbook. Certainly, innovative teach-
ing strategies will help in handling thicker and heavier text-
books, with lots of physical and mathematical insights within
them [20,23,32–34].

To paraphrase Heron and Meltzer, learning to approach
problems in a systematic way starts from teaching and
learning the interrelationships among conceptual knowledge,
mathematical skills and logical reasoning [35]. In physics,
this necessarily requires the teaching of a good deal of “dis-
tracting mathematical computations.”
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Appendix

A. Test problems

To make the article self-contained, in this section we are in-
cluding the 7 multiple choice test problems we are analyz-
ing [9].

1. Two copper disks (labeled “A” and “B”) have the same
radius, but disk B is thicker with four times the mass of disk
A. They spin on frictionless axles. If disk A is rotating twice
as fast as disk B, which disk has more rotational kinetic en-
ergy?
(a) The faster rotating disk A.
(b) The thicker disk B.
(c) Both disks have the same rotational kinetic energy.
(d) It depends on the actual numerical values of the angular
speeds of the disks.
(e) None of the above.

3. An aluminum disk and an iron wheel (with spokes of
negligible mass) have the same mass M and radius R. They
are spinning around their frictionless axles with the same an-
gular speed as shown. Which of them has more rotational
kinetic energy?
(a) The aluminum disk.
(b) The iron wheel.
(c) Both have the same rotational kinetic energy.
(d) It depends on the actual numerical value of the mass M.
(e) None of the above.

4. Consider the moment of inertia, I, of the rigid homo-
geneous disk of mass M shown below, about an axis through
its center (different shadings only differentiate the two parts
of the disk, each with equal mass M/2). Which one of the
following statements concerning I is correct?
(a) The inner and outer parts of the disk, each with mass M/2
(see figure), contribute equal amounts to I.
(b) The inner part of the disk contributes more to I than the
outer part.
(c) The inner part of the disk contributes less to I than the
outer part.
(d) The inner part of the disk may contribute more or less to
I than the outer part depending on the actual numerical value
of the mass M of the disk.
(e) None of the above.

20. The moment of inertia of a rigid cylinder
(a) does not depend on the radius of the cylinder.
(b) does not depend on the mass of the cylinder.
(c) depends on the choice of rotation axis.
(d) depends on the angular acceleration of the cylinder.
(e) can be expressed in units of kg.

Setup for the next three questionsAn aluminum disk and
an iron wheel (with spokes of negligible mass) have the same
radius R and mass M as shown below. Each is free to rotate
about its own fixed horizontal frictionless axle. Both objects
are initially at rest. Identicalsmall lumps of clay are attached
to their rims as shown in the figure (the figure shows each rim
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on vertical position and the small mass attached to the right
of the rim on the horizontal diameter).

24. Which one of the following statements about their
angular accelerations is true?
(a) The angular acceleration is greater for the disk+clay sys-
tem.
(b) The angular acceleration is greater for the wheel+clay
system.
(c) Which system has a greater angular acceleration depends
on the actual numerical values of R and M.
(d) There is no angular acceleration for either system.
(e) The angular accelerations of both systems are equal and
non-zero.

25. Which one of the following statements about their
maximum angular velocities is true?
(a) The maximum angular velocity is greater for the
disk+clay system.
(b) The maximum angular velocity is greater for the
wheel+clay system.
(c) Which object has a greater maximum angular velocity is
determined by the actual numerical values of R and M.
(d) The maximum angular velocities of both systems are
equal and non-zero.

(e) There is no angular velocity for either system so the ques-
tion of a maximum value does not arise.

Setup for the next two questionsTwo copper disks of dif-
ferent thicknesses have the same radius but different masses
as shown below. Each disk is free to rotate about its own
fixed horizontal frictionless axle. Both disks are initially at
rest. Identicalsmall lumps of clay are attached to their rims
as shown in the figure. (the figure shows each rim on vertical
position and the small mass attached to the right of the rim
on the horizontal diameter).

29. Which one of the following statements about their
angular accelerations is true?
(a) The angular acceleration is greater for the system in which
the disk has larger mass.
(b) The angular acceleration is greater for the system in which
the disk has smaller mass.
(c) Which system has a greater angular acceleration depends
on the actual numerical values of their masses.
(d) There is no angular acceleration for either system.
(e) The angular accelerations of both systems are equal and
non-zero.
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